Next  |  Prev  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

Identifying Chirp Rate

Above we showed

$\displaystyle e^{-pt^2} \longleftrightarrow \sqrt{\frac{\pi}{p}} \, e^{-\frac{\omega^2}{4p}}\;\isdef \;F(\omega)
$

Setting $ p=\alpha - j\beta$ gives

$\displaystyle e^{-\alpha t^2} e^{j\beta t^2}
\longleftrightarrow
\sqrt{\frac{\pi}{\alpha-j\beta}} \,
e^{-\frac{\alpha}{4(\alpha^2+\beta^2)}\omega^2}
e^{-j\frac{\beta}{4(\alpha^2+\beta^2)}\omega^2}
$

The log magnitude Fourier transform is given by

$\displaystyle \ln\left\vert F(\omega)\right\vert = \hbox{constant}
-\frac{\alpha}{4(\alpha^2+\beta^2)}\omega^2
$

and the phase is

$\displaystyle \angle F(\omega) =
\hbox{constant}
-\frac{\beta}{4(\alpha^2+\beta^2)}\omega^2
$

Note that both log-magnitude and (unwrapped) phase are parabolas in $ \omega$ .

In practice, it is simple to estimate the curvature at a spectral peak using parabolic interpolation:

\begin{eqnarray*}
c_m &\isdef & \frac{d^2}{d\omega^2} \ln\vert F(\omega)\vert = - \frac{\alpha}{2(\alpha^2+\beta^2)}\\
c_p &\isdef & \frac{d^2}{d\omega^2} \angle F(\omega) = - \frac{\beta}{2(\alpha^2+\beta^2)}
\end{eqnarray*}



Subsections
Next  |  Prev  |  Top  |  JOS Index  |  JOS Pubs  |  JOS Home  |  Search

[Comment on this page via email]

``Gaussian Windows and Transforms'', by Julius O. Smith III, (From Lecture Overheads, Music 421).
Copyright © 2020-06-06 by Julius O. Smith III
Center for Computer Research in Music and Acoustics (CCRMA),   Stanford University
CCRMA  [Automatic-links disclaimer]