
WebChucK: Computer Music Programming on the Web

Michael R. Mulshine
CCRMA, Stanford University
Stanford, CA, United States

mulshine@ccrma.stanford.edu

Ge Wang
CCRMA, Stanford University
Stanford, CA, United States

ge@ccrma.stanford.edu

Jack Atherton
CCRMA, Stanford University
Stanford, CA, United States

lja@ccrma.stanford.edu

Chris Chafe
CCRMA, Stanford University
Stanford, CA, United States

cc@ccrma.stanford.edu

Terry Feng
CCRMA, Stanford University
Stanford, CA, United States
tzfeng@ccrma.stanford.edu

Celeste Betancur
CCRMA, Stanford University
Stanford, CA, United States
celes@ccrma.stanford.edu

Figure 1: From left to right: WebChucK IDE, A browser-based "wind machine," controlling ChucK from
Javascript code, web-hosted virtual instruments written in ChucK.

ABSTRACT

WebChucK is ChucK—a strongly-timed computer music pro-
gramming language—running on the web. Recent advance-
ments in browser technology (including WebAssembly and
the Web Audio API’s AudioWorklet interface) have en-
abled languages written in C/C++ (like ChucK) to run in
web browsers with nearly native-code performance. Early
adopters have explored the many practical and creative
possibilities that WebChucK enables, ranging from a We-
bChucK integrated development environment to interactive
browser-based audiovisual experiences. WebChucK has also
been adopted as the programming platform in an introduc-
tory computer music course at Stanford University. Im-
portantly, by running in any browser, WebChucK broad-
ens and simplifies access to computer music programming,
opening the door for new users and creative workflows. In
this paper, we discuss WebChucK and its applications to
date, explain how the tool was designed and implemented,
and evaluate the unique affordances of combining computer
music programming with a web development workflow.

WebChucK portal:
https://chuck.stanford.edu/webchuck/

Licensed under a Creative Commons Attribution
4.0 International License (CC BY 4.0). Copyright
remains with the author(s).

NIME’23, 31 May–2 June, 2023, Mexico City, Mexico.

Author Keywords

WebChucK, ChucK, audio programming, web programming,
web audio, browser IDE, accessibility

CCS Concepts

•Applied computing → Sound and music comput-
ing; •Information systems → Web interfaces; •Human-
centered computing → Systems and tools for interaction
design;

1. WHAT IS WEBCHUCK?
Computer music programming languages began on main-
frame computers and evolved their way into desktops, lap-
tops, mobile phones, and more. But until recently, fully-
programmable audio synthesis on the web was not feasible,
primarily due to limitations of the web platform. Browsers
have not been powerful enough to tackle high CPU-load
tasks like digital signal processing and other low-level audio
code (often written in C/C++, which browsers don’t na-
tively support). On top of this, lack of cross-compatibility
between browsers has limited the scope and potential im-
pact of web-based audio development.

Fortunately, advancements and widespread adoption of
key features of the Web Audio API[10] (such as the Au-
dioWorklet1 interface) and other tools (like emscripten2,
which enable C/C++ libraries to be compiled into We-

1https://developer.mozilla.org/en-US/docs/Web/API/
AudioWorklet
2https://emscripten.org/

https://chuck.stanford.edu/webchuck/
https://developer.mozilla.org/en-US/docs/Web/API/AudioWorklet
https://developer.mozilla.org/en-US/docs/Web/API/AudioWorklet
https://emscripten.org/


bAssembly3 binaries) have opened a pathway for computer
music languages written in C and C++ to run on the web.[8][9][7]
Additionally, some intrepid exploration of what it means to
do audio programming on the web has led to the creation
of a slew of tools and web experiences.

With WebChucK, we merge the low-level control capabili-
ties and expressiveness of the computer music programming
language ChucK with the ease, accessibility, interactivity,
portability, and ubiquity offered by the web. Specifically,
this introduces several advantages:

1. WebChucK brings a fully-featured computer music
programming to the web, and along with it capa-
bilities such as unit generators, unit analyzers, audio
DSP, music interaction design tools

2. It combines the sample-synchronous, strongly-timed,
and concurrent features of the ChucK language with
the workflow and trappings (web pages, web GUIs,
high performance graphics, collaboration) of the web

3. Like other web-based programming tools, it broad-
ens the reach and accessibility of audio and highly-
synchronized audiovisual programming for educators,
artists, and audiences around the world

This paper will be most useful for users of ChucK, but
also highlights (via use-case examples) some of the key af-
fordances that audio programming on the web, in general,
may bring to the community. To learn more about ChucK,
get started on the ChucK website.4

1.1 A Brief History of WebChucK
The ChucK programming language [17] was initially re-
leased in 2003 [16], marking this year as the 20th anniver-
sary of ChucK. Over this period, ChucK has been used
in sound synthesis, instrument design, laptop orchestras,
mobile music apps, audiovisual and VR design, generative
music systems, and many more artistic, educational, and
research contexts. The defining features of ChucK are:

• A sample-precise unified timing mechanism for multi-
rate event and control processing. This strongly-timed
property of the language effectively removes the dis-
tinction between audio and control rate traditionally
found in languages such as CSound, Max/MSP, and
SuperCollider.

• A simple but powerful concurrent programming model
based on time—allowing for audio programs to be ex-
pressed precisely and in parallel.

• A live coding environment (and way of thinking) that
supports rapid experimentation, teaching/learning, and
performance.

ChucK was designed with the idea that the form of a
tool shapes the way we think [15]. ChucK exists in var-
ious forms including command-line chuck, miniAudicle (a
graphical IDE; [13]), ChiP (ChucK on the iPhone; [14]),
FaucK (ChucK in FAUST; [18]), Chunity (ChucK in Unity;
[5]), and more recently, ChAI (ChucK for AI, in early de-
velopment) and WebChucK. The development of the latter
resulted from a collective effort:

• After a number of attempts by the ChucK community
to compile the C++ code base from ChucK to We-
bAssembly using emscripten, Jack Atherton, then a

3https://webassembly.org/
4https://chuck.stanford.edu/

Ph.D. candidate in Ge Wang’s Music, Computing, De-
sign research group, achieved this in 2020 and devised
the core functionality of WebChucK.

• Soon after, Mike Mulshine began creating web-based
audiovisual art, tutorials, and demos5 using WebChucK
and p5.js, and organized ambassadorial efforts to bring
WebChucK to new audiences.

• In 2022, Chris Chafe transitioned from using ChucK
to WebChucK as a teaching tool at Stanford Univer-
sity’s popular Music 220a course “The Foundations of
Computer-Generated Sound."6

• Terry Feng and Celeste Betancur developed the We-
bChucK IDE in 2022, and designed tools for real-time
visualization and code-based GUI-generation for the
IDE.

1.2 Using WebChucK
There are two general approaches to using WebChucK:

1. As a web-based programming tool for sound de-
sign, interaction design, composition, and teaching

2. As a component in larger web-based artworks, tools,
and games.

Figure 2: The WebChucK IDE running some 808
kick synthesis.

Using ChucK as a web-based programming tool en-
tails simply navigating to the dedicated WebChucK IDE7,
pictured in Figure 2), and writing ChucK code. The IDE
provides the ability to perform typical ChucK-environment
actions like starting the virtual machine, adding and remov-
ing ChucK shreds, and printing to the ChucK console. This
form factor is friendly to students, creative prototypers, and
anyone wishing to “jump in” and start coding without in-
stalling any software. An activity monitor displays all cur-
rently running shreds and enables users to selectively add
or remove them from the virtual machine. Audio and other
data files can be loaded into WebChucK for use from code.

The second approach, using WebChucK as a component
within a larger web-based project, involves embedding the
ChucK WebAssembly (Wasm) module and JavaScript inter-
face. The latter provides a suite of “getter” and “setter”
methods to modify or retrieve global variables in ChucK
from a browser script, enabling a two-way workflow in which
web page elements can both control or be controlled by
5https://mikemulshine.com/webchuck-demo/
6https://ccrma.stanford.edu/courses/220a/
7https://chuck.stanford.edu/webchuck/

https://webassembly.org/
https://chuck.stanford.edu/
https://mikemulshine.com/webchuck-demo/
https://ccrma.stanford.edu/courses/220a/
https://chuck.stanford.edu/webchuck/


ChucK code. For example, it is possible to control au-
dio synthesis parameters using GUI elements, mouse move-
ment, keyboard input, and MIDI controllers. Working in
tandem with JavaScript libraries (like p5.js or Three.js) and
other web UI development platforms, WebChucK supports
a tightly-synchronized audiovisual workflow for web-based
art and other creative applications. Lastly, it is impor-
tant to note that WebChucK runs entirely on the client-
side browser, requiring no backend server-side support other
than a static HTML web page.

1.3 Example Use Cases
To give a sense of WebChucK in action, here are some ex-
ample use cases:

1. Quick prototyping: anyone with a supported browser
can navigate to the online IDE

2. Sharing: Upon being asked to produce some wind
sound for the Stanford Symphony Orchestra’s perfor-
mance of Richard Strauss’s Don Quixote, Chris pro-
totyped a generative wind machine with a scrolling
interactive spectrogram with WebChucK and basic
HTML/JavaScript. He simply sent the link to the
Orchestra.8 For context, compare these two methods:

• Existing method of sharing ChucK code:
– “Here is a ChucK file..."
– “Go to this URL, download and install ChucK..."
– “Open miniAudicle, start Virtual Machine,

open the file, hit ’plus’ (or run it in a terminal
emulator)..."

– “If it doesn’t work, let us know!"9

• New method of sharing with WebChucK:
– "Here’s a URL."

3. Creating virtual instruments: Connect a MIDI
keyboard, and start playing immediately. Jack’s Tim-
bre Library10 for ChucK (hosted on the web) provides
several examples of web-based virtual synths in action.

4. Teaching: Students can start coding audio right away.
WebChucK removes much of the technical overhead
of operating systems, software installation, terminals,
GUIs, and audio interfaces.

5. Doing computer music in new ways: In our expe-
rience, WebChucK isn’t just a more portable version
of ChucK, but affords some new functionalities and
ways of working that didn’t exist or weren’t feasible
before. We describe some examples of this in Section
4.

To learn more about how to embed WebChucK in your
own web project, work through a few simple tutorials here:
https://chuck.stanford.edu/webchuck/tutorial/

2. RELATED WORK
Three primary approaches to programming with audio on
the web exist. The first approach involves embedding audio
on a web page via the HTML <audio> element. This enables
simple playback of audio files, triggered by user interaction
8https://ccrma.stanford.edu/~cc/windMachine/
9One could imagine a similar workflow for languages like
Max/MSP or SuperCollider.

10Timbre Library link: https://ccrma.stanford.edu/
~lja/timbre-library/

with UI elements like buttons or autoplay. Dynamic real-
time control of this audio is limited.

The second approach is to use and extend the Web Audio
API. The p5.js library has implemented their own JavaScript
wrapper around Web Audio called p5.sound11, which pro-
vides a set of easy-to-use audio playback, synthesis, and
analysis functions to web developers, like p5.SoundFile,
p5.Oscillator, p5.Envelope, and more. Three.js provides
an analogous tool in their Audio object, which primarily
provides functions to manipulate the playback of audio files.
Similarly, Tone.js12 extends the Web Audio API and offers
handy methods (e.g. via Tone.Transport) for dealing with
musical timing in JavaScript.

More advanced and musically-tailored web-based audio
platforms and live-coding languages have been developed by
extending the Web Audio API, including Tidal Cycles13 (a
live-coding tool for music generation developed in Haskell
and compiled into JavaScript[12]), Gibber14 (a live audio
programming language with a great depth of sound and mu-
sic generation capabilities and unique text-animated graph-
ical UI), CodeCircle[20] (shown to be a useful tool in pro-
totyping instruments on the web), Estuary[3] (a live-coding
platform that enables the simultaneous use of many live
coding languages at once, as an “ensemble"), and Strudel[4]
(an alternative to Tidal Cycles with an algorithmic compo-
sition focus). These useful and expressive tools each offer
unique affordances for programming audio in a web-based
IDE, live coding and performance, and audio development
projects. Built in JavaScript around the Web Audio API,
they make audio control more accessible for web develop-
ers and artists, despite lacking some of the low-level au-
dio programming control (e.g. sample-by-sample synthesis)
and flexibility of a full-fledged computer music program-
ming languages like ChucK, Super Collider, Csound, and
others.

The third approach involves porting an entire computer
music language to the web using tools (e.g. emscripten) to
create a WebAssembly binary and run it via Web Audio’s
AudioWorklet interface[6]. ChucK is not the only computer
music programming language that now runs in this manner
in the browser. Others include the functional audio signal
processing language FAUST[1], with their custom IDE[2]
tailored for compiling and exporting FAUST code as audio
programs ready for use in a variety of other environments
(from iOS apps to firmware on microcontrollers like Teensy).
The Csound IDE[19]15 brings Barry Vercoe’s Csound to the
web as a user-friendly social audio programming environ-
ment. The graph-oriented live coding language (nicknamed
Glicol16) compiles desktop Glicol into WebAssembly run-
ning via the AudioWorklet interface and provides a sleek
and modern IDE. Additionally, there have been community
efforts bring SuperCollider and Pure Data 17 to the web.
The developers of ChucK are excited to join the fold in
bringing audio programming languages to the web.

3. DESIGN AND IMPLEMENTATION
At its core, WebChucK is ChucK running as a WebAssem-
bly binary in a AudioWorkletNode18, inheriting the ben-

11https://p5js.org/reference/#/libraries/p5.sound
12https://tonejs.github.io/
13https://tidalcycles.org/
14https://gibber.cc/
15https://ide.csound.com/
16https://glicol.org/
17https://github.com/sebpiq/WebPd
18https://developer.chrome.com/blog/
audio-worklet-design-pattern/

https://chuck.stanford.edu/webchuck/tutorial/
https://ccrma.stanford.edu/~cc/windMachine/
 https://ccrma.stanford.edu/~lja/timbre-library/
 https://ccrma.stanford.edu/~lja/timbre-library/
https://p5js.org/reference/##/libraries/p5.sound
https://tonejs.github.io/
https://tidalcycles.org/
https://gibber.cc/
https://ide.csound.com/
https://glicol.org/
https://github.com/sebpiq/WebPd
https://developer.chrome.com/blog/audio-worklet-design-pattern/
https://developer.chrome.com/blog/audio-worklet-design-pattern/


efits of WebAssembly’s high-performance virtual machine
as well as its managed container and fine-grained security
model. Compiled directly from the ChucK source (C/C++)
using emscripten, webchuck.wasm contains ChucK’s com-
piler, virtual machine, class libraries, unit generators, and
unit analyzers.

Next, an accompanying webchuck.js component provides
JavaScript bindings to approximately 50 entry points into
the C++ ChucK runtime as embedded in the Wasm module.
It also handles messages passed through the port message
interface between the browser thread and an AudioWorkletN-
ode. webchuck.js also defines the ChuckNode and Chuck-
SubNode classes, each of which extends Web Audio’s Au-
dioWorkletProcessor and manages the ChucK core from
within the AudioWorklet thread.

A WebChucK host (webchuck_host.js) provides helper
functions for starting the Web Audio environment, initial-
izing a ChucK instance within that environment as well as
messaging mechanisms. The host associates webchuck.js’s
ChuckNode to an AudioWorkletNode that can be modularly
connected to the audio routing graph in the browser’s audio
context (AudioContext). In general, this host serves as a
API for the ChucK runtime.

webchuck.wasm, webchuck.js, and some form of webchuck_-
host.js exist in all WebChucK projects; the latest released
version is made accessible online19. Embedding these com-
ponents makes it straightforward to do the following in a
web development context:

1. Write normal ChucK code, passed as strings or
files to the ChucK runtime. This enables the dynamic
addition of ChucK shreds during the lifetime of the
web page. Each shred has an ID enabling the removal
or replacement of shreds with some simple data man-
agement.

2. Communicate between ChucK and JavaScript.
Running ChucK on the browser can useful as a self-
contained audio engine, but further control and flexi-
bility is possible via a collection of “getter” and “set-
ter” methods that allow developers to modify vari-
ables or trigger events between ChucK and web-based
elements in real-time. This two-way communication
enables the creation of web pages with synchronized
and controllable audio and UI events (e.g., a slider on
a web page can directly control a synthesis parame-
ter in ChucK; meanwhile, precisely timed events in
ChucK can drive web-based graphics and visualiza-
tion).

3. Take advantage of familiar workflows. Audio,
MIDI, and other data files can be loaded into the
ChucK node for playback, sonification, or other cre-
ative uses. The WebChucK JavaScript API provides
a few simple methods for file data to be accessed from
within ChucK. Furthermore, a chuckPrint() method
pipes anything printed in ChucK code to the browser
console, for debugging and general output.

Preparing the ChucK code base for compilation to We-
bChucK involved some reworking of the source. While
the vast majority of ChucK functionality is present in We-
bChucK, at the time of this writing the following native
ChucK functionalities are selectively disabled:

• HID devices (keyboard, mouse, joystick)

• serial communication
19https://chuck.stanford.edu/webchuck/src/

• network communication (including Open Sound Con-
trol)

• OTF server (used to receive commands like “shred”
over the network)

• ChucK watchdog (detects possible time-less infinite
loops)

• ChucK shell (interactive prompt mode)

While these functionalities are currently not supported
in WebChucK itself, several of these (HID, serial, network
communication, OSC) can be implemented in JavaScript
and communicated to ChucK.

4. APPLICATIONS AND EVALUATION
We feel that an evaluation of a tool like WebChucK is most
meaningfully carried out by an examination of what people
have been able to build and do with it, considering both the
unique affordances and limitations encountered as result of
using the tool.

Many students and several artists have begun to explore
and demonstrate the varied uses of WebChucK. Chris Chafe
taught CCRMA’s popular “Introduction to Computer-Generated
Sound” course entirely with WebChucK in the fall quar-
ter of 2022. Student projects ranged from compositional
exercises in data sonification to full-fledged browser-based
instruments. Some notable student projects (pictured in
Figure 3) include:

1. Chauvet Cave Beep Ploc Symphony20, by Luna
Valentin: A data sonification project examining the ef-
fect of increased extreme weather phenomena on the
ecological balance of caves in France, previously in-
habited by our Paleolithic ancestors 36,000 years ago.

2. Image Sonifier21, by Cole Simmons: An image-to-
sound converter that uploads an image from the user,
retrieves various parameters like minimum and max-
imum hue and saturation, and sonifies the calculated
data with ChucK.

3. Barrel Synth: A Feedback-Based Browser In-
strument22, by Josh Mitchell: A unique virtual in-
strument taking influence from Tom Mudd’s Gutter
Synthesis algorithm[11]. A bank of sliders allows you
to control the gain (and, therefore, feedback) between
a set of chaotic duffing oscillators and modal resonators
routed to and from one another.

Figure 3: Left to right: Chauvet Cave Beep Ploc,
Image Sonifier, Barrel Synth: A Feedback-Based
Browser Instrument.

20https://ccrma.stanford.edu/~luna/220a/fp
21https://image-sonification.vercel.app/
22https://ccrma.stanford.edu/~jomitch/220a/fp

https://chuck.stanford.edu/webchuck/src/
https://ccrma.stanford.edu/~luna/220a/fp
https://image-sonification.vercel.app/
https://ccrma.stanford.edu/~jomitch/220a/fp


These projects all combined real-time audio generation
in ChucK with web-based UI elements like buttons, slid-
ers, graphs, images, and more, and can run in browser en-
vironments across platforms. Typically, ChucK develop-
ers need to go through a substantial process to incorpo-
rate ChucK natively in audiovisual environments such as
Unity, or set up an Open Sound Control pipeline between
ChucK code and graphics generated in another program
(C++, Processing, OpenFrameworks etc,). Instead, We-
bChucK places ChucK squarely in the world of WebAssem-
bly and web UI/UX, immediately making WebChucK pro-
grams compatible across operating systems. This allows
ChucK to be extended in web plugins, extensions, modules,
web games, or audiovisual creations, as the course projects
above demonstrate. Reflecting on his own experiences in
the same course, co-author Terry Feng23 notes that We-
bChucK is a “one size fits all" tool, specifically in the way
it unifies audio and visual development workflows into one
environment to serve a user base across many platforms.

Celeste Betancur24, an avid ChucK programmer and live-
coding performing artist, suggested that one of the core ad-
vantages of using ChucK on the web is in the powerful tim-
ing and scheduling workflow it enables. By contrast, using
JavaScript alone, the timing of events is achieved via func-
tions like setTimeout() and setInterval(), which delay
or perform the execution of a script at specific time inter-
vals. Similarly, the Web Audio API provides timing mech-
anisms that specify when a node starts or stops its pro-
cessing via the parent class AudioScheduledSourceNode’s
start([time]) and stop([time]) functions, or schedule
parameter automation via AudioParam’s setValueAtTime(),
linearRampToValueAtTime(), and other functions. These
methods require a rather clunky mode of development and
no granular control over timing and scheduling. ChucK,
on the other hand, provides sample-accurate control of how
time progresses on any number of threads (“shreds"). This
allows powerful schedulers and the ability to communicate
Events and variables to the browser-based UI (e.g., musi-
cal events in ChucK triggering graphical events on the web
page).

Celeste also reflects that WebChucK is a helpful tool
for prototyping live computer-music performance. One can
quickly trial creative ideas with ChucK code in the browser
without having to manage a desktop development workflow
(e.g., command line, audio settings, file systems etc.).

5. CONCLUSION AND FUTURE WORK

5.1 What have we learned so far?
WebChucK is a viable (and often fun) way to ChucK. There
are some limitations that come with the medium of web
browsers (e.g., network security, which so far has precluded
native networking features). At the same time, WebChucK
has added to the ecosystem in terms of what one can do
with ChucK and expanded who can work—and has access
to—the medium of programmable sound and music. We-
bChucK lets users code with ChucK on their favorite mod-
ern browsers, both on desktop platforms (macOS, Windows,
Linux) and on mobile phones (iOS and Android). It lever-
ages the sonic and musical affordances of ChucK with the
many features of the web, making possible new and more
accessible modes of audiovisual application development.

As discussed in Section 2.1, there exist many different
ways to ChucK. The choice of tools (WebChucK, command

23https://fenglyfe.com/
24https://www.celestebetancur.com/

line ChucK, miniAudicle, Chunity, etc.) depends on the
task at hand. In other words, WebChucK is not intended
to be a replacement for any existing tool, but rather an
expansion to the collective toolbox.

5.2 Future Work
Momentum favors the development of WebChucK at this
time, with ongoing efforts to ensure full-feature parity with
the ChucK on the desktop (e.g., including network commu-
nication like OSC, multichannel audio support, and variable
sample rate) and with miniAudicle and its varied IDE fea-
tures. Also, more tutorials are being created help users
incorporate ChucK into their web projects.25

A fully usable WebChucK IDE, similar to p5.js’s online
editor, has already been developed by Terry Feng, Celeste
Betancur, Mike Mulshine, and others. More work will be
done to improve the IDE, including implementing a caching
file system to organize full projects and enable users to re-
turn to all of their previous work between browser sessions.
An audiovisual IDE combining WebChucK and p5.js is also
in the works, opening the door for students and artists to
freely and easily prototype highly synchronized audiovisual
systems.

Modeled after Google Docs, Overleaf, or Jupyter Note-
book, the authors would like to develop a collaborative
online WebChucK editor (codenamed WebChucK Note-
book), to enable users to work on the same ChucK project
together simultaneously and remotely, embedding runnable
ChucK code inline with text and figures. This could be es-
pecially useful for educators teaching audio programming,
ChucK development teams, or artistic collaborators.

WebChucK will continue to be co-developed via its var-
ious uses in computer music courses and artistic applica-
tions. As more people adopt the web as an accessible creative-
computing medium, one might ponder:

How much Web could a WebChucK ChucK, if we all could
ChucK on the Web?

6. ACKNOWLEDGMENTS
The authors want to acknowledge and thank CCRMA (at
Stanford University) for supporting its students and re-
searchers who have contributed to the development of ChucK
and WebChucK over the years. Special appreciate goes to
the slew of web audio programmers, including especially
Hongchan Choi, for developing the AudioWorklet interface,
thus enabling ChucK and other computer music program-
ming languages (Csound, FAUST, Glicol) to run on the
web.

7. ETHICAL STANDARDS
WebChucK and Chuck has been developed with the support
of CCRMA’s departmental funding, curricular student re-
search, and volunteer contributions. The authors are aware
of no potential conflicts of interest. The students using
early-stage WebChucK were doing so to learn audio pro-
gramming in a curricular context and were never treated as
test subjects.

8. REFERENCES
[1] Faust, a functional programming language for sound

synthesis and audio processing.
https://faust.grame.fr/.

25https://chuck.stanford.edu/webchuck/tutorial/

https://fenglyfe.com/
https://www.celestebetancur.com/
https://faust.grame.fr/
https://chuck.stanford.edu/webchuck/tutorial/


[2] Faust, web-based functional sound sythesis
programming ide. https://faust.grame.fr/.

[3] Estuary 0.3: Collaborative audio-visual live coding
with a multilingual browser-based platform. Zenodo,
June 2022.

[4] Strudel: Algorithmic Patterns for the Web. Zenodo,
June 2022.

[5] J. Atherton and G. Wang. Chunity: Integrated
audiovisual programming in unity. In New Interfaces
for Musical Expression, pages 102–107. Virginia Tech,
June 2018.

[6] H. Choi. Audio worklet: The future of web audio. In
International Conference on Music and Computing,
2018.

[7] Q. Lan and A. R. Jensenius. Glicol: A graph-oriented
live coding language developed with rust,
webassembly and audioworklet. In Web Audio
Conference, 2021.

[8] V. Lazzarini, E. Costello, S. Yi, and J. Fitch. Csound
on the web. In Linux Audio Conference, 2014.

[9] S. Letz, S. Denoux, and Y. Orlarey. Faust audio dsp
language in the web. 2015.

[10] Mozilla. Web Audio API. https://developer.
mozilla.org/en-US/docs/Web/API/Web_Audio_API.

[11] T. Mudd. Gutter synthesis.
https://github.com/tommmmudd/guttersynthesis,
2018.

[12] C. Roberts and M. Pachon-Puentes. Bringing the
tidalcycles mini-notation to the browser. In Web
Audio Conference, 2019.

[13] S. Salazar, G. Wang, and P. R. Cook. miniaudicle and
chuck shell: New interfaces for chuck development
and performance. In International Computer Music
Conference, 2006.

[14] G. Wang. Ocarina: Designing the iPhone’s Magic
Flute. Computer Music Journal, 38(2):8–21, 06 2014.

[15] G. Wang. Artful Design: Technology in Search of the
Sublime. Stanford University Press, 2018.

[16] G. Wang and P. R. Cook. Chuck: A concurrent,
on-the-fly audio programming language. In
International Computer Music Conference, 2003.

[17] G. Wang, P. R. Cook, and S. Salazar. Chuck: A
strongly timed computer music language. Computer
Music Journal, 39(4):10–29, 2015.

[18] G. Wang and R. Michon. Fauck!! hybridizing the
faust and chuck audio programming languages. In
Sound and Music Computing, 2016.

[19] S. Yi, H. Sigurðsson, and E. Costello. Csound
web-ide. In Web Audio Conference, 2019.

[20] M. Zbyszynski, M. Grierson, and M. J. Yee-King.
Rapid prototyping of new instruments with codecircle.
In New Interfaces for Musical Expression, 2017.

https://faust.grame.fr/
https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API
https://developer.mozilla.org/en-US/docs/Web/API/Web_Audio_API
https://github.com/tommmmudd/guttersynthesis

	What is WebChucK?
	A Brief History of WebChucK
	Using WebChucK
	Example Use Cases

	Related Work
	Design and Implementation
	Applications and Evaluation
	Conclusion and Future Work
	What have we learned so far?
	Future Work

	Acknowledgments
	Ethical Standards
	References

