// @title hw3-exampleScore.ck // @author Chris Chafe (cc@ccrma), Hongchan Choi (hongchan@ccrma) // @desc An example score file for homework 3, Music220a-2012 // @version chuck-1.3.1.3 / ma-0.2.2c // @revision 1 // pick a physical model synth, send to left chan (0) Shakers physmod => dac.left; // bring in a mono .wav file from which to play sample // pass through Envelope to avoid clicks from SndBuf // to right chan (1) SndBuf sampler => Envelope samplerEnv => dac.right; // creating a SndBuf object called 'Sampler', sending it to an Envelope Object called 'samplerEnv' and sending it to the Right Channel me.sourceDir() + "/sample.wav" => string _file; // creating a string concatenating '/sample.wav' with the source file, which me.sourceDir() collects for you _file => sampler.read; // you are sending the sample '_file' to the SndBuf you created called 'sampler', and asking the program to read it cherr <= "[score] SndBuf: " <= _file <= IO.newline(); // 10::ms => samplerEnv.duration; //when it plays the sample the envelop duration is ten milliseconds // write signals to files dac.left => WvOut physmodOut => blackhole; //left channel sends audio called physmodOut out to blackhole (the sample sucker) dac.right => WvOut samplerOut => blackhole; //right channel sends audio called samplerOut out to blackhole (the sample sucker) me.sourceDir() + "/phys.wav" => string _captureP; //creating the phys.wav and telling it where to go in the directory me.sourceDir() + "/samp.wav" => string _captureS; //creating the samp.wav and telling it where to go in the directory _captureP => physmodOut.wavFilename; _captureS => samplerOut.wavFilename; // ------------------------------------------------------------ // three algorithms which generate numbers in range -1.0 to 1.0 // see 1) logisticMapNotes.ck 2) logisticMapNotesOSC.ck for // more info fun float logistic(float x, float r) { return r * x * (1.0 - x); } // see 1) psuedoRandomNotes.ck 2) psuedoRandomNotesOSC.ck for // more info fun float random(float r) { if (r > 1.0) { 1.0 => r; } // get a random value return Math.random2f(-r, r); } // see 1) sinNotes.ck 2) sinNotesOSC.ck fun float sinusoid(float r) { // rate in radians at 1 sec period 2 * pi => float sinScale; // convert to desired rate in radians if (r > 0.0) r /=> sinScale; // current time in seconds now / second => float nowInSeconds; // convert to phase angle using rate in radians nowInSeconds * sinScale => float currentPhase; // or could be another trig function return Math.sin(currentPhase); } // ------------------------------------------------------------ // tick the chosen algorithm to get a new value fun float algorithm(float state, string type, float r) { if (type == "logistic") { // choose me to iterate the map and hear logistic map "tune" return logistic(state, r); } else if (type == "random") { // choose me for random "tune" return random(r); } else if (type == "sinusoid") { // choose me for sin function "tune" return sinusoid(r); } else { cherr <= "[score] Unknown algorithm type.\n"; } } // sporkable function that plays physical model notes forever fun void pLoop(string type, float r) { 0.1 => float state; while (true) { // frequency.. // note: Math.randomf() returns value between 0 and 1 if( Math.randomf() > 0.625 ) { Math.random2( 0, 22 ) => physmod.which; Std.mtof( Math.random2f( 0.0, 128.0 ) ) => physmod.freq; Math.random2f( 0, 128 ) => physmod.objects; <<< "instrument #:", physmod.which(), physmod.freq(), physmod.objects() >>>; } // shake it! Math.random2f( 0.8, 1.3 ) => physmod.noteOn; // OPTIONAL -------------------------------------- // add any other Clarinet parameters // .reed - reed stiffness [0.0 - 1.0] // .noiseGain - noise component gain [0.0 - 1.0] // .clear - clear instrument // .vibratoFreq - vibrato frequency(Hz) // .vibratoGain - vibrato gain [0.0 - 1.0] // .pressure - pressure/volume [0.0 - 1.0] // .rate - rate of attack (sec) 100::ms => now; } } // sporkable function that plays sampler notes forever fun void sLoop(string type, float r) { 0.1 => float state; while (true) { // turn off envelope in case it's already on samplerEnv.target(0.0); // a short rest 40::ms => now; algorithm(state, type, r) => state; sampler.length() => dur totalFile; // time in file to start playing sample from ((state + 1.0) * 0.5) * totalFile => dur start; // sample duration 125::ms => dur duration; // end time of sample start + duration => dur end; if (end > totalFile) { end - duration => start; } // start position in file in actual samples sampler.pos((start / samp) $ int); // ramp up the envelope samplerEnv.target(1.0); // OPTIONAL ---------------------------------------- // play around with // .rate - (float, READ/WRITE) set/get playback rate // relative to file's natural speed. Try the // range between [-1, 1] and experiment. duration => now; } } // ------------------------------------------------------------ // prepare the show Shred pShred; Shred sShred; // needed to stop both shreds gracefully fun void killShreds() { pShred.exit(); sShred.exit(); me.yield(); // note off physmod.noteOff(1.0); // turn off envelope samplerEnv.target(0.0); 10::ms => now; } // ------------------------------------------------------------ // start the show spork ~pLoop("logistic", 2.9) @=> pShred; // shaker played by logistic map frequencies 10::second => now; killShreds(); spork ~sLoop("random", 0.3) @=> sShred; // samples pulled randomly 5::second => now; killShreds(); spork ~pLoop("sinusoid", 5.0) @=> pShred; spork ~sLoop("sinusoid", 5.0) @=> sShred; 20::second => now; killShreds(); // ------------------------------------------------------------ // finish the show physmodOut.closeFile(); samplerOut.closeFile(); // print message in terminal for sox command cherr <= "[score] Finished. Merge two products with the command below.\n"; cherr <= "sox -M " <= _captureP <= " " <= _captureS <= " "; cherr <= me.sourceDir() + "/Milestone.wav";