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ABSTRACT 
We describe a perceptual space for timbre, define an objec-
tive metric that takes into account perceptual orthogonality 
and measure the quality of timbre interpolation. We discuss 
two timbre representations and using these two representa-
tions, measure perceived relationships between pairs of 
sounds on a equivalent range of timbre variety. We deter-
mine that a timbre space based on Mel-frequency cepstral 
coefficients (MFCC) is a good model for a perceptual tim-
bre space.  
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INTRODUCTION 
Timbre is a key distinguishing feature in the identification, 
characterization and classification of acoustic signals be 
they musical, speech or environmental. Paradoxically, this 
characterization is independent of pitch, loudness and spa-
tial orientation yet incorporative of these attributes. This 
paradox lies in the ability to comparatively regard com-
monalities of spectra autonomous of pitch, yet the inherent 
role that the integration of all other characteristic aspects of 
sound play in the time-variant factors such as modulation, 
beating, phase, attack/decay transient, and so on.  

Timbre plays a particularly salient role in music per-
ception often assuming a structural function by demarcat-
ing segmentation boundaries or delineating patterns. How-
ever there is no consistent and principled means of predict-
ing the quality of timbre. Descriptions of timbre are often  
adjectival and self-referential (for example, describing a 
bowed sul-tasto violin as  ‘flautando’, an oboe sound as 
‘nasal’, etc.). Existing perceptual models of timbre are not 

quantifiable.  
Our goal is to find a computationally viable model or 

representation of timbre that is isomorphic with human 
perception. In this paper we describe a quantitative causal-
ity between the percept of timbre and spectral shape and 
develop a parsimonious model for timbre space based upon 
this causal relationship. 

Timbre descriptions 
The descriptive and impressionistic nature of existing 

timbre descriptions (Hajda, Kendall, Carterette, & 
Harshberger, 1997), (Krumhansl, 1989) pose an obvious 
limitation in a music theoretic approach to timbre. Lacking 
a Euclidean measurement of distance between two timbres, 
timbre can, at best, be described as a specific point within a 
multidimensional continuum, with that point defined by a 
combination of subjective perceptual and physical dimen-
sions. In this approach paired adjectival antonyms such as 
“bright—dull” or “sharp—not sharp” establish perceptual 
dimensions (Kendall & Carterette, 1993).   

An alternative representation of musical timbre is the 
tristimulus model (Pollard & Jansson, 1982). This two di-
mensional space describes harmonic sounds in terms of 
generalized weightings of harmonics in which three coeffi-
cients calculated according to Steven’s law, respectively 
represent the perceived strength of the fundamental, mid-
frequency partials and high-frequency partials. The princi-
ple benefit of the model is its simplicity resulting in a direct 
mapping of the coefficients to an adjectival description of 
percept. The approach, however, is limited by the inability 
to represent inharmonicity and a rather arbitrary delineation 
of the three frequency components. 

Timbre Distance 
Most quantitative approaches to timbre perception de-

scribe the distance between two sounds. Popular ap-
proaches are based on speech perception, speech recogni-
tion, and the perception of musical sounds. 

One of the earliest approaches to understand sound 
perception was undertaken by Harvey Fletcher and his col-
leagues at Bell Labs at the start of the 20th century. This 
work (Fletcher, 1934) measured subjects' ability to cor-
rectly recognize nonsense words in the presence of filtering 
and noise. It suggests that wide bands of frequencies pro-
vide independent information about the speech sounds that 
are heard. However this work only applies to speech, only 
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as part of a recognition task and lacks generalization to 
describe the underlying acoustic space of any sound. 

Speech recognition systems have had great success 
modeling the acoustic world using Gaussian mixture mod-
els (GMMs) to build a probabilistic model of the acoustic 
spectra that are likely to be found in each type of phoneme. 
By trial and error, and for statistical reasons, much of the 
speech-recognition research has settled on Mel-frequency 
cepstral coefficients (MFCC) as the underlying model of 
speech sounds (Davis & Mermelstein, 1980). While MFCC 
coefficients are loosely based on a simple model of audi-
tory perception, their primary benefit is that the different 
coefficients are statistically independent so GMMs with 
diagonal covariance can be used and an MFCC front-end 
produces a working speech recognizer. But MFCC's suc-
cess in speech recognition is not the same as proving that 
MFCCs are a good model of perception. 

An entirely new and quantitative approach to measur-
ing timbre perception started with the work of Wessel 
(Wessel, 1979), Grey (1975 and 1976) and the subsequent 
research (McAdams, Winsberg, Donnadieu, De Soete, & 
Krimphoff, 1995) (Lakatos, 2000).  It directly measured the 
distance between two musical sounds. By using multi-
dimensional scaling (MDS) the sounds can be represented 
in a low-dimensional surface (plane or 3-D cube) in such a 
way that the projected locations fit the observed perceptual 
data as closely as possible. There are two shortcomings 
with this approach. Most importantly, the axes produced by 
the MDS algorithm are not labeled. It is up to the imagina-
tion of the researcher to look at the position of the sounds, 
and generate an explanation of what each axis means (for 
example, sounds are duller/brighter along this direction.) 
Secondarily, while this approach is descriptive of the tested 
sounds, it does not help us estimate the percept of sounds 
which are not tested in the experiment, nor find a sound 
that has a needed distance from other sounds. For this we 
need to find and describe a timbre space that matches hu-
man perception. 

Desired Model for Timbre Space 
Perceptual maps exist in the auditory domain for pitch and 
loudness, as well and for spatial geometry color in the vis-
ual domain.  In each case, a relatively simple model con-
nects physical attributes (mel for pitch, sones for loudness, 
and the three cones of the visual system for color) with 
perceptual judgments. However, such a model does not yet 
exist for a perceptual timbre space.  

Bregman (2001) proposes that a timbre space have two 
properties; Psychological simplicity (that is as an inde-
pendent factor in scene analysis), and a straightforward 
physical definition. “What we need to do,” he writes, “is to 
develop descriptive terms for timbre, find ways to measure 
them, and do careful studies of how they affect perceptual 
grouping.”  

 
 

A timbre space should be both simple to understand 
and successfully predict discriminant human perception. 
Our goal is to create a perceptual space that articulates the 
physical attributes of a particular timbre with human per-
ception of that timbre. A good model of timbre perception 
describes a space of sounds with a number of simple prop-
erties and explanations. 

 This paper describes a three-stage approach for 
establishing a perceptual timbre map. The three steps 
include (1) postulating a metric for the quality of a 
perceptual space, (2) describing a mathematical 
representation of timbre, and (3) measuring the match 
between representation and perception. The sound 
representation that provides the simplest and most 
parsimonious description of timbre perception is the best 
model for timbre space.   

Framework of the Experiment 
Our test of perceptual parsimony considers linearity and 
orthogonality.  Linearity suggests that the representation 
can accurately generate sounds that are perceived as inter-
polated midway between the original sounds. Orthogonality 
dictates that changes in one parameter not affect the per-
ception of another parameter.  We measure both of these 
properties of a perceptual space by testing whether the per-
ceptual distance measurements satisfy the Euclidean rule 
for distance for a range of representation parameters. 

When considering the existing timbre studies, one is-
sue is that the time-variant (static) and time-invariant (dy-
namic) sounds are tested together. Although MDS studies 
revealed that the difference in spectral centroid contributes 
to timbral perception, we do not yet know the quantitative 
causality between the spectral shape of a static sound, and 
the percept of the timbre. Therefore, we believe, although it 
may seem conservative, we should start from articulating 
this quantifiable relationship, keeping the time-variant fac-
tors aside. These dynamic factors, which govern a signifi-
cant part in timbral perception, are yet indescribable with-
out having a perceptually orthogonal spectral shape repre-
sentation.  

In this paper we describe and compare two similar sig-
nal-processing representations of a sound in terms of their 
efficacy in meeting linearity and orthogonality.  We know 
that timbre is a multidimensional quantity and an important 
metric in this work is that the representation's axis be per-
ceptually orthogonal. This means that changes in one pa-
rameter do not affect perception of the other axis. 

Preliminary experiments (Terasawa, Slaney & Berger, 
2005a, b, c) have determined the MFCC to be a good 
representation for human perception of timbre for static 
sounds. These studies compared the MFCC representation 
to an alternative representation we named the linear 
frequency coefficients (LFC) representation. The LFC, 
detailed below shares the statistical properties of the MFCC 
representation but does not incorporate perceptual 
weightings. The LFC was used as a strawman in 
comparison with the MFCC. Both representations were 
determined to be better representations of timbre perception 
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tations of timbre perception than the tristimulus model 
(Terasawa et al., 2005c).   

In the previous experiment the stimuli samples used 
for the LFC and MFCC representations potentially covered 
unequal areas of perceptual space.  The experiment de-
scribed here aims to deal with this potential discrepancy. 
Since Taylor’s theorem suggests that the accuracy of a lin-
ear model is inversely proportional to the size of the neigh-
bor-hood represented, we force the ranges of timbres gen-
erated by the LFC to be smaller than that of the MFCC 
stimuli and, as previously done, compare the representa-
tions in terms of their efficacy in representing human per-
ception. 

REPRESENTATIONS OF TIMBRE 
Parameterization of Spectral Shapes 
There are a wide variety of audio representations with dif-
fering degrees of abstraction. While a spectrum forms a 
complete representation of the sound, its arbitrary complex-
ity makes a direct mapping to human perception difficult. 
MFCC is well known as a front-end for speech-recognition 
systems (Davis & Mermelstein, 1980). It uses a filterbank 
based on the human auditory system: spacing filters in fre-
quency based on the Mel-frequency scale to reshape and 
resample the frequency axis. A logarithm of each channel 
models loudness compression. Then a low-dimensional 
representation is computed using the discrete-cosine trans-
form (DCT) (Blinn 1993).  The DCT not only removes 
high-frequency ripples in the spectrum, but also serves to 
de-correlate the coefficients. However, this statistical prop-
erty is not the same as perceptual orthogonality.  Generally, 
based on speech-recognition engineering, a 13-D vector is 
used to describe speech sounds as a function of time. 

LFC is a strawman representation we designed to be 
similar in representational ability to MFCC.  We start with 
a linear-frequency scale and a linear amplitude scale. A 13-
dimensional DCT of the normal amplitude spectrum re-
duces the dimensionality of the spectral space and 
smoothes the spectrum. Both MFCC and LFC use a DCT to 
reduce the dimensionality and de-correlate the coefficients; 
their difference lies in the frequency and amplitude warp-
ing. 

In both representations, a static sound is described by a 
13-D vector that represents a smoothed version of the 
original spectrum. The coefficients are labeled as C and C', 
for MFCC and LFC respectively. The first coefficient from 
the vector, C0 or C'0, represents the average power in the 
signal (constant in the experiments in this paper), and 
higher-order coefficients represent spectral shapes with 
more ripples in the auditory frequency domain.  In a later 
section we show how to convert these 13-D representations 
into their equivalent spectra, and then back into sound. 

Synthesis Method 
In this study, we choose a 13-D vector and then synthesize 
sounds from these coefficients using the inverse transforms 

of LFC and MFCC.  In both representations much informa-
tion is lost, or equivalently, many different sounds will lead 
to equivalent coefficients.  At each step in the transforma-
tion we choose the simplest spectrum. 

We reconstruct the smooth spectrum by inverting the 
LFC and MFCC representations. For LFC, the recon-
structed spectrum 

! 

˜ S ( f )  is the IDCT of LFC vector C’i. For 
MFCC, we first compute the IDCT of the MFCC vector 

! 

˜ L 
i
= IDCT(C

i
) . Then raising ten to that power, 

! 

˜ F 
i
=10

˜ L 
i  is 

the reconstructed filterbank output for channel i. We then 
assume that 

! 

˜ F 
i
 represents the value at the center frequen-

cies of each channel, and render the reconstructed spectrum 

! 

˜ S ( f )  by linearly interpolating values between the center 
frequencies.  

Prepared MFCC Stimuli 
As it is difficult to fully explore a 13-D space, we first 
chose discrete pairs of coefficients from 2-D MFCC spaces, 
and measured our subject's perceptual judgments in these 2-
D spaces.  Arbitrary pairs were studied to give insight into 
how the representations behaved.  The four pairs studied 
are  [C3, C6], [C4, C6],  [C3, C4], and [C11, C12].  

When forming the two dimensional subspaces, two of 
the 13 coefficients are chosen as variables and set to non-
zero values, while the others kept constant. For example, 
the [Cm, Cn] space has the 13-D parameter vector of 

  

! 

C = [1,0,L,0,C
m
,0,L,0,C

n
,0,L,0]. (1) 

Cm and Cn are quantized and take one of the following 
four values, 

! 

C
m

= [0,M 3,2M 3,M] where M is the maxi-
mum value. Cn is varied over four discrete values in the 
same way as Cm, with the maximum value N. The parame-
ter vector C is interpreted as MFCC for resynthesis. Since 
we have four levels for each of dimensions Cm and Cn, we 
form a four by four grid in the 2-D space, resulting in a set 
of 16 stimuli samples with varying spectral shapes.  

Designing LFC Stimuli 
It is difficult to directly compare two different types of per-
ceptual spaces such as MFCC and LFC.  In general, the sets 
of sounds will be different and it is hard to ensure that one 
set of sounds covers no more of the perceptual space than 
the other.  To make this comparison, we generate sounds 
using the MFCC vectors, transform them into sounds using 
the inverse algorithm described in Section “Synthesis 
Method” and then reanalyze the resulting sound using LFC.  

Figure 1 (top) shows the case LFC-transformed MFCC 
space is bigger than the LFC parameter space. In this case, 
according to the Taylor's theorem, it is expected that LFC 
fits better to a linear model. If MFCC fits better to a linear 
model even in this case, it reinforces the probability of 
MFCC being a better representation of timbre.   
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Figure 1. Corresponding MFCC space and LFC space. 
Top: comparison of two spaces is considered legitimate 
when corresponding regions between the two representa-
tions overlap (MFCC space is transformed into LFC space.) 
Bottom: When the transformed MFCC space has much 
smaller region than LFC parameter space (dotted rectangu-
lar), LFC parameter space is rescaled to match with the size 
of LFC-transformed MFCC space (solid grid.) 

 
In our previous work, LFC and MFCC sounds covered 

very different regions. In that case, it is arguable that the 
good performance of MFCC timbre representation might 
have come from the fact it covered less timbral space than 
LFC. Therefore, this time, we want to do a very conserva-
tive test, which forces MFCC being bigger size than LFC 
by scaling it. This idea is shown as scaling solution in  Fig-
ure 1 (bottom). 

 In this work we transform one set of sounds, created 
on a grid in MFCC space, into the LFC space.  These 16 
MFCC sounds will not form a regular grid on a two-
dimensional plane in LFC space—they form a 2-D mani-
fold. For this reason, we use Principal Component Analysis 
to find the largest two-dimensional LFC space that de-
scribes the sounds, and ignore the other dimensions.  We 
then scale the LFC coefficients so that they are no bigger 
than the transformed MFCC dimensions, as shown in Fig-
ure 1 (bottom).  This is a very conservative test—we have 
thrown out many dimensions of variations, so that we can 
guarantee that the LFC space is no bigger than MFCC.  

 

 
Figure 2. Eigenvectors of PCA—LFC-transformed MFCC 
[C3, C6] stimuli. The first two eigenvectors are plotted with 
their eigenvalues in the legend. It is visible that LFC C'2 
and C'4 deliver most of the energy. These two dimensions 
are chosen to form a corresponding 2-D LFC space. 
 

For a fairest comparison, we want to find a 2-D LFC 
space that is smaller, in a perceptual space, than the corre-
sponding MFCC space. We do this in three steps. First we 
represent the test MFCC sounds with the LFC algorithm. 
Second, we find the two LFC dimensions that have the 
greatest variation. Third, we select and scale these two LFC 
dimensions so that the maximum extent is equivalent to the 
maximum extent of the LFC-transformed MFCC sounds. 

The MFCC stimuli sounds are analyzed with the LFC 
algorithm, providing LFC vector C''. After analyzing all the 
16 MFCC stimuli samples, we operate a principal compo-
nent analysis on 16 LFC vectors C''.  

The procedures of a principal component analysis are 
as follows (Duda, Gart, & Stork, 2001). The 13-
dimensional mean vector and the 13 by 13 covariance ma-
trix are computed for the full data set of 16 vectors of 
length 13. The eigenvectors and the eigenvalues are com-
puted, and then sorted according to decreasing eigenvalues. 
Call these sorted eigenvectors e1 with eigenvalue 

! 

"
1
, e2 

with eigenvalue 

! 

"
2
, and so on. Our MFCC stimuli are re-

solved into two-dimensional LFC subspaces, having two 
large eigenvalues.  

We observe e1 in order to determine which coefficients 
of the LFC vector carry most of the energy, and choose two 
largest coefficients C''m and C''n from e1 in order to form a 
two-dimensional LFC space. Once we determine the di-
mensions, we go back to the C'' sample vectors and observe 
the coefficient with the largest deviation from zero out of 
16 samples, and define the parameter range M' and N' as 
follows.  
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Figure 3. An array of spectra generated for a 2-D range of 
MFCC coefficients. The column show C3 ranging from 0 to 
0.75, the rows show C6 ranging from 0 to 0.75. 
 
 

! 

" M = argmax " " C m
" " C 
m( )      (2) 

! 

" N = argmax " " C n
" " C 
n( )    (3) 

In the above equations, 

! 

" " C 
m

 and 

! 

" " C 
n
 consist 16 elements of 

C''m and C''n from 16 sample vectors of C''. In order to form 
a new four by four grid, M' and N' become the maximum 
values of new parameter space for the LFC stimuli in the 
[C'm, C'n] space. The parameter vector C' for LFC stimuli is 
defined in the same way as in Eq. (1), while C'm and C'n are 
varied over four discrete levels and the others are kept con-
stant. 

After designing this four by four parameter grid in 
LFC space, the parameter vector C' is interpreted as LFC 
for resynthesis, resulting in comparable 16 LFC stimuli 
sounds. Table 1 shows the tested pairs of MFCC and rele-
vant LFC stimuli, and the maximum values in coefficients.  
 
Table 1. Corresponding MFCC and LFC spaces for our test. 
The LFC spaces are designed to be no bigger than the cor-
responding MFCC space. 

MFCC LFC 
[Cm, Cn] [M, N] [C'm, C'n] [M', N'] 
[C3, C6] [0.75, 0.75] [C'2, C'4] [-0.20, 0.32] 
[C4, C6] [0.75, 0.75] [C'3, C'4] [-0.29, 0.17] 
[C3, C4] [0.75, 0.75] [C'2, C'3] [-0.20, -0.21] 
[C11, C12] [0.75, 0.75] [C'5, C'6] [-0.13, -0.12] 
 

 
Figure 4. An array of spectra generated for a 2-D range of 
LFC coefficients. The column shows C'2 ranging from 0 to 
-0.20, the rows show C'4 ranging from 0 to 0.32. 

 
Representation Comparison 
Any point in LFC or MFCC space is a sound. Figure 3 
shows an array of spectra as we vary the C3 and C6 compo-
nents of the vector, keeping all other coefficients but the C0 
component equal to zero. With both C3 and C6 coefficients 
set to zero, and 

! 

C
0

=1, the spectrum is flat. As the value of 
C3 increases, going down the columns, there is a growing 
bump in the spectrum at DC and in the mid-frequencies. As 
the value of C6 increases, going across rows, three bumps 
increase in size. Figure 4 shows an array of spectra for the 
corresponding LFC stimuli set that we test this time.  

Additive Synthesis 
The voice-like stimuli used in this study are synthesized 
from the spectrum derived by MFCC and LFC inversion 
using a source-filter model of speech.  The source is an 
impulse train with the desired pitch.  The filtering was im-
plemented using additive synthesis. The amplitude of each 
harmonic component is scaled based on the desired spectral 
shape. The pitch, or fundamental frequency, f0, is 220 Hz, 
the frequency of the vibrato v0 is 6 Hz, and the amplitude of 
the modulation V is 6%. The synthesized sound is   

! 

s = ˜ S n " f0( ) " sin 2#nf0t + V (1$ cos(2#nv0t)( )
n

%
(4) 

using the reconstructed spectral shape 

! 

˜ S ( f ) , with the har-
monics number n. 
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EXPERIMENT 
We measured the distance for several sets of timbre pa-
rameters by asking subjects for their subjective evaluation 
of the difference between two sounds in the prospective 
representation. 

A stimulus consisted of two sounds, where the first is a 
reference sound and the second is a trial sound, with no 
pause between the paired sounds. The reference sound was 
kept identical through the entire experiment. It has a flat 
spectrum; all the 13 coefficients are zero except C0 (i.e. 

! 

[C
m
,C

n
] = [0,0].) The second element of each pair, the trial 

sound, was varied in each presentation pair. 
For each of the ten sets of sounds we played five ex-

amples to help the subjects understand the types and range 
of sounds that appear on the main experiment. In the main 
experiment, a distance measurement is recorded after play-
ing a subject a pair of sounds. The subject was asked to rate 
the degree of similarity between pair elements on a scale of 
one to ten, where one is identical and ten is very different. 
The 16 stimuli in a set were presented to the subjects in a 
random order. 

Twelve students with ages between 20—35 years old   
participated in the experiment. The stimuli were presented 
to the subject using a headset in a quiet office environment.  

ANALYSIS METHOD  
There are two steps in the analysis procedures. In the first 
step, we fit the individual distance judgments to a simple 
Euclidean model. We compute the residual from the model 
to evaluate the performance of the representations (LFC 
and MFCC) on each subject. In the second step, we com-
puted the mean of the residuals and its standard error for 
each of ten sets in order to evaluate the representation. 

Individual Euclidean Model Fitting 
For a two-dimensional test as performed, the Euclidean 
model predicts the perceptual distance, d, which subjects 
reported in the experiment 

! 

d
2

= ax
2

+ by
2    (5) 

where x is one of the 13 coefficients (e.g. C3) and y is an-
other coefficient (e.g. C6). Note that this is a linear equation 
in the known quantities d2, x2 and y2. Multidimensional 
linear regression is used in order to test the fit of perceptual 
data to a Euclidean model. The estimation of the regression 
model is done by the least squares method, using the left 
inverse (pseudo-inverse) of the matrix, which guarantees 
the minimum-error linear estimate. The residual of the lin-
ear estimation is: 

! 

dres =
1

16
d " ˆ d 

x,y

#     (6) 

where 

! 

ˆ d  is the estimated distance by the linear regression 
model. 

 
Figure 5. Model residuals and standard errors comparing 
MFCC and LFC for four sets of corresponding subspaces  

 
Integrating the Individual Timbre Spaces  
Given the model residuals for individual subjects, the mean 
of the residuals is calculated for each representation  

! 

d 
res

=
1

N
d

res,i

i=1

N

"     (7) 

where N is the number of subjects. The standard error 

! 

"
Mean

 
is calculated as follows: 

! 

"
Mean

=
d

res,i
# d 

res

2

i=1

N

$
N

   (8) 

By comparing the mean of the residuals and the stan-
dard error of each representation, we decide which repre-
sentation is a better model of human perception.   

RESULTS 
Figure 5 compares LFC and MFCC in terms of each repre-
sentation's ability to model a human's perception of timbre 
space. Each adjacent LFC and MFCC subspaces, e.g. [C'2, 
C'4] and [C3, C6], [C'3, C'4] and [C4, C6], and so on, are the 
corresponding sets of sounds with relevant spectral 
changes. On average, either timbre space predicts the per-
ceptual judgment with a mean error of 1.32 point on a 10-
point scale. In all cases, the MFCC representation performs 
as a better model for timbre space perception than the LFC 
representation, although the difference between the first 
pair of subspaces  [C'2, C'4] and [C3, C6] is smaller than the 
other pairs.  

In this experiment, we designed LFC parameter space 
so that LFC perceptual space would have similar or more 
linearity than MFCC, as described in Section “Designing 
LFC Stimuli.” The timbral spaces covered by LFC stimuli 
are strictly constrained to be smaller than that of MFCC 
stimuli. As a result, the spectral deviations for the LFC 
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stimuli are smaller than MFCC parameter settings, provid-
ing an advantage to LFC stimuli. The LFC model covers 
smaller spectral region, and is more likely to behave line-
arly according to Taylor's theorem. Yet we observe that 
MFCC performs better than LFC with consistency and ro-
bustness, which suggests that MFCC is the better represen-
tation for human timbre perception. 

CONCLUSIONS 
In this paper we have articulated a set of criteria for evalu-
ating a timbre space, described two representations of tim-
bre, measured subject's perceptual distance judgments, and 
found that a model for timbre based on the MFCC repre-
sentation accounts for 66% of the perceptual variance. 

This result is interesting because we have shown ob-
jective criteria that describe the quality of a timbre space, 
and established that MFCC parameters are a good percep-
tual representation for static sounds. Previous work has 
demonstrated that MFCC (and other DCT-based models) 
produce representations that are statistically independent. 
This work suggests that the auditory system is organized 
around these statistical independences and that MFCC is a 
perceptually orthogonal space. The procedure described in 
this paper does not give a closed-form solution to the tim-
bre-space problem. All we can do is test a representation 
and see if it is parsimonious with perceptual judgments. 
This paper is the first step towards a complete model of 
timbre perception. 

In this work, we constrained LFC stimuli to have 
smaller deviation than MFCC, in order to insure the tested 
stimuli stay in a corresponding group of timbres. The pa-
rameter for the LFC was carefully constrained using a sta-
tistical approach so that LFC perceptual space is similarly, 
or even more likely, to be linear when compared to MFCC 
space. The experiment, however, proved that MFCC is still 
a better representation, which is orthogonal to our percep-
tion, even in this disadvantageous experiment condition for 
MFCC.  

Most importantly, the timbre representations we tested 
here are static; musical sounds are not. Many timbre mod-
els find that onset time, for example, is an important com-
ponent of timbre perception. But the criteria (linearity and 
orthogonality) we described here are important as we add 
features to the timbre space. 

Although we have not begun to understand the contex-
tual effects on timbre perception (Dennett, 1988) by ad-
dressing the underlying representational issues we hope 
that this will enable future research.  
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