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Outline

e Nonlinearities in musical instrument models
e Memoryless nonlinearities

e Bandwidth expansion and aliasing due to
nonlinearities

Nonlinearities

Many musical instrument models require
nonlinear elements:

e Amplifier distortion (electric guitar)
e Reed model (woodwinds)
e Bowed string contact friction
Since a nonlinear element generally expands signal

bandwidth, it can cause aliasing in a discrete-time
implementation.

In the above examples, the nonlinearity also appears
inside a feedback loop. This means the bandwidth
expansion compounds over time, causing more and more
aliasing.
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Memoryless Nonlinearities Cubic Soft Clipper

Memoryless or instantaneous nonlinearities are the
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Example: Arctan Nonlinearity It is non-invertible when driven into “hard clipping”.
An example of an invertible memoryless nonlinearity is o8 001 (B8 ones( 100, xox I, (29 eneel1 190))

the arctangent mapping:
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where normally o > 1.
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Series Expansions

Any “smooth” function f(x) can be expanded as a
Taylor series expansion:

f"0) s

_ fO) 10
@) = £0) + L0 4 L2 SO o,
Arctangent example:
P T, S
arctan(x):x—€+€_7+...

Note that all even-order terms are zero, because
arctan(x) is an odd function of .

Bandwidth Expansion

The series expansion of a memoryless nonlinearity gives a
useful handle on aliasing.

Square Law

The “gentlest” nonlinearity is quadratic:
y(n) = x(n) + az’(n)

The Fourier transform of the output signal is easily found
using the dual of the convolution theorem:

Yw)=X(w)+ a(X *x X)(w)
where “x" denotes convolution.
In general, the bandwidth of X * X is double that of X.
More generally,
z*(n) +— (X Xk X)) (w)

k times

so that the spectral bandwidth of 2%(n) is k times that of
x(n), in general.



Arctangent Nonlinearity

Since the series expansion of the arctangent nonlinearity is
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bandwidth expansion is infinite (in continuous time).

Cubic Soft-Clipper

The cubic soft-clipper, like any polynomial nonlinearity, is
defined directly by its series expansion:

-2, x<-1
f@y=qo-%, -1<z<1
%, r>1

In the absence of hard-clipping (|x| < 1), bandwidth
expansion is limited to a factor of three.

This is the slowest aliasing rate obtainable for an odd
nonlinearity.

Practical Advice

e Verify that aliasing sounds bad before getting rid of it

e Aliasing (bandwidth expansion) is reduced by
smoothing the “corner” in the clipping nonlinearity

e Consider a healthy oversampling factor for nonlinear
subsystems

e Make sure there is adequate lowpass filtering in a
feedback loop containing a nonlinearity

Example: Cubic Nonlinearity in a Feedback Loop:

e 3X oversampling
(2X suffices for full-band audio, since aliasing into the
guard-band above 20 kHz is inaudible)

e Lowpass filter to [—%, %] after the nonlinearity

e Optionally downsample by 3 after LPF and upsample
by 3 before nonlinearity



