MUS420
Introduction to Modal Representations

Julius O. Smith III (jos@ccrma.stanford.edu)
Center for Computer Research in Music and Acoustics (CCRMA) Department of Music, Stanford University

Stanford, California 94305

February 5, 2019

Diagonal state transition matrix $=$ modal representation:

$$
\begin{aligned}
{\left[\begin{array}{c}
x_{1}(n+1) \\
x_{2}(n+1) \\
\vdots \\
x_{N-1}(n+1) \\
x_{N}(n+1)
\end{array}\right] } & =\left[\begin{array}{ccccc}
\lambda_{1} & 0 & 0 & \cdots & 0 \\
0 & \lambda_{2} & 0 & \cdots & 0 \\
\vdots & \vdots & \ddots & \vdots & \vdots \\
0 & 0 & 0 & \lambda_{N-1} & 0 \\
0 & 0 & 0 & 0 & \lambda_{N}
\end{array}\right]\left[\begin{array}{c}
x_{1}(n) \\
x_{2}(n) \\
\vdots \\
x_{N-1}(n) \\
x_{N}(n)
\end{array}\right]+\left[\begin{array}{c}
b_{1} \\
b_{2} \\
\vdots \\
b_{N-1} \\
b_{N}
\end{array}\right] u(n) \\
y(n) & =C \underline{x}(n)+D u(n)
\end{aligned}
$$

The N complex modes are decoupled:

$$
\begin{aligned}
x_{1}(n+1) & =\lambda_{1} x_{1}(n)+b_{1} u(n) \\
x_{2}(n+1) & =\lambda_{2} x_{2}(n)+b_{2} u(n) \\
& \vdots \\
x_{N}(n+1) & =\lambda_{N} x_{N}(n)+b_{N} u(n) \\
y(n) & =c_{1} x_{1}(n)+c_{2} x_{2}(n)+\cdots+c_{N} x_{N}(n)+D u(n)
\end{aligned}
$$

That is, diagonal state-space system consists of N parallel one-pole systems (complex, in general).

2

State Space Diagonalization

- Suppose we solve the equation $A \underline{e}_{i}=\lambda_{i} \underline{e}_{i}$ and find N linearly independent eigenvectors of A
- Form the $N \times N$ matrix $\mathbf{E}=\left[\underline{e}_{1} \ldots \underline{e}_{N}\right]$ having these eigenvectors as columns.
- Since the eigenvectors are linearly independent, \mathbf{E} is full rank and can be inverted. This means it is one-to-one and qualifies as a linear coordinate transformation matrix.
- As derived above, the transformed state transition matrix is given by

$$
\tilde{A}=\mathbf{E}^{-1} A \mathbf{E}
$$

- Since $A \underline{e}_{i}=\lambda_{i} \underline{e}_{i}$, we have

$$
A \mathbf{E}=\mathbf{E} \Lambda
$$

where Λ is a diagonal matrix having the (complex) eigenvalues of A along its diagonal.

- It follows that

$$
\tilde{A}=\mathbf{E}^{-1} A \mathbf{E}=\mathbf{E}^{-1} \mathbf{E} \Lambda=\Lambda
$$

Thus, the new state transition matrix Λ is diagonal consisting of the eigenvalues of A.

- The transfer function of the diagonalized system is

$$
\begin{aligned}
\mathbf{H}(z) & =\tilde{D}+\tilde{C}(z I-\Lambda)^{-1} \tilde{B} \\
& =\tilde{D}+\frac{\tilde{c}_{1} b_{1} z^{-1}}{1-\lambda_{1} z^{-1}}+\frac{\tilde{c}_{2} \tilde{b}_{2} z^{-1}}{1-\lambda_{2} z^{-1}}+\cdots+\frac{\tilde{c}_{N} \tilde{b}_{N} z^{-1}}{1-\lambda_{N} z^{-1}} \\
& =\tilde{D}+\sum_{i=1}^{N} \frac{\tilde{c}_{i} \tilde{b}_{i} z^{-1}}{1-\lambda_{i} z^{-1}}
\end{aligned}
$$

We see again that the diagonalized system (modal representation) consists of N parallel one-pole systems.

- Dynamic modes λ_{i} are decoupled
- Closely related to partial-fraction expansion of $\mathbf{H}(z)$:
- Residue of the i th pole is $c_{i} b_{i}$
- Complex-conjugate poles may be combined to form real second-order sections

Example of State-Space Diagonalization

For the previous example

$$
A \triangleq\left[\begin{array}{cc}
-\frac{1}{2} & -\frac{1}{3} \\
1 & 0
\end{array}\right] \quad B \triangleq\left[\begin{array}{l}
1 \\
0
\end{array}\right] \quad C \triangleq\left[\begin{array}{l}
3 / 2 \\
8 / 3
\end{array}\right] \quad D \triangleq 1
$$

we obtain the following in Matlab:

Finding the Eigenvalues of A in Practice

Small problems may be solved by hand by solving the system of equations

$$
A \mathbf{E}=\mathbf{E} \Lambda
$$

The Matlab built-in function eig() may be used to find the eigenvalues of A (system poles).

```
>> eig(A) % eigenvalues of state transition matrix
ans =
    -0.2500 + 0.5204i
    -0.2500 - 0.5204i
>> roots(den) % poles of transfer function \Hmtx(z)
ans =
    -0.2500 + 0.5204i
    -0.2500 - 0.5204i
% They are the same, as they must be.
>> abs(roots(den)) % check stability
ans =
    0.5774
    0.5774
```

The system is stable.
Complex-conjugate poles are typically combined to produce real, second-order (2×2) parallel sections in the modal representation. Thus, our second-order example is already in real modal form. However, to illustrate the computations, let's obtain the eigenvectors and compute
the complex modal representation:
>> \% Initial state space model from example above: $\gg A=[-1 / 2,-1 / 3 ; 1,0]$;
$\gg B=[1 ; 0] ;$
$\gg C=[2-1 / 2,3-1 / 3] ;$
> $\mathrm{D}=1$;
>> \% Diagonalizing similarity transformation: >> [E,L] = eig(A) \% [Evects, Evals] = eig(A)
$\mathrm{E}=$

$$
\begin{array}{rr}
-0.4507-0.2165 i & -0.4507+0.2165 i \\
0+0.8660 i & 0-0.8660 i
\end{array}
$$

$\mathrm{L}=$

$-0.2500+0.5204 i$	0
0	$-0.2500-0.5204 i$

> $\mathrm{A} * \mathrm{E}-\mathrm{E} * \mathrm{~L}$ \% should be zero
ans =

```
>> Db = D % feed-through term unchanged
Db =
    1
```

Verify that we still have the same transfer function:

```
>> [numb,denb] = ss2tf(Ab,Bb,Cb,Db)
numb =
    1 + 0i 3 + 0i
denb =
    1 0.5 - 0i 0.3333
>> num = [1, 2, 3]; % original numerator
>> norm(num-numb)
ans = 1.5543e-015
>> den = [1, 1/2, 1/3]; % original denominator
>> norm(den-denb)
ans = 1.3597e-016
```

Close enough.

```
1.0e-016 *
    0+0.2776i 0-0.2776i
    0 0
```

Now form the complete diagonalized state-space model (complex):

```
>> Ei = inv(E); % matrix inverse
>> Ab = Ei*A*E % diagonalized state xition mtx
Ab =
    -0.2500 + 0.5204i 0.0000 + 0.0000i
    -0.0000 -0.2500-0.5204i
>> Bb = Ei*B % new input "routing vector"
Bb =
    -1.1094
    -1.1094
>> Cb = C*E % new output linear combination
Cb =
    -0.6760 + 1.9846i -0.6760-1.9846i
```

 10

Properties of the Modal Representation

- The modal representation is not unique since B and C may be scaled in compensating ways to produce the same transfer function. Also, the diagonal elements of A may be permuted.
- For oscillatory systems, the λ_{i} are complex.
- If mode i is oscillatory and undamped (lossless), the state variable $x_{i}(n)$ oscillates sinusoidally at some frequency ω_{i}, where

$$
\lambda_{i}=e^{j \omega_{i} T}
$$

- In the damped oscillatory case, we have

$$
\lambda_{i}=R_{i} e^{j \omega_{i} T}
$$

where R_{i} is the pole (eigenvalue) radius. For stability, we must have $\left|R_{i}\right|<1$.

- In practice, we often prefer to combine complex-conjugate pole-pairs to form a real, "block-diagonal" system in which A has two-by-two real matrices along its diagonal.
- Matlab function cdf2rdf () can be used to convert complex diagonal form to real block-diagonal form.
- The input vector \tilde{B} in the modal representation specifies how the modes are excited by the input signal $u(n)$:

$$
x_{i}(n)=\tilde{b}_{i} u(n)
$$

- The output vector \tilde{C} in the modal representation specifies how the modes are mixed in the output signal $y(n)$:

$$
y(n)=\tilde{C} \underline{\tilde{x}}(n)=\tilde{c}_{1} \tilde{x}_{1}(n)+\tilde{c}_{2} \tilde{x}_{2}(n)+\cdots+\tilde{c}_{N} \tilde{x}_{N}(n)
$$

Repeated Poles

For repeated poles λ_{i}. we have two cases:

- If the corresponding eigenvectors are linearly independent, the modes are independent and can be decoupled (system can be diagonalized)
- Otherwise, if λ_{i} corresponds to k linearly dependent eigenvectors, the diagonalized system will contain a Jordan block of order k corresponding to that mode.
- Same as repeated roots in a partial-fraction expansion
- Impulse response looks like $n \lambda^{n}, n^{2} \lambda^{n}$, etc.

