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State Space Modal Representation

Diagonal state transition matrix = modal representation:
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u(n)

y(n) = Cx(n) +Du(n)

The N complex modes are decoupled :

x1(n + 1) = λ1x1(n) + b1u(n)

x2(n + 1) = λ2x2(n) + b2u(n)
...

xN(n + 1) = λNxN(n) + bNu(n)

y(n) = c1x1(n) + c2x2(n) + · · · + cNxN(n) +Du(n)

That is, diagonal state-space system consists of N
parallel one-pole systems (complex, in general).
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Diagonalizing a State-Space Model

• To obtain a modal representation, we can diagonalize

a state-space model

• The similarity transformation which diagonalizes the
system is given by the matrix of eigenvectors of the
state transition matrix A

• An eigenvector ei of A satisfies, by definition,

Aei = λiei

where ei and λi may be complex

• In other words, a state-space model is diagonalized by
a similarity transformation matrix E whose columns
are given by the eigenvectors of A:

E = [e1 · · · eN ]

• A system can be diagonalized whenever the
eigenvectors of A are linearly independent.

– This always holds for distinct poles

– May or may not hold for repeated poles
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State Space Diagonalization

• Suppose we solve the equation Aei = λiei and find N
linearly independent eigenvectors of A

• Form the N ×N matrix E = [e1 . . . eN ] having these
eigenvectors as columns.

• Since the eigenvectors are linearly independent, E is
full rank and can be inverted. This means it is
one-to-one and qualifies as a linear coordinate

transformation matrix.

• As derived above, the transformed state transition
matrix is given by

Ã = E
−1AE

• Since Aei = λiei, we have

AE = EΛ

where Λ is a diagonal matrix having the (complex)
eigenvalues of A along its diagonal.

• It follows that

Ã = E
−1AE = E

−1
EΛ = Λ.

Thus, the new state transition matrix Λ is diagonal
consisting of the eigenvalues of A.
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• The transfer function of the diagonalized system is

H(z) = D̃ + C̃ (zI − Λ)−1 B̃

= D̃ +
c̃1b1z

−1

1− λ1z−1
+

c̃2b̃2z
−1

1− λ2z−1
+ · · · +

c̃N b̃Nz
−1

1− λNz−1

= D̃ +

N
∑

i=1

c̃ib̃iz
−1

1− λiz−1

We see again that the diagonalized system (modal
representation) consists of N parallel one-pole

systems.

• Dynamic modes λi are decoupled

• Closely related to partial-fraction expansion of H(z):

– Residue of the ith pole is cibi

– Complex-conjugate poles may be combined to
form real second-order sections
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Finding the Eigenvalues of A in Practice

Small problems may be solved by hand by solving the
system of equations

AE = EΛ

The Matlab built-in function eig() may be used to find
the eigenvalues of A (system poles).
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Example of State-Space Diagonalization

For the previous example

A
∆
=

[

−1
2 −1

3

1 0

]

B
∆
=

[

1

0

]

C
∆
=

[

3/2

8/3

]

D
∆
= 1

we obtain the following in Matlab:

7



>> eig(A) % eigenvalues of state transition matrix

ans =

-0.2500 + 0.5204i

-0.2500 - 0.5204i

>> roots(den) % poles of transfer function \Hmtx(z)

ans =

-0.2500 + 0.5204i

-0.2500 - 0.5204i

% They are the same, as they must be.

>> abs(roots(den)) % check stability

ans =

0.5774

0.5774

The system is stable.

Complex-conjugate poles are typically combined to
produce real, second-order (2× 2) parallel sections in the
modal representation. Thus, our second-order example is
already in real modal form. However, to illustrate the
computations, let’s obtain the eigenvectors and compute
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the complex modal representation:

>> % Initial state space model from example above:

>> A = [-1/2, -1/3; 1, 0];

>> B = [1; 0];

>> C = [2-1/2, 3-1/3];

>> D = 1;

>> % Diagonalizing similarity transformation:

>> [E,L] = eig(A) % [Evects, Evals] = eig(A)

E =

-0.4507 - 0.2165i -0.4507 + 0.2165i

0 + 0.8660i 0 - 0.8660i

L =

-0.2500 + 0.5204i 0

0 -0.2500 - 0.5204i

>> A * E - E * L % should be zero

ans =
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1.0e-016 *

0 + 0.2776i 0 - 0.2776i

0 0

Now form the complete diagonalized state-space model
(complex):

>> Ei = inv(E); % matrix inverse

>> Ab = Ei*A*E % diagonalized state xition mtx

Ab =

-0.2500 + 0.5204i 0.0000 + 0.0000i

-0.0000 -0.2500 - 0.5204i

>> Bb = Ei*B % new input "routing vector"

Bb =

-1.1094

-1.1094

>> Cb = C*E % new output linear combination

Cb =

-0.6760 + 1.9846i -0.6760 - 1.9846i
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>> Db = D % feed-through term unchanged

Db =

1

Verify that we still have the same transfer function:

>> [numb,denb] = ss2tf(Ab,Bb,Cb,Db)

numb =

1 2 + 0i 3 + 0i

denb =

1 0.5 - 0i 0.3333

>> num = [1, 2, 3]; % original numerator

>> norm(num-numb)

ans = 1.5543e-015

>> den = [1, 1/2, 1/3]; % original denominator

>> norm(den-denb)

ans = 1.3597e-016

Close enough.
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Properties of the Modal Representation

• The modal representation is not unique since B and
C may be scaled in compensating ways to produce
the same transfer function. Also, the diagonal
elements of A may be permuted.

• For oscillatory systems, the λi are complex.

• If mode i is oscillatory and undamped (lossless), the
state variable xi(n) oscillates sinusoidally at some
frequency ωi, where

λi = ejωiT

• In the damped oscillatory case, we have

λi = Rie
jωiT

where Ri is the pole (eigenvalue) radius. For stability,
we must have |Ri| < 1.

• In practice, we often prefer to combine
complex-conjugate pole-pairs to form a real,
“block-diagonal” system in which A has two-by-two
real matrices along its diagonal.

• Matlab function cdf2rdf() can be used to convert
complex diagonal form to real block-diagonal form.
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• The input vector B̃ in the modal representation
specifies how the modes are excited by the input
signal u(n):

xi(n) = b̃iu(n)

• The output vector C̃ in the modal representation
specifies how the modes are mixed in the output
signal y(n):

y(n) = C̃x̃(n) = c̃1x̃1(n) + c̃2x̃2(n) + · · · + c̃N x̃N(n)

Repeated Poles

For repeated poles λi. we have two cases:

• If the corresponding eigenvectors are linearly
independent, the modes are independent and can be
decoupled (system can be diagonalized)

• Otherwise, if λi corresponds to k linearly dependent
eigenvectors, the diagonalized system will contain a
Jordan block of order k corresponding to that mode.

• Same as repeated roots in a partial-fraction expansion

• Impulse response looks like nλn, n2λn, etc.
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