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Abstract

Timbre, or the quality of sound, is a fundamental attribute of sound. It is important in differenti-

ating between musical sounds, speech utterances, everyday sounds in our environment, and novel

synthetic sounds.

This dissertation presents quantitative and perceptually valid metrics for sound color and den-

sity, where sound color denotes an instantaneous (or atemporal) spectral energy distribution, and

density denotes the fine-scale temporal attribute of sound. In support of the proposed metrics, a

series of psychoacoustic experiments was performed.

The quantitative relationship between the spectral envelope and subjective perception of com-

plex tones was investigated using Mel-frequency cepstral coefficients (MFCC) as a representation of

sound color. The experiments consistently showed that the MFCC model provides a linear and or-

thogonal coordinate space for human perception of sound color. The statistics for all twelve MFCC

were similar at average correlation (R-squared or R2) of 85%, suggesting that each MFCC contains

perceptually important information. The regression coefficients did suggest, however, the lower-

order Mel-cepstrum coefficients may be more important in human perception than the higher-order

coefficients.

The quantitative relationship between the fine-scale temporal attribute and subjective percep-

tion of noise-like stimuli was investigated using normalized echo density (NED). Regardless of the

sound color of the noise-like stimuli, the absolute difference in NED showed a strong correlation

to the perceived dissimilarity with R2 of 93% on average. The other experiments showed that

NED could represent the density perception in a consistent and robust manner across bandwidths–

static noise-like stimuli having similar NED values were perceived as similar regardless of their

bandwidth. Overall, with these experiments, NED showed a strong linear correlation to human

perception of density, along with robustness in estimating the perceived density across various

bandwidths, demonstrating that NED is a promising model for density perception.

The elusive nature of timbre description has been a barrier to music analysis, speech research,

and psychoacoustics. It is hoped that the metrics presented in this dissertation will form the basis

of a quantitative model of timbre perception.
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Chapter 1

Introduction

“The whole of our sound world is available for music-mode listening, but it probably

takes a catholic taste and a well-developed interest to find jewels in the auditory garbage

of machinery, jet planes, traffic, and other mechanical chatter that constitute our sound

environment. Some of us, and I confess I am one, strongly resist the thought it is

garbage. The more one listens the more one finds that it is all jewels.”

Robert Erickson, Sound Structure in Music [Erickson1975].

“The problem with timbre is that it is the name for an ill-defined wastebasket category.

Here is the much-quoted definition of timbre given by the American Standards Associ-

ation: ‘that attribute of auditory sensation in terms of which a listener can judge that

two sounds similarly presented and having the same loudness and pitch are dissimilar.’

This is, of course, no definition at all.”

Al Bregman, Auditory Scene Analysis[Bregman2001].

1



CHAPTER 1. INTRODUCTION 2

Timbre is an auditory jewelry box.

What we find in this jewelry box are the colors, textures, and shapes of myriad sound materials.

The ANSI definition of timbre[ANSI1976], which Bregman introduced in the above quote, is

often interpreted as double negation: Timbre is the auditory perception of sound, which is neither

pitch nor loudness. This says what timbre is not, rather than what timbre is. And this essentially

catch-all interpretation of the definition could mean that any nameless attribute could fall into the

timbre category. Bregman’s analogy brilliantly captures this implication of the standard definition.

But for those with the ears of “music-mode listening,” it’s time for another analogy, which

captures the richness of timbre.

Timbre is an auditory jewelry box, in which we find art and craft, nature and culture, old and

new, in many materials and designs from around the world. Timbre is something to be enjoyed,

appreciated, and marveled at. Timbre generously allows us to observe and analyze it from various

perspectives. With this work, I wish to help refine the notion of timbre.

1.1 What is Timbre?

What timbre is may not yet be clear with the above definitions. In fact, this is the same question

that researchers and musicians have been asking for a long time.

According to the Oxford English Dictionary, one of the earliest examples in which the word

timbre was used in English literature was in the context of auscultation, in which, a doctor would

be listening to the sounds from the heart or other organs typically using a stethoscope. It was still

a new technology in 1853, when a British medical doctor William Markham translated Abhandlung

über Perkussion und Auskultation, written in German by Joseph Skoda, into its English edition A

Treatise on Auscultation and Percussion [Skoda1853]:

The voices of individuals, and the sounds of musical instruments, differ, not only in

strength, clearness, and pitch, but (and particularly) in that quality also for which there

is no common distinctive expression, but which is known as the tone, the character, or

timbre of the voice. The timbre of the thoracic, always differs from the timbre of the

oral, voice... A strong thoracic voice partakes of the timbre of the speaking-trumpet.

(Translated by W. O. Markham.)

In this description, Markham uses the words such as quality, character, and tone to describe

timbre, in addition to the analogy to a musical instrument.
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Even a hundred years after from this introduction, the notion of timbre was still under debate,

as described by Alexander John Ellis, who translated On the sensations of tone by Helmholtz. Ellis

provided an extensive footnote on the choice of this term among options such as timbre, clangtint,

quality of tone, or colour discussing the already existing meanings for each term [Helmholtz1954].

He explains that the term timbre can be fully designated to express this perceptual attribute of

sound because it is an obscure and foreign word, whereas the other terms have specific connotations

for traditional usages in English. This frustration demonstrated by Ellis might be the same kind of

frustration we have today about the definition of timbre, as exhibited by Bregman.

However, I have an impression that even if we do not have an explicit definition, we already hold

some or sufficient, if not plentiful, tacit knowledge [Polanyi1967] about timbre from our experience.

Let me introduce some stories narrated by poet, sound engineer, philosopher, performer, and com-

posers. These anecdotes reflect images, thoughts, and decisions of those working in the domain of

timbre, in which their concern was that of a quality other than pitch and loudness.

Matsuo Basho, Japanese Poet from the 17th century, composed a poem [Keene1955]:

Furu ike ya

kawazu tobikomu

mizu no oto

The ancient pond

A frog leaps in

The sound of water

(Translated by Donald Keene)

In this poem, the sound of splash brings a life to the little frog while emphasizing the surrounding

silence.

Shuji Inoue, the sound engineer of “Howl’s Moving Castle” by Studio Ghibli, works extensively

on environmental sounds [Ida2005]:

Unlike other types of films, which may come with diegetic sounds, animation films have

to start with no sound: we have to prepare not only dialogues, but also the rustle of

clothes and environmental sounds. Of course we could purchase sound libraries, but

works by Studio Ghibli aim for the ultimate reality, so that I went out to anywhere with

microphones. Because the film is set at late 19th century Europe, I went to Marseille and

Colmar in France and recorded footsteps and horse-drawn carriage sounds reflecting on

the stone pavements. I also flew into the middle of mountains in Switzerland, to express

the air unique in Europe. Although not very noticeable, there is always “sound of the
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air” around us, as environmental sound. By simply adding this sound, the world of

animation suddenly starts to have a deep perspective.

A philosopher specialized in aesthetics and the philosophy of art, Peter Kivy raises questions

about the timbral quality of period instruments referring to the “Roland C-50 classic harpsichord”,

which is an electronic harpsichord [Kivy1995].

What particularly fascinates me about the Roland C-50 is that it includes, among its

many features, the ability to reproduce not only the distinctive plucked harpsichord

tone but, its maker says, “the characteristic click of the jacks resetting,” which, of

course, because the machine possesses neither jacks nor strings, must, like the plucked

tone, be reproduced electronically. In other words, the modern electronic harpsichord

maker has bent every effort to construct an instrument that can make a “noise” the

early harpsichord maker was bending every effort not to make. . . . Our triumph is their

failure.

Brian May, the lead guitarist and songwriter of the British rock band Queen, is known for using

a sixpence coin instead of a plectrum, as he answers in an interview[Bradley2000].

It’s a great help to use the coin as, depending how it’s orientated to the strings, it can

produce a varying amount of additional articulation, and by that I mean when you can

hear just one string peeping through the whole spectrum of the rest of it.

So, if the sixpence is turned parallel to the strings, it’s quite a soft effect, even though

it’s a piece of metal. And if you turn it sideways, the serrated edge changes the sound

quite dramatically. I’ve always preferred the coin to anything else, both for that reason

and because it doesn’t ’give’ between the string and your fingers. Sixpences are very

cheap these days!

Hungarian (later Austrian) composer Gyoergy Ligeti, who is known to have had synesthesia,

states that to him, sounds have color, form, and texture [Ligeti and Bernard1993].

The involuntary conversion of optical and tactile into acoustic sensations is habitual

with me: I almost always associate sounds with color, form, and texture; and form,

color, and material quality with every acoustic sensation.

French composer Pierre Boulez describes blends of timbres in art music after the 19th century

[Boulez1987].

Up to the 19th century, the function of timbre was primarily related to its identity.

. . . With the modern orchestra, the use of instruments is more flexible and their identi-

fication becomes more mobile and temporary. Composing the blending of timbres into
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complex sound-objects follows from the confronting of established sound hierarchies and

an enriching of the sound vocabulary. The function of timbre in composed sound-objects

is one of illusion and is based upon the technique of fusion.

When these people are deeply concerned about timbre, their sounds may come from musical,

environmental, spoken, or synthesized sounds. The scope of this term timbre is thus broad and

subtle, yet there has not been a widely accepted theory of timbre from such a general perspective.

1.2 The Need and Goal for a Timbre Perception Model

This work, therefore, aims to establish a perceptually valid and quantitative model of timbre which

embodies musical, spoken, and environmental sounds. Such a model will enable us to analyze digital

audio data from various sources (including, but not limited to music, other media content, and the

soundscape of our daily life) and to control timbre in sound synthesis in a perceptually meaningful

way.

Desirably, this timbre perception model will be versatile, robust, and durable. By versatile,

I mean that the model has a very broad scope: the sound to be considered could be musical,

spoken, environmental, or newly invented. By robust, I mean that the model can handle signals of

various characteristics: periodic and aperiodic (stochastic); harmonic and inharmonic; regular and

irregular; dynamic and static. And by durable, I mean that the model can be flexibly applied to

the sounds in the future, not limited to currently known sounds–there will be new and unfamiliar

sounds in the future, and we will be flexibly listening to them, just as we accommodated then-newly

emerging sounds in the past. For a model to be flexibly applicable to currently unknown sounds,

it must be versatile and robust so that it can incorporate any audio signal in any context.

1.3 Sound Color and Density

An inspiring role model for such a timbre perception model would be the sinusoidal model synthesis,

proposed by Quatieri [McAuley and Quatieri1986] and later adopted for musical purposes by Serra

[Serra1989]. This model is unique in its versatility and treatment of stochastic portion in sound.

This model represents a signal as an addition of sinusoids and stochastic portions: the sinusoids have

instantaneously changing frequencies and amplitudes, and the stochastic portions are the residual

after those sinusoids are removed from the signal.

This signal-driven framework is truly versatile and robust–it works for any kind of signal because

it does not presume any physical constraints on a signal. If we analyze a mostly stochastic signal,

the “residual” portion becomes predominant, and the sinusoidal portion becomes very little.
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With this technique, we can listen to a sound’s stochastic portion and periodic portion separately.

If we analyze a guitar sound with this method, we can hear the periodic motion of the string, with

some shift in pitch, and with rise, sustain and release state in its amplitude apart from the squeaky

friction sound of the finger rubbing the string followed by the string’s nonlinear, onset transient.

The qualities to be heard in these separated signals demonstrate a strong contrast. In my

opinion, when a signal is periodic, a smooth continuum of sinusoids, its spectral attribute becomes

the dominant perceived character, whereas, when a signal is stochastic, a sequence of aperiodic

impulses, its temporal attribute becomes the dominant perceived character.

Let’s name these spectral and temporal attributes sound color and density1 respectively:

• Sound color is an instantaneous (or atemporal) description of spectral energy distribution.

• Density is a description of the fluctuation of instantaneous intensity, in terms of both rapidity

of change and degree of differentiation between sequential instantaneous intensities.

This thesis provides a new set of quantitative representations which translate the above acous-

tical attributes, sound color and density, into linearly scaled perceptual estimates.

1.4 Prior Work on Sound Color

As many researchers viewed the spectrum of a sound and the spectrum of a visual color as being

relevant to each other, the analogy between color in vision and the spectral attribute of a sound has

been prevalent. Helmholtz, in his discussion on the effect of each harmonic’s amplitude of a complex

tone on its timbre, addressed the analogy with the prime colors in vision perception, quoting then-

contemporary scientific experiments on three prime colors and color mixtures [Helmholtz1954].

The phenomena of mixed colours present considerable analogy to those of compound

musical tones, only in the case of coulour the number of sensations reduces to three, and

the analysis of the composite sensations into their simple elements is still more difficult

and imperfect for musical tones.

In addition to the analogy between mixed color and musical tone with complex harmonic structure,

he presented, already in this above quote, the idea of explaining the complex harmonic structure

of musical tone into primary elements.
1Word choice for this attribute: Between the two possible terms, texture and density, I chose to use the word

density because (1) density had a narrower range of connotations than texture (the Oxford English Dictionary), and
(2) in the context of musical texture, according to Rowell, the analogy for density was specifically thin-dense, where
texture covers a larger set of analogies over multiple qualitative dimensions (e.g. simple-complex, smooth-rough,
thin-dense, focus-interplay, among others) [Rowell1983]. To summarize, the connotations for texture tend to be
qualitative and multidimensional, and the connotations for density tend to be quantitative and single-dimensional.
For that reason, I considered density is a better choice than texture to specifically describe the fine-scale temporal
attribute.
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Among the later researchers who inherited the concept of sound color, Wayne Slawson, composer

and music theorist, defines sound color as following [Slawson1985]:

Sound color is a property or attribute of auditory sensation; it is not an acoustic prop-

erty. . . . Like visual color, sound color has no temporal aspect. . . . When we say that a

sound color has no temporal aspect, this rules out of consideration all changes in sounds.

That is, a sound may be heard to be changing from one color to another, but the change

itself is not a sound color.

In this definition, Slawson clarifies that sound color belongs purely to the spectral (atemporal)

domain in the dichotomy of spectral vs. temporal attributes, which is a view shared by other

researchers including Plomp [Plomp1976] and Hartmann [Hartmann1997].

However, note that Slawson’s definition of sound color is in the perceptual domain, whereas in

this work, sound color itself is in the acoustical domain. Chapter 2 offers a model for sound color

perception, which translates this acoustical attribute into a linearly scaled estimate of perception,

with supporting data from a series of psychoacoustic experiments.

1.5 Density, the Missing Fine-Scale Temporal Attribute

A spectral analysis often dismisses the fine-scale temporal information of sound. For example, in

the application of the short-time Fourier transform (STFT), we often lose the temporal information

within a window of observation. In theory, we could find the temporal information in the phase of

the complex spectrum of a sound, but in practice, we rarely do so, and we tend to observe only the

power spectrum of the sound. Therefore the information on the fine-scale temporal arrangement is

typically lost in the blur of the power spectrum, leaving it hard to analyze.

As discussed earlier, in his sinusoidal modeling synthesis of musical sounds, Xavier Serra solved

this dilemma by representing a signal as an addition of “sinusoids and noise” (i.e. periodic and

stochastic) [Serra1989]. This model reserves the fine-scale temporal attribute by separating it from

the periodic elements of the signal. This “stochastic” portion of sound is also addressed by Wishart

[Wishart1996]: He introduces “aperiodic grain” as “a large aggregate of brief impulses occurring

in a random or semi-random manner,” which “has a bearing on the particular sonority of sizzle-

cymbals, snare-drums, drum-rolls, the lion’s roar, and even the quality of string sound through

the influence of different weights and widths of bows and different types of hair and rosin on the

nature of bowed excitation.” Although they express and approach the idea differently, both Serra

and Wishart consider that quality of sound which can only be ascribed to the fine-scale temporal

attribute.
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However, this quality is rarely studied in psychoacoustics: Only a few reports actually discuss

the perception of stochastic signals, such as percussive instruments and impact sounds [Lakatos2000,

Giordano and McAdams2006, Goebl and Fujinaga2008].

Chapter 3 presents a potential model for density perception, which translates the acoustical

attribute of density into a linearly scaled estimate of perception, with the supportive data from a

series of psychoacoustic experiments.



Chapter 2

Experiments with Sound Color

Perception

2.1 Introduction

In this chapter, the perception of sound color is investigated, and a perceptually viable model of

sound color is proposed. Sound color is, as described in chapter 1, the instantaneous (or atemporal)

description of spectral energy distribution of a sound.

Perceptual maps exist for pitch and loudness in the auditory domain, as well as for color in the

visual domain. In each case, a relatively simple model connects physical attributes (mel for pitch,

sone for loudness, and the three cones of the visual system for color) with perceptual judgments.

However, no such model currently exists for sound color.

The perceptual model proposed in this chapter aims for a simple, compact, and yet descriptive

representation of sound color, which allows us to directly and quantitatively estimate our perception

of this attribute; an auditory equivalent to Munsell’s color system [Munsell and Farnum1946]. As

described in the following discussion, the perception of sound color is multidimensional. Therefore,

an important goal of this work is to find a quantitative representation to describe the perceptual

sound color space with a set of perceptually orthogonal axes. In other words, we want to find an

auditory equivalent to primary colors in vision, which explains the mixture of colors as a sum of

independent elements.

It is also desirable that the representation of each primary sound color is quantitatively labeled to

predict human perception in a straightforward, proportional manner. That said, the representation

of sound color should linearly represent the perception of sound color.

9
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To summarize, this work aims for a model which represents the multidimensional space of sound

color perception with linear and orthogonal coordinates.1

2.1.1 Review and Proposals on Sound Color Perception Experiments

The perception of sound color is discovered to be multidimensional itself. Plomp studied the effect

of spectral envelopes on human perception [Plomp1976]. In this work, Plomp extracted a single

period from a waveform of the sustained state of musical instrumental sounds of a common pitch. By

repeating the single period, he obtained a static tone of a particular spectral envelope with the least

temporal change; in other words, a set of sounds which differ only in sound color, without temporal

deviations. The subjective dissimilarity judgments of the tones were collected, and the perceived

dissimilarity scores were explained in terms of the principal component analysis of the spectra, which

described the spectra with three orthogonal factors. In this work he found multidimensionality in

the perception of his stimuli set, suggesting multidimensionality in the perception of sound color.

When we look into the results from classic multidimensional scaling studies of musical timbres by

Grey, Wessel, McAdams, and Lakatos [Grey1975, Wessel1979, McAdams et al.1995, Lakatos2000],

there was, among the perceptual dimensions they found, only a single dimension related to the

sound color, which was spectral centroid. The other dimensions, spectral flux and attack time,

were temporal aspects. Unlike Plomp’s study, these studies integrated temporal aspects of timbre,

and succeeded in investigating the perception of more complex and realistic musical tones. However,

the multidimensionality of sound color was not visible. The subjective judgments of sound color

were observed only in a single dimension.

How did the multidimensionality of sound color get lost? It seems that the temporal attribute

of the musical timbres masked out or reduced the attention to the multidimensionality of sound

color, resulting in the reduced dimensionality of the observed sound color perception. The temporal

attributes of sound, both fine-scale and larger-scale, are complex, multidimensional, and possibly

nonlinear. The temporal attributes could deliver substantial effects on timbre perception, while

the effect of sound color could be more subtle. Therefore, in measuring the multidimensionality of

sound color perception, a good approach would be to minimize the temporal variance across stimuli,

so that the pure effect of sound color is measured without the distraction of temporal attributes.

In his study on describing the perceived difference of stimuli with various sound colors with the

three factors from principal components analysis of spectrum, Plomp concluded:
1Malcolm Slaney took a very important role in the preliminary studies of sound color, which we reported in the

following papers [Terasawa et al.2005a, Terasawa et al.2005c, Terasawa et al.2005b, Terasawa et al.2006]. Although
I extended the framework, revised the experiment design, and newly collected and analyzed the data for the sound
color experiments included in this thesis, this work still reflects many of his methodologies, ideas, and suggestions
for the preliminary studies on timbre perception.
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In this example, based upon a specific set of stimuli, three factors alone appeared to be

sufficient to describe the differences satisfactorily. This number cannot be generalized.

If we had started from a set of tones differing only in the slope of their sound spectra, a

single factor would have been sufficient. It is also possible to select nine stimuli which

would require, for example, five dimensions to represent their timbres appropriately.

This conclusion says, in other words, that a general model cannot be provided by observing the

perception of only a specific set of sounds. This is, in fact, a common problem in taking a non-

parametric approach.

The limitation of a non-parametric approach is that the resulting model of timbre perception

will depend on the specific selection of sounds included in the data set. For example, if the data

set contains only the instrumental sounds of the western classical orchestra, the resulting model

derived from that data set will be applicable to these instrumental sounds, but may not be ap-

propriate to analyze other types of sounds, such as non-western musical instrument sounds or

computer-generated sounds with unusual timbre. Hajda made an argument on this issue in his

essay [Hajda et al.1997] that non-parametric psychological measurements aid our understanding

of timbre perception but do not necessarily support the formation of a timbre representation or

metric. He argues that while “advances on digital signal processing and non-parametric statistical

methods” aided “the researcher in uncovering previously hidden perceptual structures,” this re-

search was conducted without “attention to first-order methods, namely, assumptions and working

definitions of what it is that is being studied” or “standard hypothesis testing.”

In light of these arguments, what is needed in order to establish a sound color model that

is robust for various types of sounds is a hypothesis-based approach. For that reason, this work

employs the following framework: Find a spectral representation with promising characteristics,

which is robust for all kinds of sounds, and measure whether the representation well estimates the

perception of sound color.

2.1.2 Discussion of MFCC for a Perceptual Sound Color Model

At earlier stages of this work, a few methods for sound color representation were considered, such

as spectral centroid [McAdams et al.1995], critical-band or third-octave band filterbank

[Zwicker and Fastl1999], formant analysis [Peterson and Barney1952], tristimulus model

[Pollard and Jansson1982], Mel-frequency cepstrum coefficients (MFCC)

[Davis and Mermelstein1980, Rabiner and Juang1993], and the stabilized wavelet-Mellin transform

[Irino and Patterson2002].

Considering the goal for the model, which is to find a linear, orthogonal, compact, simple,

versatile, and multidimensional representation of sound color perception, MFCC was the winner of
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the selection process: spectral centroid is single dimensional; specific loudness is multidimensional

but since the output from each of the auditory channel can correlate to the output from other

channels, it is not an orthogonal description; principal component analysis on specific loudness

would provide an orthogonal representation but is not versatile because of the dependency on the

data set; both the tristimulus model and formant analysis were too specific to either musical sounds

or spoken sounds; and the Mellin transform is far from compactness and simplicity, although it is

a versatile and accurate representation of timbre perception.

MFCC is a perceptually modified version of cepstrum. After acquiring a spectrum of a sound, the

spectrum is processed with a filterbank which approximately resembles the critical-band filterbank.

This filterbank functions to reshape and resample the frequency axis of the spectrum. The logarithm

of each channel from the filterbank is taken in order to model loudness compression. After that,

a low-dimensional representation is computed using the discrete cosine transform (DCT), in order

to model the spatial frequency in the frequency- and amplitude-warped version of the spectrum

[Blinn1993].

By using the DCT, MFCC benefits by having statistically independent coefficients. Each co-

efficient from the MFCC of a sound represents a spectral shape pattern which is orthogonal to

any spectral shape represented by the other coefficients from the MFCC. Although this statistical

orthogonality does not guarantee to be relevant to the orthogonality in the perceptual sound color

space, it makes MFCC a strong candidate to model the sound color, compared to the other models.

Because of such characteristics as orthogonality and versatility, MFCC has been successfully

used as a front-end for various applications such as automatic speech recognition systems

[Davis and Mermelstein1980, Rabiner and Juang1993], music information retrieval

[Poli and Prandoni1997, Aucouturier2006], and sound database indexing

[Heise et al.2009, Osaka et al.2009].

Although MFCC has been regarded as one of the simplest auditory models in these applications,

its perceptual relevance has never been tested with a formal psychoacoustic experiment procedure.

It should be noted, though, that the perceptual implication of MFCC was clearly expressed at the

early stage of its development.

The MFCC was originally proposed by Bridle and Brown at JSRU (The Joint Speech Research

Unit, a governmental research organization on speech in the UK, in existence from 1956 to 1985),

and was reported briefly in a JSRU report in 1974 [Bridle and Brown1974]. The report describes

this new representation as follows:

The 19-channel log spectrum is transformed, using a cosine transform, into 19 ‘spectrum-

shape’ coefficients which are similar to cepstrum coefficients. A set of weights, arrived

at by experiment, is applied to these coefficients, and the vocoder’s voicing decision,
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suitably weighted, completes the new representation.

The authors contextualized their new representation as “the description of short-term spectra . . . in

terms of the contribution to the spectrum of each of an orthogonal set of ‘spectrum-shape func-

tions.”’

In 1976, Paul Mermelstein contributed a book article titled “Distance Measures for Speech

Recognition” [Mermelstein1976]. In this article, he referred to Bridle and Brown’s JSRU report,

named their algorithm as “mel-based cepstral parameters,” and applied the algorithm to measure

inter-word distances for a time-warping task in speech recognition. The concept of distance measures

used in this article was inspired by Roger Shepard’s work on multidimensional scaling of vowel

perception. Mermelstein summarized five desirable properties for a distance measure, which includes

symmetry “D(X,Y ) = D(Y,X)” and linearity “D(X,Y ) < D(X,Z) whenX and Y are phonetically

equivalent and X and Z are not.” Mermelstein clearly associated the perceptual organization and

the signal-processing measures of speech phonemes.

Despite his interest in perceptual organization, Mermelstein’s most referenced empirical works

[Mermelstein1978, Davis and Mermelstein1980] remained within the realm of automatic speech

recognition. And since then, MFCC has been evaluated by performances in machine learning,

but never by psychoacoustic experiments. In addition to the statistical characteristics which make

MFCC a good candidate for the sound color model, the fact that it has never been tested with psy-

choacoustic experimentation despite its early consequences and applied research motivates further

investigation in this direction.

2.1.3 Experiment Design Overview

Given the above considerations, MFCC was designated the hypothetical method for sound color

modeling. Some strategic decisions and assumptions were made in order to accomplish the careful

measurement of sound color perception.

One decision was to disallow temporal deviation among the stimuli. All the stimuli have the

same temporal property. Meanwhile, the spectral shape is systematically varied among stimuli.

Within a stimulus, the same spectral shape is sustained over the course of the sound. The resulting

stimuli have very static sound quality, which is far from lively musical sounds. But in order to

measure the effect of sound color, inhibiting the temporal change across the stimuli to a minimum

level allows the listener to be fully attentive to the effect of sound color.

Another decision was to use the pairwise comparison for the dissimilarity rating. It is assumed

that more distance in the metric equates to more difference in the perceived dissimilarity. In other

words, when there are two stimuli, the listener is expected to perceive a smaller or larger difference

between them when their metric difference is smaller or larger, respectively.
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It is also assumed that each participant will have an individual way of listening to the sound.

Therefore, if the MFCC predicts the subjective judgment, the dissimilarity rating is individually

explained using the MFCC. After that, the collective trend across the participants is considered.

Incorporating these decisions, the following is the overview of the framework for the experiments

on sound color perception.

1. Create a stimuli set of synthesized sounds in a controlled way: the spectral shape is gradually

varied to have a gradually varying MFCC, and all other factors such as fundamental frequency,

expected loudness, and temporal controls are kept constant.

2. Form pairs of stimuli, and present them to the participants. Collect the quantitative subjective

judgments (dissimilarity ratings).

3. Run a linear regression analysis within each subject, using the MFCC as independent vari-

ables, and the dissimilarity rating of the sound color as a dependent variable. Then observe

the degree of correlation between MFCC and perceived dissimilarity of the sound color among

subjects.

In the following sections, I describe the method to synthesize the stimuli while varying their

MFCC in a controlled way, followed by two experiments on sound color, the first with single-

dimensional MFCC incrementation, and the second with two-dimensional MFCC space.

2.2 MFCC Based Sound Synthesis

2.2.1 MFCC

The Mel-frequency cepstrum coefficient (MFCC) is the discrete cosine transform (DCT) of a mod-

ified spectrum, in which its frequency and amplitude are scaled logarithmically. The frequency

warping is done according to the critical bands of human hearing. The procedures for obtaining

MFCC from a spectrum are illustrated in figure 2.1.

A filterbank of 32 channels, with spacing and bandwidth that roughly resemble the auditory

system’s critical bands, warps the linear frequency. The frequency response of the filterbank Hi(f)

is shown in figure 2.2. The triangular window Hi(f) has a passband of 133.3 Hz for the first 13

channels between 0 Hz and 1 kHz, and a wider passband, which grows exponentially, from the 14th

channel as the frequency becomes higher than 1 kHz. The amplitude of each filter is normalized so

that each channel has unit power gain.
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Figure 2.1: Algorithm overview of MFCC
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Figure 2.2: Frequency response of the filterbank used for MFCC

Bandwidth(Hi) =


200.0 (i = 1)133.3

(1 < i ≤ 13)

1000 · 1.072i−13 (i > 13)

(2.1)

We apply the filterbank, as its triangular frequency response is shown in figure 2.2, to the sound’s

spectrum. Then the total energy in each channel, Fi, is integrated to find the filterbank output.

Fi =
∫
|Hi(f) · S(f)| df (2.2)

where i is a channel number in the filterbank, Hi(f) is the filter response of the ith channel, and

S(f) is the absolute value of the Fourier transform of a signal.

The Mel-frequency cepstral coefficients, Ci are computed by taking the discrete cosine transform

(DCT) of the log-scaled filterbank output.

Li = log10(Fi) (2.3)

Ci = DCT(Li) (2.4)
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The lower 13 coefficients from C0 to C12, are considered as an MFCC vector, which represents

spectral shape.

2.2.2 Sound Synthesis

The sound synthesis takes two stages: (1) the spectral envelope is created by the pseudo-inverse

transform of MFCC, and (2) an additive synthesis of sinusoids is operated using the spectral envelope

generated earlier.

Pseudo-Inversion of MFCC

MFCC is a lossy transform from a spectrum, therefore in a strict sense, its inversion is not possible.

In this section, the pseudo-inversion of MFCC, the way to generate a smooth spectral shape from

a given set of MFCC is described.

The generation of spectral envelope uses a given array of MFCC Ci, which is an array of the

13 coefficients. The reconstruction of the spectral shape from the MFCC starts with the inverse

discrete cosine transform (IDCT) and amplitude scaling.

L̃i = IDCT(Ci) (2.5)

F̃i = 10L̃i . (2.6)

In this pseudo-inversion, the reconstructed filterbank output F̃i is considered to represent the

value of the reconstructed spectrum S̃(f) at the center frequency of each filter bank,

S̃(fi) = F̃i (2.7)

where fi is the center frequency of the ith auditory filter. Therefore, in order to obtain the re-

construction of the entire spectrum, S̃(f), I linearly interpolate the values between the center

frequencies S̃(fi).

Additive Synthesis

The smooth spectral shape is applied to a harmonic series. A slight amount of vibrato is added to

give some coherence in the resultant sound.

The voice-like stimuli used in this study are synthesized using additive synthesis of frequency-

modulated sinusoids. A harmonic series is prepared, and the level of each harmonic is weighted

based on the desired smooth spectral shape. The pitch, or fundamental frequency f0, is set to
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200 Hz, with the frequency of the vibrato v0 set to 4 Hz, and the amplitude of the modulation V

set to 0.02.

Using the reconstructed spectral shape S̃(f), the additive synthesis of the sinusoid is done as

follows:

s =
∑
n

S̃(n · f0) · sin(2πnf0t+ V (1− cos 2πnv0t)) (2.8)

where n specifies the nth harmonic of the harmonic series. The duration of the resulting sound s

is 0.75 second. For the first 30 millisecond of the sound, its amplitude is linearly fading in, and

for the last 30 millisecond of the sound, its amplitude is linearly fading out. All the stimuli are

then scaled with a same scaling coefficient. The specific loudness [Zwicker and Fastl1999] of all the

stimuli showed very small variance, and was considered to be fairly comparable within the stimuli

set.

2.3 Experiment 1: Single-Dimension Sound Color Percep-

tion

2.3.1 Scope

This experiment considers the linear relationship between the perception of sound color and each

coefficient from MFCC, i.e. a single function from the orthogonal set of spectral shape functions.

When the sound synthesis is done in a way that one coefficient from MFCC changes gradually in a

linear manner while the other coefficients are kept constant, the spectral shape of the resulting sound

holds a similar overall shape, but the humps of the shape change their amplitudes exponentially. The

primary question is; “Does the perception of sound color change gradually, in a linear manner, in

good agreement with MFCC?” All of 12 coefficients from MFCC are tested based on this framework.

2.3.2 Method

Participants

Twenty-five normal-hearing participants–graduate students and faculty members from the Center

for Computer Research in Music and Acoustics at Stanford University–volunteered for the exper-

iment. All of them were experienced musicians and/or audio engineers with various degrees of

training.
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Figure 2.3: Spectral envelopes generated by varying a single Mel-cepstrum coefficient

Stimuli

Twelve sets of synthesized sounds were prepared. The set n is associated with the MFCC coefficient

Cn—the stimuli set 1 consists of the stimuli with C1 varied, and the stimuli set 2 consists of the

stimuli with C2 varied, and so on. While Cn is varied from zero to one with five levels, i.e.

Cn = 0, 0.25, 0.5, 0.75, 1.0, the other coefficients are kept constant, i.e. C0 = 1 and all other

coefficients are set to zero.

For example, the stimuli set 4 consists of five stimuli based on the following parameter arrange-

ment:

C = [1, 0, 0, 0, C4, 0, ..., 0] (2.9)

where C4 is varied with five levels:

C4 = [0, 0.25, 0.5, 0.75, 1.0]. (2.10)

The figure 2.3 illustrates the idea of varying a single coefficient of MFCC (which is C6 in the

figure), and a resulting set of the spectral envelopes.

Procedure

There were twelve sections in the experiment, one section for each of the twelve sets of stimuli.

Each section consisted of a practice phase and an experimental phase.

The task of the participants was to listen to the sounds, played in sequence with a short interven-

ing silence and to rate the perceived timbre dissimilarity of the presented pair. They entered their

perceived dissimilarity using a 0 to 10 scale, with 0 indicating that the two sounds in the presented
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pair were identical, and 10 indicating that they were the most different within the section.

The participants pressed the “Play” button of the experiment GUI using a slider. In order to

facilitate the judgment, the pair having maximal texture difference in the section (i.e., the pair

of stimuli with the lowest and highest, Cn = 0 and Cn = 1, is assumed to have a perceived

dissimilarity of 10) was presented as a reference pair throughout the practice and experimental

phases. Participants were allowed to listen to the testing pair and the reference pair as many times

as they want, but were advised not to repeat too many times, before making their final decision on

scaling, and proceeding to the next pair.

In the practice phase, five sample pairs were presented for rating. In the experimental phase,

twenty-five pairs per section (all the possible pairs from five stimuli) were presented in a random

order. The order of presenting the sections was randomized as well.

Figure 2.4 provides the screen snapshot of the graphical interface for the experiment. The

following instruction was given to the participants before starting an experiment.

Instruction for the experiment:

This experiment is divided into 12 sections. Each section presents 10 practice trials

followed by 25 experiment trials. Every trial presents a pair of short sounds. Your task

is to rate the timbre dissimilarity of the paired sounds using a numerical scale from 0

to 10 using the slider on the computer screen, where 0 represents the two sounds being

identical, and 10 represents the sounds being most different within the section.

When you are ready to hear a trial, press “Play” button and listen to the paired sounds.

Using the slider, rate the perceived difference between the sounds. Press Reference

button in order to listen to the most different pair of the current section. You may

rehear the sounds by pressing the “Play” or “Reference” button, and you may re-adjust

your rating. When you are satisfied with your rating submit the result by pressing the

“Next” button, and proceed to the next trial.

Each section consists of a different set of sound stimuli. The practice trials present the

full range of timbral difference within a section. Please try to use the full scale of 0

to 10 in rating your practice trials and then be consistent with this scale during the

following experiment trials. In deciding the dissimilarity of timbre quality, try to ignore

any differences in perceived loudness or pitch of the paired sounds.

When rating the dissimilarity, please give your response in approximate increments of

0.5 scale (e.g. 5.0 , 5.5, or at the middle of the grid at finest–but not 6.43.) Use the

grids above the slider as a general guide rather than for precise adjustment. Please feel

free to take a brief break during the section as needed. Taking longer breaks between
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Figure 2.4: Graphical user interface for the experiment

sections is highly recommended: pause, stretch, relax, and resume the experiment.

2.3.3 Analysis 1. Linear Regression

The dissimilarity judgments were analyzed using simple linear regression (also known as least-

squares estimation) [Mendenhall and Sinich1995], with absolute Cn differences as the independent

variable, and their reported perceived dissimilarities as the dependent variable. The coefficient of

determination (R2, R2, or R-squared) represents the goodness of fit in the linear regression analysis.

Because it is anticipated that every person’s perception is individual, I first applied individual

linear regression for each section and each participant. The R2 values of one section from all the

participants were then averaged to find the mean degree of fit (mean R2) of each section. The

mean R2 among participants is used to judge the linear relationship between the Cn distance and

perceived dissimilarity.

The mean R2 and the corresponding confidence interval are plotted in the figure 2.5. The mean

R2 of the entire responses were 85 %, with the confidence intervals for all the sections overlapped.

This means that all of the coefficients, from C1 to C12, have a linear correlation to the perception of

sound color with the statistically equivalent degree of fit, when a coefficient is tested independently

from the other coefficients.
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Figure 2.5: Coefficients of determination (R2) from regression analysis of the single-dimensional
sound color experiment

2.3.4 Analysis 2. Equivalence Test in Pairwise Comparison

An issue of this experiment is that an experiment session took about 45 minutes to two hours,

depending on the participant. Reducing the number of stimulus pairs to be tested is desirable,

to avoid the participants’ fatigue and to encourage the participation in the experiment. During

this single color experiment, I tested all the possible pairs from a session’s five stimuli. This

arrangement provided 25 pairs, with 10 duplicating pairs with an alternate order (the pairs of AB

and BA). The equivalence testing [Rogers et al.1993] was operated to test the symmetry in the

subjective judgments (i.e. testing whether the perceived distances for AB and BA are statistically

equivalent or not), with the hope that if the judgments are symmetrical, I do not have to test all

the possible pairs but about the half of the pairs.

First I ran two linear regression analyses: one using only AB responses, and the other one using

only BA responses. I calculated the mean R2 for AB responses regression among the participants for

each section, and the other mean R2, for BA responses regression. The two mean R2 were compared

for equivalence. According to Rogers’ method, the confidence interval test was operated with the a

priori defined delta (the minimum difference between two groups to be considered nonequivalent)

set to 5 %. The equivalence interval fell into the 5 % minimum difference range, therefore the

regression analyses based on AB responses and BA responses were determined to be symmetrical.
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From this result, I consider that the subjective judgments on the alternate stimuli presentation

order (stimuli pair of AB and BA) are equivalent.

2.3.5 Analysis 3. Spectral Centroid Assessment

Another interest is the correlation with the spectral centroid. It is said that the spectral centroid has

a strong correlation with the perceived brightness of sound [Schubert and Wolfe2006]. I calculated

the spectral centroid for each of the stimuli used in the experiment, as shown in figure 2.6. The

MFCC-based stimuli and their spectral centroids are linearly correlated. The C1 stimuli had lower

centroids while C1 increases from 0 to 1, and the C2 stimuli had higher centroids while C2 increases,

but with smaller coefficient (less slope), and so on: in summary, lower MFCC coefficients have

stronger correlation to the spectral centroid, and the correlation is negative in case of odd-numbered

MFCC dimensions (spectral centroid decreases while Cn increases where n is an odd number), and

positive in case of even-numbered MFCC dimension (spectral centroid increases while Cn increases,

where n is an even number).

This is not a surprising effect, having seen the trend in spectral envelopes generated for this

experiment as shown in figure 2.3. Looking at the spectral envelopes generated by varying C1,

there is a hump around the low-frequency range, which corresponds to the cosine wave at ω = 0,

and there is a dip around the Nyquist frequency, which corresponds to ω = π/2. As C1 increases,

the magnitude of the hump becomes higher. The concentrated energy around the low-frequency

region corresponds to the lower spectral centroids while increasing the value of C1. Now, if we

observe the spectral envelopes generated by varying C2, there are two humps at the DC and the

Nyquist frequency, corresponding to ω = 0 and ω = π. Having another hump at the Nyquist

frequency makes the spectral centroid higher; whereas increasing the value of C2 increases the

spectral centroid.

The same trends are conserved for odd- and even-numbered MFCC coefficients. However, the

higher the dimension of the MFCC, the more energy is sparsely distributed over the spectrum,

which makes the coefficient of the linear relationship between MFCC and spectral centroid smaller

(i.e. the slope of the line which plots MFCC and spectral centroid becomes more shallow, when n

is higher).

The above-mentioned points are all dependent on the specific implementation of MFCC, and the

pseudo-inversion of MFCC, used in this experiment. Depending on how the MFCC and its inversion

are implemented, it could have different kinds of relationships to the spectral centroid. However,

there was a trend in the spectral centroids in my MFCC-based stimuli set, and it coincides well

with the reported experiments about the correlation between timbre perception and the spectral

centroid.



CHAPTER 2. EXPERIMENTS WITH SOUND COLOR PERCEPTION 24

Figure 2.6: Spectral centroid of the stimuli used for the single-dimensional sound color experiment

2.3.6 Discussion

In this experiment, it is shown that every orthogonal basis from MFCC is linearly correlated to

human perception of sound color at about 85% degree of fit. The subjective responses to the

pairs of alternate order (perceived dissimilarity between AB or BA) are symmetric. There is a

linear relationship between the Cn values and the spectral centroids of the synthesized sounds

using them, which provides an agreement between the results from this experiment and the other

experiments on spectral centroid and timbre perception.

2.4 Experiment 2: Two-dimensional Sound Color Percep-

tion

2.4.1 Scope

In this experiment, the perception of the two-dimensional sound color space is tested. The stimuli

set was synthesized by varying two coefficients from MFCC array, say Cn1 and Cn2, to form a two-

dimensional subspace. The subjective response to the stimuli set is tested based on the Euclidean

space hypothesis: if each coefficient functions as an orthogonal basis to estimate the sound color
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perception. Since it is difficult to test all the 144 two-dimensional subspaces, five two-dimensional

subspaces were chosen to be tested.

2.4.2 Method

Participants

Nineteen normal-hearing participants, who were audio engineers, administrative staff, visiting com-

posers, and artists from Banff Centre, Alberta, Canada, volunteered for the experiment. All of

them had a strong interest in music, and some of them received professional training in music and

audio engineering.

Stimuli

Five sets of synthesized sounds were prepared. They are associated with the five different kinds

of two-dimensional subspaces. The five subspaces are made by varying [C1, C3], [C3, C4], [C3, C6],

[C3, C12], and [C11, C12], respectively. For each set, the coefficients in question are independently

varied over four levels (Cn = 0, 0.25, 0.5, 0.75), the other coefficients are kept constant, i.e. C0 = 1

and all other coefficients are set to zero. By varying two coefficients independently, over four levels,

each set has 16 synthesized sounds.

For example, the first set made of the subspace [C1, C3] consists of the 16 sounds based on the

following parameter arrangement:

C = [1, C1, 0, C3, 0, ..., 0] (2.11)

where C1 and C3 are varied over four levels, creating a grid with two variables.

The subspaces were chosen with the intention to test the spaces made out of: non-adjacent low

to middle coefficients ( [C1, C3], and [C3, C6]); two adjacent low coefficients ([C3, C4]); low and high

coefficients ([C3, C12]); and two adjacent high coefficients ([C11, C12]).

The figure 2.7 shows an example of the generated spectral envelopes for this experiment.

Procedure

There are 16 stimuli sounds per one subspace. All the possible combination of pairwise presentation

makes 256 pairs. It is difficult to test all of these pairs because of the limited time. Reducing the

number of test pairs can also reduce exhaustion of the participants.

From the first experiment, in which the perceived distances between sound A and B are mea-

sured, the perceived distances, AB and BA are statistically equivalent. Therefore, in this experi-

ment, I tested only one of two possible directions of a pairwise presentation of two sounds. Within
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Figure 2.7: Spectral envelopes generated by varying two Mel-cepstrum coefficients

each subspace, the test pairs were selected with the following interests:

• From the zero of the space Cn1 = Cn2 = 0 to all the nodal points of the grid on the parameter

space (16 pairs).

• Other large distances (5 pairs).

• Some shorter parallel and symmetric distances to test if they have perceptually the same

distance (13 pairs).

The configuration of the test pairs is presented in figure 2.8.

In this way, I selected total 34 test pairs for a section.

The task of the participants was to rate the perceived timbre dissimilarity of the presented pair,

and listen to the sounds, played in sequence with a short intervening silence. They then enter their

perceived dissimilarity using a 0 to 10 scale, with zero indicating that the presented sounds were

identical, and 10 indicating that the two sounds in the presented pair were the most different within

the section.

The participants press the “Play” button of the experiment GUI using a slider. In order to

facilitate the judgment, the pair having maximal texture difference in the section is presented as a

reference pair throughout the practice and experimental phases, assuming that the pair of stimuli
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Figure 2.8: Selection of the test pairs for the two-dimensional sound color experiment

with the lowest and highest, Cn1 = Cn2 = 0 and Cn1 = Cn2 = 0.75, would have a perceived

dissimilarity of 10 within the stimuli set. Participants were allowed to listen to the testing pair and

the reference pair as many times as they wanted, but were advised not to repeat too many times,

before making their final decision on scaling, and proceeding to the next pair.

In the practice phase, five sample pairs were presented for rating. In the experimental phase,

34 pairs per section were presented in a random order. The order of presenting the sections was

randomized as well.

The figure 2.4 provides the screen snapshot of the graphical interface for the experiment. The

following instruction was given to the participants before starting an experiment.

Instruction for the experiment:

This experiment is divided into 5 sections. Each section presents 5 practice trials fol-

lowed by 34 experiment trials. Every trial presents a pair of short sounds. Your task

is to rate the timbre dissimilarity of the paired sounds using a numerical scale from 0

to 10 using the slider on the computer screen, where 0 represents the two sounds being

identical, and 10 represents the sounds being most different within the section.

When you are ready to hear a trial, press “Play” button and listen to the paired sounds.

Using the slider, rate the perceived difference between the sounds. Press “Reference”

button in order to listen to the most different pair of the current section. You may

rehear the sounds by pressing the “Play” or “Reference” button, and you may re-adjust

your rating. When you are satisfied with your rating submit the result by pressing the

“Next” button, and proceed to the next trial.

Each section consists of a different set of sound stimuli. The practice trials present the

full range of timbral difference within a section. Please try to use the full scale of 0 to 10
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in rating your practice trials and then be consistent with this scale during the following

experiment trials.

When rating the dissimilarity, please give your response in approximate increments of

0.5 scale. Use the grids above the slider as a general guide rather than for precise

adjustment.

Please feel free to take a brief break during the section as needed. Taking longer breaks

between sections is highly recommended: pause, stretch, relax, and resume the experi-

ment.

2.4.3 Multiple Regression Analysis

The dissimilarity judgments were analyzed using multiple linear regression. The orthogonality of the

two-dimensional subspaces was tested with a Euclidean distance model: The independent variable

is the Euclidean distance of MFCC between the paired stimuli, and the dependent variable is the

subjective dissimilarity rating.

d2 = ax2 + by2 (2.12)

Where d is the perceptual distance that subjects reported in the experiment, x is the difference of

Cn1, and y is the difference of Cn2 between the paired stimuli. The coefficient of determination, R2

represents the goodness of fit in the linear regression analysis.

Individual linear regression for each section and each participant is first applied. The R2 values

of one section from all the participants were then averaged to find the mean degree of fit (mean R2)

of each section. The mean R2 among participants is used to observe if the perceived dissimilarity

reflects the Euclidean space model.

The mean R2 and the corresponding confidence interval are plotted in figure 2.9. The mean

R2 of all responses was 74% with the confidence intervals for all the sections overlapped. This

means that all of the five subspaces demonstrate a similar degree of fit to a Euclidean model of

two-dimensional sound color perception regardless of the various choice of the coordinates from

MFCC space.

The figure 2.10 shows the regression coefficients (i.e. a and b from the equation 2.12) for each

of the two variables from the regression analysis for all five sections. The regression coefficients

were consistently higher for a lower one of the two MFCC variables, meaning lower Mel-cepstrum

coefficients are perceptually more significant. The stronger association between lower Mel-cepstrum

coefficients and spectral centroid may explain this result on regression coefficients.
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Figure 2.9: Coefficient of determination (R2) from regression analysis of the two-dimensional sound
color experiment. Sections 1–5 represent the tests on subspaces [C1, C3], [C3, C4], [C3, C6], [C3, C12],
and [C11, C12], respectively.
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Figure 2.10: Regression coefficients from regression analysis of the two-dimensional sound color
experiment. The first two points on the left represent the regression coefficient for each dimension
of the [C1, C3] subspace, followed by regression coefficients for the subspaces of [C3, C4] [C3, C6],
[C3, C12], and [C11, C12].
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2.4.4 Discussion

In this experiment I tested the association between the perceptual sound color space and the

two dimensional sound color space designed by MFCC. The Euclidean distance model explains

the perceived sound color space perception at 74% degree of fit on average. The five different

arrangements of 2D subspaces were selected, and all the arrangements showed a similar degree

of fit to the Euclidean model. Examining the regression coefficients demonstrated that the lower

MFCC coefficients had the stronger effect in perceived sound color space.

2.5 Chapter Summary and Future Work

In this chapter I discussed the perception of sound color. Based on desirable properties for a sound

color model (linearity, orthogonality, and multidimensionality), I proposed Mel-frequency cepstral

coefficients (MFCC) as a metric and reported two quantitative experiments on their relation to hu-

man perception.The quantitative data from the experiment exhibit the linear relationship between

the subjective perception of complex tones and the proposed metric for spectral envelope.

The first experiment tested the linear mapping between the human perception of sound color

and each of all twelve Mel-cepstrum coefficients. Each Mel-cepstrum coefficient showed a linear

relationship to the subjective judgment at the statistically equivalent level to any other coefficient.

On average, the MFCC explains 85% of the perceived dissimilarity in sound color when a single

coefficient from MFCC is varied in an isolated manner from the other coefficients.

In the second experiment I varied two Mel-cepstrum coefficients in order to form a two-dimensional

(2D) sound color subspace and tested its perceptual relevance. A total of five subspaces were tested,

and all five cases exhibited the linear relationship to the perceptual responses at a statistically equiv-

alent level. The subjective dissimilarity rating showed the correlation of 74% on average to the

Euclidean distance between the Mel-cepstrum coefficients of the tested stimulus pair. This means

that a two-dimensional MFCC-based sound color space matches perceptual sound color space. In

addition, the observation of regression coefficients demonstrated that lower-order Mel-cepstrum

coefficients influence human perception more strongly.

Both the one- and two-dimensional experiments are consistent with the MFCC model providing a

linear and orthogonal coordinate space for human perception of sound color. Such a representation

can be useful not only in analyzing audio signals, but also in controlling timbre in synthesized

sounds.

I have only explored the MFCC model experimentally at low dimensionality. Much work re-

mains to be done in understanding how MFCC variation across the entire 12 dimensions might

relate to human sound perception. An interesting approach is currently being taken by Horner,
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Beauchamp, and So who are taking their previous experimental data on timbre morphing of instru-

mental sounds [Horner et al.2006] and re-analyzing it using MFCC (in preparation). Their approach

using instrumental sounds will provide a good complement to the approach taken here.



Chapter 3

Explorations of Density

3.1 Introduction

In this chapter I investigate the perception of density and introduce a prospective model of density

perception. Density is, as defined in chapter 1, the fluctuation of instantaneous intensity of a

particular sound, both in terms of rapidity of change and degree of differentiation between sequential

instantaneous intensities. Density represents the fine-scale temporal attribute which complements

the spectral description (sound color). With the same motivations as the quantitative model for

sound color perception, I aim to establish a quantitative model for density perception, which is

simple, compact, and yet descriptive.1

In establishing the model of density, many research works are conceptually relevant and in-

spiring, such as texture mapping in computer graphics [Heckbert1986], tactile and multi-sensory

perception of texture [Lederman and Klatzky2004], wavelet-based texture synthesis

[Saint-Arnaud and Popat1998, Dubnov et al.2002, Athineos and Ellis2003], and the concept of gran-

ularity in room acoustics [Huang and Abel2007]. These works observe the small-scaled fluctuation

of a matter, such as visual color, structure of surface gratings or fabric weaves, and amplitude of a

sound’s waveform. Such small-scaled fluctuations would produce a particular sensual quality, which

is often denoted as granularity, texture, and coarseness; this is the quality which I use the word

density to describe. In the above listed works in the audio domain researchers explored the analysis

or synthesis of density as physical characteristics, but there has not been a study on the perceived
1The density experiments are the product of a joint project with Patty Huang and Jonathan Abel. In response to

their preliminary report based on an informal listening test [Huang and Abel2007], I proposed to run a formal psy-
choacoustic experiment, and we ultimately operated three density experiments together. In preparation, I contributed
the experiment design and setup, they contributed the stimuli synthesis, and we jointly carried out the data collection
and analysis. These experiments were previously reported at conferences [Terasawa et al.2008, Huang et al.2008].

33
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quality of density. This chapter is dedicated to the experimental study of the perception of density

and to establishing a quantitative model of density perception.

In the ideal density model, I seek the following characteristics: The density model should be able

to analyze the density, or at least the stochastic quality2 of a sound; the model should quantitatively

predict the human perception of density with a linear mapping; and the model should robustly

represent the perceived density of the sounds regardless of their arbitrary sound color.

The notion of density may not be familiar, but this term has been used in music theory and

room acoustics. In music theory, density has number of meanings including the number of sounds

happening concurrently, and in room acoustics, echo density means the number of echoes per unit

time. In music theory 3, composer and music theorist Wallace Berry offers the following definition

of density in his book Structural Functions in Music [Berry1976]:

Density is defined as that textural parameter, quantitative and measurable, conditioned

by the number of simultaneous or concurrent components and by the extent of vertical

‘space’ encompassing them.

To summarize, this definition is about how many sounds there are and if they are resolved or fused.

The same amount of musical components will sound sparse or condensed, depending on the vertical

space (i.e. pitch range on the musical score) being more or less. When the notion of density appears

in room acoustics and artificial reverberation, the echo density is defined as the number of echoes

found in an impulse response of a space without considering the spectral aspects [Schroeder1962]:

The number of echoes per second at the output of the reverberator for a single pulse at

the input.

The stage of early reflections of the room reverberation shows fewer, but discernible, echoes, and

the stage of late reverberation shows more echoes fused into each other. Therefore the notion of

echo density is useful to characterize the transitory stages of the reverberation.

Although these two definitions come from divergent disciplines, they share a common perspective

in which density represents a physical quantity per unit time. However, this work aims for a metric

which can directly estimate the perceptual quality based on physical characteristics. Therefore,
2The scope of density is larger than stochastic elements of sound, and it could cover, for example, periodic

fluctuations of instantaneous intensity. However, in this thesis, assuming that periodic elements are perceived smooth,
I focus on the problem of representing irregular and aperiodic temporal qualities.

3Another definition of density [Rowell1983] is “Thin/dense refers to the number of simultaneous sounds and their
relative distribution over the pitch spectrum from low to high. Musical density ranges from a solo line to textures
of more than fifty parts, as in Penderecki’s Threnody for the Victims of Hiroshima, but most musical textures are
close to the thin end of the scale.” However, this term is used in a variety of context according to Griffith’s definition
of density from The Oxford Companion to Music (Revised edition, 2002): “An informal measure of polyphonic
complexity, chord content, or general sound, chiefly used of 20th-century music where a more precise vocabulary
does not exist. One may thus speak of dense textures, dense harmonies, etc.”
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I would like to establish a model which can transform a physical description into a perceptually

meaningful metric of density.

Surprisingly, room reverberation research methodologies proved to be conceptually most relevant

to accomplishing this task. In this discipline researchers investigate the characteristics of an impulse

response in its irregular and aperiodic sequence of echoes. Such characteristics, of course, cannot

be detected by a spectral analysis because such a temporal quality remains invisible behind a blur

of broad-band responses. In order to solve this problem, room-acoustics researchers have been

observing the rapid fluctuation of sound intensity in the time domain so that they can describe the

temporal characteristics of the reverberation impulse response with quantitative representations.

Although the sounds in the research subject come from room reverberation impulse responses,

the temporal characteristics of the sounds–the irregular and aperiodic sequence of impulses–are no

different from the stochastic portions of musical, spoken, and environmental sounds (as opposed to

their harmonic elements), which can be represented as a series of irregularly occurring impulses with

noise-like qualities. For that reason, the knowledge acquired by studying the room reverberation can

be applicable to other types of sounds. Therefore, in this study I decided to study the perception

of reverberation echo density in order to understand the perception of density.

The current problem with echo density (or absolute echo density, AED) is that counting the

actual number of echoes is easily affected by noise bandwidths and is not capable of describing the

perceived quality across different bandwidths. Abel and Huang proposed normalized echo density

(NED) to overcome this obstacle. This measure estimates the noise quality by observing how much

the noise mixture resembles Gaussian distribution and is insensitive to the equalization.

In addition to this metric, NED, there have been a few methods proposed in terms of the

“Gaussian-ness” of the impulse response in order to model the transition from early reflections to

late reverberation [Stewart and Sandler2007, Defrance and Polack2008]. While these other meth-

ods observe the similarity to the Gaussian noise by Kurtosis analysis, NED searches the outliers

from Gaussian distribution upon the assumption that the sound of interest is reverberation noise.

Although NED differs from Kurtosis analysis, these two approaches share the idea of observing

the proximity to the statistical property of Gaussian mixture noise. Abel and Huang also reported

that both the NED- and Kurtosis-based metrics demonstrate similar results in analyzing a room

reverberation impulse response [Abel and Huang2006].

However, the relevance of the statistical property of the room reverberation impulse response,

and the perceived noise quality, was not discussed until Huang and Abel’s next report

[Huang and Abel2007]. In this paper they reported that normalized echo density well predicts

human perception of the noise quality regardless its bandwidth, although by informal listening.

Considering these reports, NED seems to have good potential to function as a perceptual density

model–directly addressing the perceptual density while being unaffected by the coloring of the
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sound. Therefore, in this chapter I employ NED as a hypothetical model for perceptual density, and

examine the relationship between the estimated density of NED and the quantitative measurement

of the perceived density through formal psychoacoustic experiments.

In search of the perceptually relevant metric of density, currently there has been no other

comparable method to NED. Because the metric for the reverberation mixing time is still evolving

in the research field, I have to admit that there may or may not be some other methods in the

future which could be suitable for perceptual density modeling. However, I foresee two merits in

operating the psychoacoustic experiment of NED: At most, the experiment result can be equally

applicable to Kurtosis-based methods, because NED functions similarly to Kurtosis-based analysis

for aperiodic noise-like sounds. At least we have the data on perception of noise-like sounds which

can be re-analyzed by any other method when we find a better candidate for a density model.

The three experiments described in this chapter aim to investigate perceptual sound density.

In these experiments we used artificially synthesized noise-like stimuli which have consistent sound

density within a stimulus. The synthesized noise stimuli enabled us to conduct reliably quantitative

measurements.

The first experiment aims to test if normalized echo density is a metric which directly represents

the perceived density. It takes a similar style to the sound color experiment: We presented stimuli

with various normalized echo densities and bandwidths in pairs. After acquiring the subjective

dissimilarity judgments we tested the relationship between the perceived density dissimilarity and

the difference of normalized echo density.

The second experiment uses a “grouping” framework to investigate the consistency across band-

widths. We asked the participants to mark breakpoints in a sequence of noises with gradually

changing echo densities. This experiment aims to determine whether the grouping behavior is con-

sistent across different bandwidths. For example, if we listen to a noise with a narrow bandwidth

and another noise with a higher bandwidth the questions are 1) if we show a consistent judgment

of perceived sound density across bandwidths and 2) if that judgment can be well explained using

normalized echo density.

The third experiment explores the same concern using a “matching” framework. In this exper-

iment, the participants matched the perceived sound density of a noise with one bandwidth, and

another with another bandwidth. With this experiment, we tested whether the density perception

estimated by NED is constant across bandwidths.

In the next sections, the algorithm of the normalized echo density and the noise synthesis is

described, followed by sections which describe the experimental procedures and results.
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3.2 Normalized Echo Density

Over a sliding window of a reverberation impulse response, the normalized echo density profile η(t)

is the fraction of impulse response taps which lie outside the window standard deviation, normalized

to that expected for Gaussian noise:

η(t) =
1/erfc(1/

√
2)

2β + 1

t+β∑
τ=t−β

{|h(τ)| > σ}, (3.1)

where h(t) is the reverberation impulse response (assumed to be zero mean), 2β + 1 is the

window length in samples, σ is the window standard deviation,

σ =

 1
2β + 1

t+β∑
τ=t−β

h2(τ)

 1
2

, (3.2)

{·} is the indicator function, returning one when its argument is true and zero otherwise, and

erfc(1/
√

2) .= 0.3173 is the expected fraction of samples lying outside a standard deviation from

the mean for a Gaussian distribution [Abel and Huang2006].

The normalized echo density profile (NEDP) is more generally computed using a positive weight-

ing function w(t) so as to de-emphasize the impulse response taps at the sliding window edges:

η(t) =
1

erfc(1/
√

2)

t+β∑
τ=t−β

w(τ){|h(τ)| > σ} (3.3)

with

σ =

 t+β∑
τ=t−β

w(τ)h2(τ)

 1
2

(3.4)

and where w(t) is normalized to have unit sum
∑
τ w(τ) = 1.

Figure 3.1 shows the normalized echo density profile of a measured room impulse response using

a 20 ms Hanning window. NED values are near zero during the early reflection portion of the

reverberation, indicating a low echo density. The NED value increases over time to a value near

one, suggesting Gaussian-like statistics, where it remains for the duration of the impulse response.

As described in [Abel and Huang2006], what sets one NED profile apart from another is the rate

of increase and the time at which a value near one is first attained, indicating the start of the late

field.

As developed in [Huang and Abel2007], the normalized echo density η can be related to the
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Figure 3.1: Normalized echo density profile (the gradually increasing curve in red) of a measured
room impulse response (the gradually decreasing waveform in black). Note that the time axis is on
a logarithmic scale.

absolute echo density ρ, measured in echoes per second, by the following expression:

η =
δρ

δρ+ 1
, (3.5)

where δ is the echo duration in seconds, or alternatively the inverse echo bandwidth in 1/Hz .

3.3 Synthesis of Noise Stimuli

In order to conduct a systematic analysis of echo density psychoacoustics, artificial echo patterns

were synthesized for a variety of static echo densities and echo bandwidths.

A Poisson process was used to generate echo arrival times using absolute echo densities ranging

from 10 echoes/sec to 2.8e5 echoes/sec. Echo amplitudes were drawn from Gaussian distributions

with variance scaled by the echo density so that energy is roughly constant across echo patterns. Sinc

interpolation was used to convert echo times and amplitudes into an echo pattern. Echoes having

a range of different durations were generated by applying second-order Butterworth lowpass filters

having bandwidths from 1.0 kHz to 10 kHz. [Huang and Abel2007] Stimuli for the experiments

described in this section were selected from this large collection of synthesized echo patterns based

on the combination of echo pattern bandwidth and echo density desired.
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3.4 Experiment 3: Dissimilarity of Perceptual Density

3.4.1 Scope

In this experiment, we investigated the relationship between NED and perception of echo patterns

with static echo densities. Our primary interests are (1) whether the density descriptions (NED,

AED, and log of AED) relate in a simple way to perceived density dissimilarity, and (2) if those

relationships are consistent across bandwidths (i.e., echo durations).

3.4.2 Method

Participants

Twenty-five normal-hearing participants, graduate students and faculty members from Center for

Computer Research in Music and Acoustics at Stanford University, volunteered for the experiment.

All of them were experienced musicians and/or audio engineers with various degrees of training.

Stimuli

Three sets of echo patterns having five different static echo densities (NED = 0.13, 0.24, 0.57, 0.74,

0.90) were generated with each set having different echo bandwidths (1 kHz, 2 kHz, and 5 kHz,

corresponding to echo durations of roughly 1.0 ms, 0.5 ms, and 0.2 ms, respectively). The density

of the stimuli was varied so that granularity ranged from sparse to smooth, while the other factors

such as duration, loudness, and bandwidth, were kept constant.

Procedure

There were three sections in the experiment, one section for each of the three sets of the stimuli.

Each section consisted of a practice phase and an experimental phase.

The task of the participants was to listen to the sounds played in sequence with a short in-

tervening silence and to rate the perceived density dissimilarity of the presented pair. They then

entered their perceived dissimilarity using a 0 to 10 scale, with zero indicating that the presented

sounds were identical and 10 indicating that the two sounds in the presented pair were the most

different within the section.

The participants pressed the “Play” button of the experiment GUI using a slider. In order to

facilitate the judgment, the pair having maximal density difference in the section (i.e., the pair of

lowest and highest echo density sequences, defined to have a dissimilarity of 10) was available as a

reference pair throughout the practice and experimental phases. Participants were allowed to listen

to the testing pair and the reference pair as many times as they wanted, but they were advised not
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to repeat too many times before making their final decision on scaling and proceeding to the next

pair.

In the practice phase, five sample pairs were presented for rating. In the experimental phase,

twenty-five pairs per section (all the possible pairs from five stimuli) were presented in a random

order. The order of presenting the sections was randomized as well.

It should be pointed out that the maximally dissimilar pair used as a reference employed different

sequences than those presented for rating. Also, so as to distinguish the ability to discern different

sequences having identical echo densities from the ability to recognize identical sounds, two different

sequences were generated at each echo density, and each pair presented drew one sound from each

generation.

The figure 3.2 provides the screen snapshot of the graphical interface for the experiment. The

following is the instruction given to the participants before starting an experiment.

You will have 4 sections in this experiment. Each section has 5 practice trials followed

by 25 experiment trials. Every trial has a pair of short sounds. Your task is to rate the

timbre dissimilarity of the paired sounds using a numerical scale from 0 to 10 using the

slider on the computer screen, where 0 represents two sounds being identical, and ten

represents the sounds being very different.

At each trial, press Play button and listen to the paired sounds. Using the slider, rate

how different the paired sounds are. You may repeat listening to the sounds by pressing

the play button, and you may re- adjust your rating. Submit the final rating by pressing

“Next” button, and proceed to the next trial. Each section consists of a different group

of sounds to create those pairs. The practice trials project the range of timbral difference

within a section. Please try to use up the full scale of 0 to 10 during the practice, and

be consistent with that during the following experiment trials.

In deciding the dissimilarity of timbre quality, try to ignore any differences which may

be there due to the loudness or the pitch of the paired sounds.

When rating the dissimilarity, please give your response by roughly 0.5 scale (e.g. 5.0 ,

5.5, or at the middle of the grid at finest - but not 6.43.) Use the grids above the slider

as your guidance, but you do not have to precisely adjust to the grid, as long as the

slider position agrees to your perception. Please feel free to take a brief break during

the section as needed. Taking longer breaks between sections is highly recommended:

pause, stretch, relax, and resume the experiment.
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Figure 3.2: Graphical user interface for the dissimilarity test

3.4.3 Analysis

The dissimilarity judgments were analyzed using linear regression (also known as least squares

estimation) [Mendenhall and Sinich1995] with absolute NED differences as the independent variable

and their reported perceived dissimilarities as the dependent variable.

The mean of the coefficient of determination (R2, R2, or R-squared, which represents the good-

ness of fit) among participants is used to judge the linear relationship between the NED distance

and perceived dissimilarity. We first applied individual linear regression for each section and each

participant. The R2 values of one section from all the participants were then averaged to find the

mean degree of fit (mean R2) of each section.

In addition to the NED-based analysis, the same analyses were repeated using distances based

on AED and on log AED, as independent variables. Figure 3.3 shows mean R2 values from the

linear regression analyses based on these three independent variables.

Absolute difference in NED is a good model for perceived density dissimilarity, having a mean

R2 of 93%. The log AED is a reasonable indicator of density dissimilarity, with a mean R2 of 88%.
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Figure 3.3: Mean R2 and 95% confidence intervals of linear regression on perceptual dissimilarity
of echo patterns having static echo densities using AED (o), log AED (.), and NED (*) as the
independent variable.

AED, however, fails as a usable model.

3.5 Experiment 4: Density Grouping

3.5.1 Scope

This experiment inherits the framework for the preliminary study described in [Huang and Abel2007].

The basic idea is to understand if there are any commonly perceived anchors in the perception of

gradually changing density, e.g., if there are clear boundaries to divide the density clusters when

the density is changing from smooth to rough, and if so, if the boundaries are common across

bandwidths.

In this experiment, we asked the participants to divide the static echo noises into three groups

and observed the trend in the reported boundaries. Also of interest was whether a boundary point
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in NED is consistent among echo patterns with various bandwidths.

3.5.2 Method

Participants

Nine normal-hearing participants, musicians, recording engineers, and staff from the Department

of Music and Sound at the Banff Centre, volunteered for the experiment.

Stimuli

Four sets of echo patterns having 19 different static echo densities (NED = 0.05, 0.10, 0.15, ...,

0.95) were generated at each of four bandwidths (1 kHz, 2 kHz, 5 kHz, and 10 kHz). The density

of the stimuli was varied so that granularity ranged from sparse to smooth while the other factors

such as duration, loudness, and bandwidth, were kept constant.

Procedure

Buttons allowing the subject to listen to the nineteen static noise patterns were presented in as-

cending NED order. The participants were instructed to listen to the noise patterns as many times

as they wished and in whatever order. They were asked to select two breakpoints, grouping the

noise sequences into three density regions, e.g., rough, medium, and smooth. The sections were

organized by bandwidth, and the order of section presentation was randomized.

The figure 3.4 provides the screen snapshot of the graphical interface for the experiment. The

following are the instructions given to the participants before starting an experiment.

There are 4 sections in this experiment. In each section, you will find a set of numbered

square buttons, two rows of round buttons aligned between the square buttons, “Se-

quence up”, “Sequence down”, and “Next’ buttons. By pressing a square button, you

will hear its associated sound. By pressing the “Sequence up” button, you will hear all

the sounds in sequence, and by pressing the “Sequence down” button, you will hear the

sequence in the reverse order.

Your task is to explore the presented sounds, and divide them into three groups according

to the temporal density by selecting two breakpoints. Select the first breakpoint from

the upper row, and select the second breakpoint from the lower row. You may rehear

any sound, and readjust your selection. When you are satisfied with your choices, press

the “Next” button to proceed to the next section.
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Figure 3.4: Graphical user interface for the density categorization experiment

3.5.3 Analysis

The NED values of the reported breakpoints are shown in figure 3.5 along with the mean NED

and 95% confidence intervals for each of the experiment sections. The subject responses are seen

to cluster around an NED of 0.3 for the first breakpoint, and an NED of about 0.7 for the second

breakpoint irrespective of the stimulus bandwidth.

Mean breakpoint values were also computed for each of the sections in terms of the absolute

echo density (AED). These and the mean NED values appear in table 3.5.2 and are plotted in figure

3.6. Figure 3.6 also shows the NED-AED pair associated with each of the static echo sequences

presented. The breakpoints are seen to occur at NED values across bandwidth, whereas they occur

at different AED values, roughly exponentially increasing with increasing bandwidth.
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Figure 3.5: Breakpoint 1 (top) and breakpoint 2 (bottom) separating three density regions along a
continuum of low to high static echo density across four kinds of bandwidths (1kHz, 2kHz, 5kHz,
and 10kHz). Response means and 95 % confidence intervals (.) are plotted to the right of individual
subject responses (o).

Figure 3.6: Mean of perceived density breakpoints (o,*) for echo patterns (.) having static echo
densities and bandwidths of 1, 2, 5, and 10 kHz (left to right).

3.6 Experiment 5: Density Matching

3.6.1 Method

Participants

Ten normal-hearing participants, musicians, recording engineers, and staff from the Department of

Music and Sound at the Banff Centre volunteered for the experiment.
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texture echo bandwidth (kHz)
units

breakpoint 1 2 5 10

1 0.21 0.33 0.34 0.31
NED

2 0.66 0.71 0.69 0.66

1 182 717 1884 2496
AED

2 1595 4007 8468 12670

Table 3.1: Mean of perceived density breakpoints across echo bandwidths, expressed in normalized
echo density and absolute echo density (echoes/second).

Stimuli

Four sets of echo patterns having 17 different static echo densities (NED = 0.1, 0.15, ..., 0.90) were

generated with each set having a different echo bandwidth (1 kHz, 2 kHz, 5 kHz, and 10 kHz). The

density of the stimuli was varied so that granularity ranged from sparse to smooth, while other

factors such as duration, loudness, and bandwidth, were kept constant. In addition, three echo

patterns of bandwidth 3.16 kHz and NED = 0.25, 0.5, 0.75 were used as reference echo patterns.

Procedure

The experiment had 12 sections (three reference patterns, for each of four test sets). Within

a section, pairs of the reference sound and one of the seventeen test sounds were prepared and

presented with icons on the computer display. Participants were asked to listen to reference/sound

pairs thoroughly as many times as they desired and to select one of the nineteen test sounds which

had the most similar perceived density.

The figure 3.7 provides the screen snapshot of the graphical interface for the experiment. The

following is the instruction given to the participants before starting an experiment.

There are 12 sections in Part 3. In each section, you will see a set of numbered square

buttons, associated round buttons underneath, “Sequence up”, “Sequence down”, and

“Next” buttons. By pressing a square button, you will hear a pair of a reference sound

followed by that button’s test sound. By pressing the “Sequence up” button, you hear

all the pairs in sequence, and by pressing the “Sequence down” button, you hear the

sequence in the reverse order. The reference sound, played first, is the same for all

pairs of sounds in the section; the test sound, played second, is varied. Your task is to
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Figure 3.7: Density matching experiment graphical user interface.

explore the presented pairs of sounds, and determine which pair has the most similar

temporal density. Select the pair by pressing the associated round button. You may

rehear the pairs, and readjust your selection. When you are satisfied with your choice,

press “Next” button to proceed to the next section.

3.6.2 Analysis

NED values of the static echo patterns perceived to match the density of a 3.16 kHz-bandwidth

reference pattern are shown in figure 3.8 for each of three reference pattern NEDs. The correspond-

ing mean NED and mean AED values appear in Table 2. The mean matching NED values are all

close to the reference NED values, indicating that NED is insensitive to bandwidth as a predictor of

perceived density. By contrast, AED produces bandwidth-dependent equal density contours taking

on an exponential curve.
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echo bandwidth (kHz)
units ref

1 2 3.16 5 10

1 0.34 0.25 0.25 0.26 0.21
NED 2 0.51 0.43 0.50 0.39 0.38

3 0.77 0.78 0.75 0.71 0.58

1 423 508 794 1511 1667
AED 2 897 1212 2512 2689 5911

3 3617 6219 7943 11859 11122

Table 3.2: Mean of perceptually matching density across echo bandwidths to three reference patterns
having an echo bandwidth of 3.16 kHz, expressed in normalized echo density and absolute echo
density (echoes/second).

3.7 Discussion

In this chapter I discussed the perception of density. In the attempt of establishing a perceptually

valid model of density. I determined normalized echo density (NED) is a potentially good model

for representing density perception and reported three experiments on its relation to the human

perception of noise-like stimuli with various densities.

The first experiment examined the linear relationship between the perceived dissimilarity of

density and the metrical difference of NED. Regardless of the bandwidth of the noise-like stimuli,

the absolute difference in NED showed a strong correlation to the perceived dissimilarity with R2

of 93% on average.

The second experiment on density categorization and the third experiment on density matching

showed that NED can represent the density perception in a consistent and robust manner across

bandwidths–static noise-like stimuli having similar NED values are close in perceived density re-

gardless of their bandwidth.

With these experiments NED showed a strong linear correlation to human perception of density,

along with robustness in estimating the perceived density across various bandwidths demonstrating

that NED is a promising model for density perception.

Some interesting questions remain as future work. For example, re-analysis of the experimental

data by Kurtosis-based methods can provide a good comparison with NED-based analysis reported

here. Another possibility is to explore the capability of NED: In this work, we tested only the

noise-like stimuli, but could we analyze a mixture of sinusoids and stochastic portions with NED?

Unlike Kurtosis analysis NED does not operate on the derivatives but solely on the outlier detection,
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Figure 3.8: Static echo pattern NEDs most similar to a reference static echo pattern having NED
of 0.25, 0.5, or 0.75 (top to bottom). Response means and 95 % confidence intervals (.) are plotted
to the right of individual subject responses (o). The associated reference NED is represented by a
dotted line.

which means it could be robustly used for a mixture of sinusoids and stochastic portions, like many

naturally occurring sounds.

Furthermore, in this experiment, we tested only the stochastic noise-like stimuli, which con-

stitutes a subset of the whole density characteristic defined as “the fluctuation of instantaneous

intensity.” For example, if this characteristic were to exhibit some periodicity, its perception could

be quite different from what is reported in this chapter requiring another framework or series of

experiments. Perception of phase effect or perceived difference delivered by differences in the wave-

form may also fall into this class.



Chapter 4

Conclusion

In the attempt to establish a versatile, robust, and durable model of timbre perception I proposed

a framework to describe sound in terms of its sound color and density. Sound color represents the

spectral attribute of sound, whereas density represents its fine-scale temporal attribute. Seeking a

quantitative and perceptually valid metric for each attribute I conducted a series of psychoacoustic

experiments to validate the hypothetical metrics. Mel-frequency cepstrum coefficients (MFCC) and

normalized echo density (NED) exhibited good linear correlation to subjective judgments of sound

color and density, respectively.

4.1 Modeling Sound Color

Based on desirable properties for a perceptual model for sound color (linearity, orthogonality, and

multidimensionality) I proposed to model sound color perception with Mel-frequency cepstral co-

efficients (MFCC).

The first experiment tested the single-dimensional continuum of the twelve MFCC and per-

ception of sound color. Complex synthetic sounds were generated with each MFCC individually

varied while the other MFCC were held constant. For each MFCC, the subjective judgments of

sound color difference fit well to a linear response model. Moreover, the statistics for all twelve

MFCC were similar (average correlation of 85%) suggesting that each MFCC contains perceptually

important information.

In the second experiment, two MFCC were varied simultaneously to examine perceptual rel-

evance over a more complex sound color subspace. In total, five MFCC pairs were tested. The

theoretical difference between sounds was taken as the Euclidean distance between their MFCC

coordinates, and in all five cases showed a good linear fit to the subjective perceived differences

50
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(average correlation of 74%). Thus, the MFCC model appears to be a good match to human sound

color perception even as we move to more complex spectral shapes. The regression coefficients did

suggest, however, that the lower-order Mel-cepstrum coefficients may be more important in human

perception than the higher-order coefficients.

To summarize, both of the experiments consistently showed that the MFCC model provides a

linear and orthogonal coordinate space for human perception of sound color. Such a representation

can be useful not only in analyzing audio signals, but also in implementing timbre in synthesized

sounds. Further explorations on multidimensional sound color space remains as a future work.

4.2 Investigating Density

As a potential representation for density perception I introduced the normalized echo density

(NED), which can represent the perceived density of noise-like sounds (i.e. irregular and aperi-

odic sequence of impulses) regardless of its bandwidths (i.e. sound color). These characteristics

seemed promising to satisfy the desirable property for a density perception model, which ideally

provides the linear mapping between the density metric and the perceived quality while being

agnostic to sound color. Therefore, three experiments were conducted in order to investigate the

perceptual implications of NED. We synthesized static noise-like stimuli with various density values,

and collected the subjective judgments on them.

The first experiment tested the linear mapping between the perceived dissimilarity of density

and the metrical difference of NED. Regardless of the sound color of the noise-like stimuli, the

absolute difference in NED showed a strong correlation to the perceived dissimilarity with R2 of

93% on average.

The second experiment on density categorization and the third experiment on density matching

showed that NED could represent the density perception in a consistent and robust manner across

bandwidths–static noise-like stimuli having similar NED values were perceived as similar regardless

of their bandwidth.

Overall, NED showed a strong linear correlation to human perception of density, along with

robustness in estimating the perceived density across various bandwidths, demonstrating that NED

is a promising model for density perception. For future work, it will be interesting to study the

perceived quality of the mixture of periodic and aperiodic signals.
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4.3 Color of Noises, Density of Sinusoids

I used periodic sounds for sound color experiments, and aperiodic sounds for density experiments.

It does not mean that density is stochastic or sound color is harmonic. There are noises in dif-

ferent colors (e.g. bandwidths) and sinusoids in various densities (periodic sounds with different

waveforms, including phase effect). Testing color of noises or density of sinusoids using MFCC and

NED would be a very interesting experiment. I am also curious to test the perceived quality of a

mixture of sinusoids and noise using MFCC and NED.

4.4 Leading to Trajectory

In the end, I would like to introduce yet another attribute, trajectory. Trajectory refers to the

dynamic transition of sound color and density within sound, the time-varying attribute at a larger

scale. My investigation of trajectory has not really started yet, but I refer to these prominent works

in the domain of trajectory, hoping for a greater progress in the future [Pollard and Jansson1982,

McAdams et al.1995, Risset and Wessel1998, Horner et al.2006, Hall and Beauchamp2009] in addi-

tion to our preliminary study on the perception of reverberation impulse response with a dynami-

cally changing NED profile [Terasawa et al.2008, Huang et al.2008].

Most importantly, trajectory takes a crucial role in establishing a sense of auditory grouping

and streaming. In auditory scene analysis [Bregman2001] common fate or continuity over time (i.e.

how elements of sound are organized in time) helps us to perceive the elements of a sound as a

whole, and a sonic scene as a whole made out of many sounds. The concept of sound color, density,

and trajectory may help the systematic experimentation on auditory scene analysis in the future.
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