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Implementation

Let h;j(n) = impulse response from source j to ear .
Then the output is given by six convolutions:

yi(n) = (s1% hy)(n) + (82 % hio)(n) + (s3 % hyz)(n)
Ya(n) = (s1% ha1)(n) + (s2% haz)(n) + (s3 x has)(n)

e For small n, filters h;;(n) are sparse

e Tapped Delay Line (TDL) a natural choice

Transfer-function matrix:

[ e It 50
Ya(2) Hou(2) Ha(z) Hx(2) | | o)

Reverberation Transfer Function
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e Three sources
e One listener (two ears)

e Filters should include pinnae filtering
(spatialized reflections)

e Filters change if anything in the room changes

In principle, this is an exact computational model.
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Complexity of Exact Reverberation

Reverberation time is typically defined as t4, the time, in
seconds, to decay by 60 dB.

Example:

e Let t50 = 2 seconds
e f, =150 kHz

e Each filter h;; requires 100,000 multiplies and
additions per sample, or 5 billion multiply-adds per
second.

e Three sources and two listening points (ears) =
60 billion operations per second
— 20 dedicated CPUs clocked at 3 Gigahertz
— multiply and addition initiated each clock cycle
— no wait-states for parallel input, output, and filter
coefficient accesses

e FFT convolution is faster, if throughput delay is
tolerable (and there are low-latency algorithms)

Conclusion: Exact implementation of point-to-point
transfer functions is generally too expensive for real-time
computation.


http://ccrma.stanford.edu/~jos
http://ccrma.stanford.edu/
http://www.stanford.edu/group/Music/
http://www.stanford.edu/

Possibility of a Physical Reverb Model

In a complete physical model of a room,
e sources and listeners can be moved without affecting
the room simulation itself,
e spatialized (in 3D) stereo output signals can be
extracted using a “virtual dummy head"

How expensive is a room physical model?

e Audio bandwidth = 20 kHz & 1/2 inch wavelength
e Spatial samples every 1/4 inch or less
e A 12'x19'x8" room requires > 200 million grid points

e A lossless 3D finite difference model requires one
multiply and 6 additions per grid point = 60 billion
additions per second at f, = 50 kHz

e A 100'x50'x20" concert hall requires more than
3 quadrillion operations per second

Conclusion: Fine-grained physical models are too
expensive for real-time computation, especially for large
halls.
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Perception of Echo Density and Mode Density

e For typical rooms

— Echo density increases as t?

— Mode density increases as f?

e Beyond some time, the echo density is so great that a
stochastic process results

e Above some frequency, the mode density is so great
that a random frequency response results

e There is no need to simulate many echoes per sample

e There is no need to implement more resonances than
the ear can hear

Perceptual Aspects of Reverberation

Avrtificial reverberation is an unusually interesting signal
processing problem:

e “Obvious” methods based on physical modeling or
input-output modeling are too expensive

e We do not perceive the full complexity of
reverberation

e What is important perceptually?

e How can we simulate only what is audible?

Proof that Echo Density Grows as Time Squared

Consider a single spherical wave produced from a point
source in a rectangular room.

e Tesselate 3D space with copies of the original room

e Count rooms intersected by spherical wavefront



Proof that Mode Density Grows as Freq. Squared

The resonant modes of a rectangular room are given b
k*(1,m,n) = ki(l) + ki(m) + k?(n)
e k,(l) = lw/L, = lth harmonic of the fundamental
standing wave in the z
e [, = length of the room along x
e Similarly for ¢ and 2

e Mode frequencies map to a uniform 3D Cartesian grid
indexed by (I, m,n)

e Grid spacings are 7/L,, 7/L,, and /L. in x,y, and
z, respectively.

e Spatial frequency k of mode (I, m,n) = distance
from the (0,0,0) to (I,m,n)

e Therefore, the number of room modes having a given
spatial frequency grows as k?

1For a tutorial on vector wavenumber, see Appendix E, section E.6.5, in the text:
http://cerma.stanford.edu/~jos/pasp/ Vector_-Wavenumber. html
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Perceptual Metrics for Ideal Reverberation

Some desirable controls for an artificial reverberator
include

o (2

e C(f) = "clarity” = ratio of impulse-response energy
in early reflections to that in the late reverb

e t60(f) = desired reverberation time at each frequency
(

f) = signal power gain at each frequency

e p(f) = inter-aural correlation coefficient at left and
right ears

Perceptual studies indicate that reverberation time #4o(f)
should be independently adjustable in at least three
frequency bands.

Early Reflections and Late Reverb

Based on limits of perception, the impulse response of a
reverberant room can be divided into two segments
e Farly reflections = relatively sparse first echoes

e [ate reverberation—so densely populated with echoes
that it is best to characterize the response
statistically.

Similarly, the frequency response of a reverberant room
can be divided into two segments.
e Low-frequency sparse distribution of resonant modes

e Modes packed so densely that they merge to form a
random frequency response with regular statistical
properties

10

Energy Decay Curve (EDC)

For measuring and defining reverberation time g,
Schroeder introduced the so-called energy decay curve
(EDC) which is the tail integral of the squared impulse
response at time ¢:

EDC(t) £ /x h3(7)dr

e EDC(t) = total signal energy remaining in the
reverberator impulse response at time ¢

e EDC decays more smoothly than the impulse response
itself

e Better than ordinary amplitude envelopes for
estimating tg


http://ccrma.stanford.edu/~jos/pasp/Vector_Wavenumber.html

Energy Decay Relief (EDR)

The energy decay relief (EDR) generalizes the EDC to
multiple frequency bands:

M
EDR(t,, fi) 2 > [H(m, k)|

m=n

where H(m, k) denotes bin k of the short-time Fourier
transform (STFT) at time-frame m, and M is the
number of frames.

e FFT window length ~ 30 — 40 ms

e EDR(t,, fr) = total signal energy remaining at time
t, sec in frequency band centered at fj

Reverb = Early Reflections 4+ Late Reverb

x(”)—»l Tapped Delay Line ’—> R%%gib

\ / y(n)

e TDL taps may include lowpass filters
(air absorption, lossy reflections)

e Several taps may be fed to late reverb unit,
especially if it takes a while to reach full density

e Some or all early reflections can usually be worked
into the delay lines of the late-reverberation
simulation (transposed tapped delay line)

Energy Decay Relief (EDR) of a Violin Body
Impulse Response
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e Energy summed over frequency within each “critical
band of hearing” (Bark band)

e Violin body = “small box reverberator”

Early Reflections

The “early reflections” portion of the impulse response is
defined as everything up to the point at which a statistical
description of the late reverb becomes appropriate

e Often taken to be the first 100ms
e Better to test for Gaussianness

— Histogram test for sample amplitudes in 10ms
windows

— Exponential fit (t5) match) to EDC (Prony's
method, matrix pencil method)

— Crest factor test (peak/rms)

e Typically implemented using tapped delay lines (TDL)
(suggested by Schroeder in 1970 and implemented by
Moorer in 1979)

e Early reflections should be spatialized (Kendall)

e Early reflections influence spatial impression
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Late Reverberation

Desired Qualities:

1. a smooth (but not too smooth) decay, and

2. a smooth (but not too regular) frequency response.

e Exponential decay no problem

e Hard part is making it smooth

nou

— Must not have “flutter,” "beating,” or unnatural
irregularities

— Smooth decay generally results when the echo
density is sufficiently high

— Some short-term energy fluctuation is required for
naturalness

e A smooth frequency response has no large “gaps”’ or
“hills”
— Generally provided when the mode density is
sufficiently large
— Modes should be spread out uniformly

— Modes may not be too regularly spaced, since
audible periodicity in the time-domain can result
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Schroeder Allpass Sections (Late Reverb)
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e Typically, g = 0.7

e Delay-line lengths M; mutually prime, and
span successive orders of magnitude
e.g., 1051,337,113

e Allpass filters in series are allpass

e Each allpass expands each nonzero input sample from
the previous stage into an entire infinite allpass
impulse response

e Allpass sections may be called “impulse expanders”,
“impulse diffusers” or simply “diffusers”

e NOT a physical model of diffuse reflection, but
single reflections are expanded into many reflections,
which is qualitatively what is desired.
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e Moorer's ideal late reverb: exponentially decaying
white noise

— Good smoothness in both time and frequency
domains
— High frequencies need to decay faster than low
frequencies
e Schroeder's rule of thumb for echo density in the late
reverb is 1000 echoes per second or more

e For impulsive sounds, 10,000 echoes per second or
more may be necessary for a smooth response

Why Allpass?

e Allpass filters do not occur in natural reverberation!

e “Colorless reverberation” is an idealization only
possible in the “virtual world”

e Perceptual factorization:
Coloration now orthogonal to decay time and echo

density

20



Are Allpass Filters Really Colorless?
e Allpass impulse response only “colorless” when
extremely short (less than 10 ms or so).

e Long allpass impulse responses sound like feedback
comb-filters

e The difference between an allpass and
feedback-comb-filter impulse response is one echo!

Allpass Impulse Response, M<7, g=0.7

Feedback Comb Filter Impulse Response, M=7, g=0.7
T T T T T
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e Steady-state tones (sinusoids) really do see the same
gain at every frequency in an allpass, while a comb
filter has widely varying gains.
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e Schroeder suggests a progression of delays close to

100
MT ~ —2

i=0,1,2,3,4.

)

e Comb filters impart distinctive coloration:

e Early reflections
e Room size
e Could be one tapped delay line

e Usage: Instrument adds scaled output to RevIn
e Reverberator output RevOut goes to four delay lines

e Four channels decorrelated
e /maging of reverberation between speakers avoided

e For stereo listening, Schroeder suggests a mixing
matrix at the reverberator output, replacing the
decorrelating delay lines

e A mixing matrix should produce maximally rich yet
uncorrelated output signals

e JCRev is in the Synthesis Tool Kit (STK)

e JCRev.cpp
e JCRev.h.
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A Schroeder Reverberator called JCRev

FFCF %742
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Classic Schroeder reverberator JCRev.

JCRev was developed by John Chowning and others at
CCRMA based on the ideas of Schroeder.
e Three Schroeder allpass sections:

A gtz
1+ gzv

e Four feedforward comb-filters (STK uses FBCFs):

AP,

FFCFS 2 g 427V
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Freeverb

i nput
pel

O e ] o I o PN e IR |1£L

e Four Schroeder "diffusion allpasses” in series

e Eight parallel Schroeder-Moorer
lowpass-feedback-comb-filters:

1

1-d _N
1= flfdz*1 <

LBCFf? 2
e Second stereo channel: increase all 12 delay-line

lengths by “stereo spread” (default = 23 samples)

e Used extensively in the free-software world

24



Freeverb Parameters

e d (“damping”) default:
damp = initialdamp * scaledamp = 0.5-0.4 = 0.2
e [ (“room size") default:

roomsize = initialroom * scaleroom + offsetroom
=0.5-0284+0.7=0.84

e Feedback lowpass (1 — d)/(1 — dz") causes
reverberation time tg(w) to decrease with frequency
w, which is natural

e [ mainly determines reverberation time at
low-frequencies (where feedback lowpass has
negligible effect)

e At very high frequencies, tg)(w) is dominated by the
diffusion allpass filters
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Freeverb Allpass Approximation

Schroeder Diffusion Allpass

g é—g—O-z’N

AP} = [—
Freeverb implements
—1+(1 -N
APY ~ w
: 1—gzN

e Each Freeverb “allpass” is more precisely a feedback
comb-filter FBCF{; in series with a feedforward
comb-filter FFCFF'HQ, where

1
FBCFY & ——
N 1—gzV
FFCF,MH 2 —1 4 (14 g)z V.

e A true allpass is obtained at g = (v/5 — 1)/2 ~ 0.618
(reciprocal of “golden ratio")

e Freeverb default is g = 0.5

27

T60 in Freeverb

e “Room size” f sets low-frequency g

e “damping” d controls how rapidly Zg) shortens as
frequency increases

e Diffusion allpasses set lower bound on g

Interpreting "Room Size" Parameter

e Low-frequency reflection-coefficient for two
plane-wave wall bounces

e Could be called 1iveness or reflectivity

e Changing roomsize normally requires changing
delay-line lengths
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FDN Late Reverberation

u(n) >——@ s w ]
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Jot (1991) FDN Reverberator for N = 3

e Generalized state-space model (unit delays replaced
by arbitrary delays)

e Note direct path weighted by d

e The “tonal correction” filter E(z) equalizes mode
energy independent of reverberation time
(perceptual orthogonalization)

e Gerzon 1971: “orthogonal matrix feedback reverb”
cross-coupled feedback comb filters (see below)
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Choice of Orthogonal Feedback Matrix ()

Late reverberation should resemble exponentially
decaying noise. This suggests the following two-step
procedure for reverberator design:

1. Set tgp = oo and make a good white-noise generator
2. Establish desired reverberation times in each

frequency band by introducing losses

The white-noise generator is the lossless prototype
reverberator.
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Choice of Delay Lengths M;

e Delay line lengths M; are typically mutually prime
(Schroeder)

e For sufficiently high mode density, . M; must be
sufficiently large.

— No “ringing tones” in the late impulse response
— No “flutter”

Hadamard Feedback Matrix

A second-order Hadamard matrix:

A 1 11
H2_\/§{11}’

Higher order Hadamard matrices defined by recursive

embedding:
H é L HQ Hg
T -H Hy |

e Since Hj does not exist, the FDN example figure
above can be redrawn for N = 4, say, (instead of
N = 3), so that we can set Q = Hy

e The Hadamard conjecture posits the existence of
Hadamard matrices Hy of order N = 4k for all
positive integers k.

e “As of 2008, there are 13 multiples of 4 less than or
equal to 2000 for which no Hadamard matrix of that
order is known. They are: 668, 716, 892, 1004, 1132,
1244, 1388, 1436, 1676, 1772, 1916, 1948, 1964.”
[attp://en.wikipedia.org/wiki/Hadamard matrix|
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Mode Density Requirement

FDN order = sum of delay lengths:
N
M2 Z M;  (FDN order)
i=1

e Order = number of poles

e All M poles are on the unit circle in the lossless
prototype

e If uniformly distributed, mode density =

% = MT modes per Hz

1.
e Schroeder suggests 0.15 modes per Hz
(when tg) = 1 second)

e Generalizing:
M > 0.15tg fs

e Example: For f, = 50 kHz and ¢4y = 1 second,
M > 7500

e Note that M = t4 f is the length of the FIR filter
giving a perceptually exact implementation. Thus,
recursive filtering is about 7 times more efficient by
this rule of thumb.


http://en.wikipedia.org/wiki/Hadamard_matrix

Choice of Loss Gains g;
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Jot (1991) FDN Reverberator for N = 3

e To set the reverberation time tg, we need to move
the poles of the lossless prototype slightly inside the
unit circle

e The scaling coefficients g; can accomplish this for
0<g <1

e Since high-frequencies decay faster in propagation
through air, we want to move the high-frequency
poles farther in than low-frequency poles

e Therefore, we need to generalize g; above to G;(2),
with |G;(e/T)| < 1 imposed to ensure stability

Example

e Start with a pole at dc (digital integrator):

1

He =1

< [1,1,1,..]

e Move it from radius 1 to radius 0.9 using
27 e 09271

— ¢ [1,0.9,081,.. ]

Damping Filter Design

The damping filter G;(z) associated with the delay line
of length M; in the FDN can be written in principle as

Gil2) = G7'(2) L)

where G'7(z2) is the lowpass filter corresponding to one
sample of wave propagation through air, and L;(2) is a
lowpass corresponding to absorbing/scattering boundary
reflections along the (hypothetical) ith propagation path.

Define
teo(w) = desired reverberation time at frequency w

pr = kT = kth pole of the lossless prototype

We can introduce frequency-independent damping with
the (conformal map) substitution

P g 271

e This z-plane mapping pulls all poles in the z plane
from the unit circle to the circle of radius ¢

e Pole p;. = e/“kT moves to pj, = g e/“rT

Frequency-Dependent Damping

For frequency-dependent damping, consider the mapping
2 e Gz) 27!

where G(z) is a lowpass filter satisfying |G(e-j’“’T)| <1
Yw

1

e Neglecting phase in the loss filter G(z), the
substitution 27! <~ G(z) 2! only affects the pole
radius, not angle

e (3(z) = per-sample filter in the propagation medium

e Schroeder (1961):

The reverberation times of the individual modes
must be equal or nearly equal so that different

frequency components of the sound decay with
equal rates =

— All pole radii in the reverberator should vary
smoothly with frequency

— Otherwise, late decay will be dominated by largest
pole(s)
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Lossy Mapping

Let's in more detail look at the z-plane mapping

e Gz) 2!

e Pole k contributes the term

Hy(z) = ——

1—prz
to the partial fraction expansion of the transfer
function

e This term maps to
~ Tk
H(z) = ——M8M
{2 = 6@

= - L+ [GE)plz " + G272+ -

e Thus, pole k moves from z = p;. = /¥’ to
Pe = R /"

where

Ry, = G (R ™) =~ G (/7

which is a good approximation here since Ry, is nearly

1 for reverberators.

Desired Pole Radius

Pole radius Rj, and tg are related by
R = 0,001
The ideal loss filter G(z) therefore satisfies
|G(w) [T = 0.001
The desired delay-line filters are therefore

Gi(z) = GMi(z)

tp(w)

|Gi(e”T)[ T = 0.001.

or

M,T

20log, |Gi(e™")] = _GOtGO ™)

Now use invfreqz or stmcb, etc., in Matlab to design

low-order filters G;(z) for each delay line.
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Example

e Start with a pole at dc (digital integrator):

1

HE=7—m

< 1,11, ]

e Move it from radius 1 to radius 0.9 using
210927k

H(z)=—— « [1,0.9,081, ...
(2) = —gg1 © [1L,09, 088, ]
e Now progress from radius 0.9 to 0.8 using
1 -1
27t 0.97Jr az 27t
14+«

with 0.8 = (1 —a)/(1 + @)
=a=(1-08)/(1+0.8)=1/0.9:

1 1
H(z) — =
1+az—l 09421 _
1-09802 a1 1-09%0x1
B 1
- 0.81 1 -
1_ﬁ2 1+ﬁZ 2

First-Order Delay-Filter Design

Jot used first-order loss filters for each delay line:
‘ 1— a;
97— a;z!

Gi(Z) =

e g; gives desired reverberation time at dc

® ; sets reverberation time at high frequencies

Design formulas:
10~ 3MiT/t60(0)

gi =
In(10) 1
a; = 1 10%10(971) (1 - a2>

é ﬁ60<7T/T)
t60(0)

where
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Tonal Correction Filter

Let hi(n) = impulse response of kth system pole. Then

&= Z |hi(n)|* = total energy
n=0

Thus, total energy is proportional to decay time.

To compensate, Jot proposes a tonal correction filter
E(z) for the late reverb (not the direct signal).

First-order case:

1—bz!
Ez)=——
() ===
where
B 11—«
Cl+4a
and
A too(m/T)
t60(0)
as before.

41

Zita-Revl Damping Filters

FDN reverberators employ a damping filter for each delay
line

Zita-Revl three-band damping filter:
Hd(z) = H](Z)H}Z(Z>

where
l—p 14271
Hl(z) = gm + (90— QM)TW = low-shelf
1- Pn
Hy(z) = ————— = low-
I (Z) 1= o] ow-pass

go = Desired gain at dc

gn = Desired gain across “middle frequencies”
p; = Low-shelf pole controlling low-to-mid crossover:
A 1— 7Tf1T
1+ afT
pr, = Low-pass pole controlling high-frequency damping:

Gives half middle-band %4, at start of “high” band
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Zita-Revl Reverberator

o FDN+Schroeder reverberator
e Free open-source C++ for Linux by Fons Adriaensen

e Faust example zita revl.dsp

ta_rev1_eng..{, 8, 0.1))(48000)

faust2firefox examples/zita revl.dsp

Feedback Delay Network + Schroeder Allpass Comb
Filters:
o Allpass coefficients 4-0.6

e Inspect Faust block diagram for delay-line lengths,
etc.
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High-Frequency-Damping Lowpass

High-Frequency Damping Lowpass:
1 —p
Hy() = —
1- Pnz
For tsy at “HF Damping” frequency f, to be half of
middle-band tg (gain g,,,), we require

|Hh, (6-727T,flzT)| — ‘ L—pn

1 — phe,]'Qﬂth = 9m

Squaring and normalizing yields a quadratic equation:
p% +bpr+1=0

Solving for py, using the quadratic formula yields

where ) ) ) Sy
7 —9m LOb( th ) > 1’

Discard unstable solution —b/2 4 1/ (b/2)? — 1 > 1

To ensure |g,,| < 1, GUI keeps middle-band g finite

44



Rectilinear Digital Waveguide Mesh Waveguide Mesh Features

e A mesh of such waveguides in 2D or 3D can simulate
waves traveling in any direction in the space.

e Analogy: tennis racket = rectilinear mesh of strings =
pseudo-membrane

e Wavefronts are explicitly simulated in all directions

e True diffuse field in late reverb

- - - e Spatialized reflections are “free

ol 4-port +.—>z 1 A-port 1»‘ 4-port +.’>z !

. Sca([l,cring . Smlll)cring . Scalll]ming . i 3 .

Junction Junction Junction e Echo density grows naturally with time
* ** * e Mode density grows naturally with frequency

71 4-port ! 4-port -1 4-port 7! - i
il mffnng il 5 e Low-frequency modes very accurately simulated

7! Junction 1 Junction : ‘ Junction ! ) i ) .

e High-frequency modes mistuned due to dispersion

* ** * (can be corrected) (often not heard)

7! 4-port ! 4-port f‘ 4-port 7! 1

] S ] Su}fwmg S e Multiply free almost everywhere

! Junction 7! Juncllon Junction 7!

** ** ** e Coarse mesh captures most perceptual details

Reverb Resources on the Web

e Book chapter from our tex-
thttp://interactiveachttps://ccrma.stanford.edu/ jos/pasp/Arti

e Room Acoustics Modeling with Interactive
Visualizations by Lauri
Saviojahttp://interactiveacoustics.info/

e Room Mode Calculator?
e Valhalla reverb pluginﬁ
e Harmony Central articlel] (with sound examples)

e William Gardner's MIT Master's thesi

*https://amcoustics. com/tools/amroc

Shttps://valhalladsp.com/|
“http://www.harmony-central.com/Effects/Articles/Reverb/
http://www.harmony-central.com/Computer/Programming/virtual-acoustic-room.ps.gz|
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