MUS420 Introduction to Modal Representations

Julius O. Smith III (jos@ccrma.stanford.edu) Center for Computer Research in Music and Acoustics (CCRMA) Department of Music, Stanford University Stanford, California 94305

February 5, 2019

Diagonal state transition matrix = modal representation:

$$\begin{bmatrix} x_1(n+1) \\ x_2(n+1) \\ \vdots \\ x_{N-1}(n+1) \\ x_N(n+1) \end{bmatrix} = \begin{bmatrix} \lambda_1 & 0 & 0 & \cdots & 0 \\ 0 & \lambda_2 & 0 & \cdots & 0 \\ \vdots & \vdots & \ddots & \vdots & \vdots \\ 0 & 0 & 0 & \lambda_{N-1} & 0 \\ 0 & 0 & 0 & 0 & \lambda_N \end{bmatrix} \begin{bmatrix} x_1(n) \\ x_2(n) \\ \vdots \\ x_{N-1}(n) \\ x_N(n) \end{bmatrix} + \begin{bmatrix} b_1 \\ b_2 \\ \vdots \\ b_{N-1} \\ b_N \end{bmatrix} u(n)$$
$$y(n) = C\underline{x}(n) + Du(n)$$

The N complex modes are *decoupled*:

$$\begin{aligned} x_1(n+1) &= \lambda_1 x_1(n) + b_1 u(n) \\ x_2(n+1) &= \lambda_2 x_2(n) + b_2 u(n) \\ &\vdots \\ x_N(n+1) &= \lambda_N x_N(n) + b_N u(n) \\ y(n) &= c_1 x_1(n) + c_2 x_2(n) + \dots + c_N x_N(n) + Du(n) \end{aligned}$$

That is, diagonal state-space system consists of N parallel one-pole systems (complex, in general).

Diagonalizing a State-Space Model

- To obtain a *modal representation*, we can *diagonalize* a state-space model
- The *similarity transformation* which diagonalizes the system is given by the *matrix of eigenvectors* of the state transition matrix A
- An eigenvector \underline{e}_i of A satisfies, by definition,

$$A\underline{e}_i = \lambda_i \underline{e}_i$$

where \underline{e}_i and λ_i may be complex

• In other words, a state-space model is diagonalized by a similarity transformation matrix E whose columns are given by the eigenvectors of A:

$$\mathbf{E} = [\underline{e}_1 \ \cdots \ \underline{e}_N]$$

- A system can be diagonalized whenever the eigenvectors of A are *linearly independent*.
 - This always holds for *distinct* poles
 - May or may not hold for *repeated* poles

State Space Diagonalization

- Suppose we solve the equation $A\underline{e}_i = \lambda_i \underline{e}_i$ and find N linearly independent eigenvectors of A
- Form the $N \times N$ matrix $\mathbf{E} = [\underline{e}_1 \dots \underline{e}_N]$ having these eigenvectors as columns.
- Since the eigenvectors are linearly independent, E is *full rank* and can be *inverted*. This means it is *one-to-one* and qualifies as a *linear coordinate transformation matrix*.
- As derived above, the *transformed* state transition matrix is given by

$$\tilde{A} = \mathbf{E}^{-1} A \mathbf{E}$$

• Since $A\underline{e}_i = \lambda_i \underline{e}_i$, we have

 $A\mathbf{E} = \mathbf{E}\Lambda$

where Λ is a diagonal matrix having the (complex) eigenvalues of A along its diagonal.

• It follows that

$$\tilde{A} = \mathbf{E}^{-1} A \mathbf{E} = \mathbf{E}^{-1} \mathbf{E} \Lambda = \Lambda.$$

Thus, the new state transition matrix Λ is *diagonal* consisting of the eigenvalues of A.

• The transfer function of the diagonalized system is

$$\begin{aligned} \mathbf{H}(z) &= \tilde{D} + \tilde{C} \left(zI - \Lambda \right)^{-1} \tilde{B} \\ &= \tilde{D} + \frac{\tilde{c}_1 b_1 z^{-1}}{1 - \lambda_1 z^{-1}} + \frac{\tilde{c}_2 \tilde{b}_2 z^{-1}}{1 - \lambda_2 z^{-1}} + \dots + \frac{\tilde{c}_N \tilde{b}_N z^{-1}}{1 - \lambda_N z^{-1}} \\ &= \tilde{D} + \sum_{i=1}^N \frac{\tilde{c}_i \tilde{b}_i z^{-1}}{1 - \lambda_i z^{-1}} \end{aligned}$$

We see again that the diagonalized system (modal representation) consists of N parallel one-pole systems.

- Dynamic modes λ_i are *decoupled*
- Closely related to *partial-fraction expansion* of $\mathbf{H}(z)$:
 - *Residue* of the *i*th pole is $c_i b_i$
 - Complex-conjugate poles may be combined to form real second-order sections

Finding the Eigenvalues of A in Practice

Small problems may be solved by hand by solving the system of equations

$$A\mathbf{E} = \mathbf{E}\Lambda$$

The Matlab built-in function eig() may be used to find the eigenvalues of A (system poles).

Example of State-Space Diagonalization

For the previous example

$$A \stackrel{\Delta}{=} \begin{bmatrix} -\frac{1}{2} & -\frac{1}{3} \\ 1 & 0 \end{bmatrix} \qquad B \stackrel{\Delta}{=} \begin{bmatrix} 1 \\ 0 \end{bmatrix} \qquad C \stackrel{\Delta}{=} \begin{bmatrix} 3/2 \\ 8/3 \end{bmatrix} \qquad D \stackrel{\Delta}{=} 1$$

we obtain the following in Matlab:

>> eig(A) % eigenvalues of state transition matrix

ans =
-0.2500 + 0.5204i
-0.2500 - 0.52041
>> roots(den) % poles of transfer function \Hmtx(z)
ans =
-0.2500 + 0.5204i
-0.2500 - 0.5204i
% They are the same, as they must be.
>> abs(roots(den)) % check stability
ans =
0.5774
0.5774
T I . · . II

The system is stable.

Complex-conjugate poles are typically combined to produce real, second-order (2×2) parallel sections in the modal representation. Thus, our second-order example is already in *real* modal form. However, to illustrate the computations, let's obtain the eigenvectors and compute

the *complex* modal representation:

>> % Initial state space model from example above: >> A = [-1/2, -1/3; 1, 0]; >> B = [1; 0]; >> C = [2-1/2, 3-1/3]; >> D = 1;

>> % Diagonalizing similarity transformation:
>> [E,L] = eig(A) % [Evects, Evals] = eig(A)

E =

-0.4507 - 0.2165i -0.4507 + 0.2165i 0 + 0.8660i 0 - 0.8660i

L =

-0.2500 + 0.5204i 0 0 -0.2500 - 0.5204i >> A * E - E * L % should be zero ans =

Now form the complete diagonalized state-space model (complex):

>> Ei = inv(E); % matrix inverse >> Ab = Ei*A*E % diagonalized state xition mtx Ab =-0.2500 + 0.5204i 0.0000 + 0.0000i -0.0000-0.2500 - 0.5204i >> Bb = Ei*B % new input "routing vector" Bb =-1.1094-1.1094>> Cb = C*E % new output linear combination Cb =-0.6760 + 1.9846i -0.6760 - 1.9846i

>> Db = D % feed-through term unchanged Db = 1 Verify that we still have the same transfer function: >> [numb,denb] = ss2tf(Ab,Bb,Cb,Db) numb = 2 + 0i 3 + 0i 1 denb = 1 0.5 - 0i 0.3333 >> num = [1, 2, 3]; % original numerator >> norm(num-numb) ans = 1.5543e-015>> den = [1, 1/2, 1/3]; % original denominator >> norm(den-denb) ans = 1.3597e - 016Close enough.

Properties of the Modal Representation

- The modal representation is not *unique* since *B* and *C* may be scaled in compensating ways to produce the same transfer function. Also, the diagonal elements of *A* may be permuted.
- For oscillatory systems, the λ_i are *complex*.
- If mode *i* is oscillatory and *undamped* (lossless), the state variable $x_i(n)$ oscillates *sinusoidally* at some frequency ω_i , where

$$\lambda_i = e^{j\omega_i T}$$

• In the damped oscillatory case, we have

$$\lambda_i = R_i e^{j\omega_i T}$$

where R_i is the pole (eigenvalue) radius. For stability, we must have $|R_i| < 1$.

- In practice, we often prefer to combine complex-conjugate pole-pairs to form a real, "block-diagonal" system in which A has two-by-two real matrices along its diagonal.
- Matlab function cdf2rdf() can be used to convert complex diagonal form to real block-diagonal form.

• The input vector \tilde{B} in the modal representation specifies *how the modes are excited* by the input signal u(n):

$$x_i(n) = \tilde{b}_i u(n)$$

• The output vector \tilde{C} in the modal representation specifies *how the modes are mixed* in the output signal y(n):

$$y(n) = \tilde{C}\underline{\tilde{x}}(n) = \tilde{c}_1 \tilde{x}_1(n) + \tilde{c}_2 \tilde{x}_2(n) + \dots + \tilde{c}_N \tilde{x}_N(n)$$

Repeated Poles

For repeated poles λ_i , we have two cases:

- If the corresponding eigenvectors are *linearly independent*, the modes are independent and can be decoupled (system can be diagonalized)
- Otherwise, if λ_i corresponds to k linearly dependent eigenvectors, the diagonalized system will contain a Jordan block of order k corresponding to that mode.
- Same as repeated roots in a partial-fraction expansion
- Impulse response looks like $n\lambda^n$, $n^2\lambda^n$, etc.