MUS420 Lecture Piano-Hammer Modeling

Julius O. Smith III (jos@ccrma.stanford.edu)
Center for Computer Research in Music and Acoustics (CCRMA)
Department of Music, Stanford University
Stanford, California 94305

February 5, 2019

Outline

- Acoustics of the Piano
- The Piano Hammer
- Stulov's Model
- Hammer-String Dynamics

1

Hammer Modeling

• Introduction:

https://www.acs.psu.edu/drussell/piano/nonlinearhammer.html

• Stulov³ model:

$$f_h(t) = f_0 \left[u^p(t) - \frac{\epsilon}{\tau_0} \int_0^t u^p(\xi) \exp\left(\frac{\xi - t}{\tau_0}\right) d\xi \right]$$

where

 $f_h(t) =$ force exerted on string by the piano hammer

u(t) = hammer compression

 $f_0 = {\sf instantaneous\ hammer\ stiffness}$

p = nonlinearity exponent

 $\epsilon =$ hysteresis parameter

 $au_0 = ext{ hysteresis time constant}$

 Stulov's piano-hammer model essentially models the properties of the felt (wool)

Acoustics of the Piano

- Five Lectures on the Acoustics of the Piano¹
- The Piano Hammer as a Nonlinear Spring²

2

Empirically Calibrated Stulov Model

Under normal playing conditions the following approximate Stulov model suffices:

$$f_h(t) = Q_0 \left[u^p + \alpha \frac{d(u^p)}{dt} \right]$$

where

$$\alpha = 248 + 1.83 \, n - 5.5 \cdot 10^{-2} n^2$$

 $Q_0 = 183 e^{0.045 n}$

p = 3.7 + 0.015 n

 $n = \text{Piano key number } n \in [1, 88]$

u = hammer-felt compression

 $f_h = force of hammer felt against string$

with

- ullet α in physical units of microseconds (μ s) and
- $Q_0 = f_0(1 \epsilon)$ in Newtons per millimeter to the pth power (N/mm p)

Additionally, the piano-hammer mass may be approximated across the keyboard by

$$m = 11.074 - 0.074 \, n + 0.0001 \, n^2$$

4

The Piano

¹http://www.speech.kth.se/music/5_lectures/ ²https://www.acs.psu.edu/drussell/piano/nonlinearhammer.html

Piano String Parameters

Piano string parameters for the medium-sized ${\it Parlour}$ grand piano: 4

Shortest string: length $L=52~\mathrm{mm}$ diameter $d_1=0.775~\mathrm{mm}$

String Striking Point

1/8 to 1/24 across upper sixty notes

String Tension ${\cal T}$

$$T = (2fL)^2 \mu = (2f)^2 LM = \pi \rho_s (Lfd_1)^2$$

where

 $f = \text{note frequency } \in [A_2, C_5] = [27.5, 4186] \; \text{Hz}$

 $\mu = \text{linear mass density}$

M = entire string mass

 $\rho_s = \text{density of steel core } (7860 \text{kg/m}^3)$

5

Non-wound string diameters:

$$d_{1n} = \sqrt{\frac{4\mu_{0n}}{\pi\rho_{0}}}, \quad n = 1, \dots, 88$$

rounded to the nearest multiple of $0.025\ \mathrm{mm}$, resulting in new linear mass densities

$$\mu_n = \frac{\pi}{4} \rho_s d_{1n}^2$$

and tensions

$$T_n = (2f_n L_n)^2 \mu_n$$

Tensile Strength of Steel Wire Core

To accuracy 1.5%, we have

$$[\sigma] = 321.235(1 - 0.3982d_1 + 0.1033d_1^2)$$
 kg/mm²

where the core diameter d_1 is given in mm.

- Should strive for $Lfd_1 = \text{constant}$
- In practice, the tension is distributed linearly or parabolically
- Uniform tension is good for the frame.
- Treble tension is pretty uniform at 620 N

String Count

- One string per note for first ten notes $(A_0 F \#_1)$
- Two strings per note for notes 11-25 (G_1-A_2)
- Three strings per note for notes 26–88
- ullet For a constant-tension break, given $T_{26}=620$ N, choose $T_{25}=760$ N (stepping from 3 to 2 strings)
- Recommended $T_1=1320$ N and reduce gradually to T_{25} , e.g., $T_{11}=840$, $T_{10}=1188$ N, with linear decrease from T_1 to T_{10} and T_{11} to T_{25}

String Core Diameters

We have initial string tensions T_{0n} , lengths L_n , and frequencies f_n which imply the initial mass densities:

$$\mu_{0n} = (2f_n L_n)^{-2} T_{0n}, \quad n = 1, \dots, 88$$

6

⁴Grand piano manufacturing in Estonia: The problem of piano scaling. Proc. Estonian Acad. Sci. Engin., 1999, v.5, N.2 (co-authors J. Engelbrecht, A. Mägi), 155-167. (PDF:645k).