
ChucK: A Strongly Timed
Computer Music Language

Ge Wang,∗ Perry R. Cook,†

and Spencer Salazar∗
∗Center for Computer Research in Music
and Acoustics (CCRMA)
Stanford University
660 Lomita Drive, Stanford, California
94306, USA
{ge, spencer}@ccrma.stanford.edu
†Department of Computer Science
Princeton University
35 Olden Street, Princeton, New Jersey
08540, USA
prc@cs.princeton.edu

Abstract: ChucK is a programming language designed for computer music. It aims to be expressive and straightforward
to read and write with respect to time and concurrency, and to provide a platform for precise audio synthesis and analysis
and for rapid experimentation in computer music. In particular, ChucK defines the notion of a strongly timed audio
programming language, comprising a versatile time-based programming model that allows programmers to flexibly
and precisely control the flow of time in code and use the keyword now as a time-aware control construct, and gives
programmers the ability to use the timing mechanism to realize sample-accurate concurrent programming. Several
case studies are presented that illustrate the workings, properties, and personality of the language. We also discuss
applications of ChucK in laptop orchestras, computer music pedagogy, and mobile music instruments. Properties and
affordances of the language and its future directions are outlined.

What Is ChucK?

ChucK (Wang 2008) is a computer music program-
ming language. First released in 2003, it is designed
to support a wide array of real-time and interactive
tasks such as sound synthesis, physical modeling,
gesture mapping, algorithmic composition, sonifi-
cation, audio analysis, and live performance. The
language presents a single mechanism for precisely
manipulating and reasoning about time across dras-
tically different timescales, from individual samples
to musical events, and potentially much longer
durations. ChucK is the first computer music lan-
guage to introduce the concept of now as a central
timing construct, synchronously binding it to the
audio sample stream (via the now keyword), and
thereby affording a type of temporally deterministic,
sample-accurate programming model. Based on this
timing mechanism, ChucK also provides the ability
to write concurrent audio code with the same timing
assurances, internally synchronized by the timing
information. Together, this precise control over time
and the time-based concurrent programming model

Computer Music Journal, 39:4, pp. 10–29, Winter 2015
doi:10.1162/COMJ a 00324
c© 2015 Massachusetts Institute of Technology.

form the notion of a strongly timed computer music
programming language.

Two Observations about Audio Programming

Time is intimately connected with sound and is
central to how audio and music programs are created
and reasoned about. This may seem like an obvious
point—as sound and music are intrinsically time-
based phenomena—yet we feel that control over
time in programming languages is underrepresented
(or sometimes over-abstracted). Low-level languages
such as C/C++ and Java have no inherent notion
of time but allow custom data types to represent
time, which can be cumbersome to implement
and to use. High-level computer music languages
tend to abstract time too much, often embodying
a more declarative style and connecting elements
in a way that assumes quasi-parallel modules,
(e.g., similar to analog synthesizers) while hiding
much of the internal scheduling. Also, timing has
been traditionally broken up into two or more
distinct, internally maintained rates (e.g., audio
rate and control rate, the latter often arbitrarily
determined for the programmer with a single rate
maintained once the system begins execution). The
main problem with these existing programming

10 Computer Music Journal

models is that the programmer knows “what” but
does not always know “when,” and typically cannot
exert control beyond a fixed control rate, rendering
low-level timing difficult or even impossible (e.g.,
for granular synthesis or synthesis models with
precise feedback).

Second, sound and music often require the
simultaneity of many parallel processes. Thus it
stands to reason that a programming language for
music can fundamentally benefit from a concurrent
programming model that flexibly captures parallel
processes and their interactions. The ability to
program parallelism must be cognizant of time
and yet operate independently of time. In other
words, this functionality must be “orthogonal” to
time to provide the maximal degree of freedom and
expressiveness.

From these two observations, the ChucK in-
sight is to expose programmability and to provide
precise control over time (at all granularities), in
cooperation with a time-based concurrent program-
ming model. In particular, this entails making time
itself both computable and directly controllable
at any rate. Programmers specify the algorithm,
logic, or pattern, according to which computation
is performed in time, by embedding explicit tim-
ing information within the code. Based on this
framework, the language’s runtime system ensures
properties of determinism and precision between
the program and time. Furthermore, programmers
can specify concurrent code modules, each of which
can independently control its own computations
with respect to time and can be synchronized to
other modules via time and other synchronization
mechanisms.

A Simple ChucK Program

As an example, consider the program in Figure 1,
which creates a patch consisting of a sine-wave gen-
erator connected to the audio output (represented in
ChucK by the dac object), and changes the frequency
of oscillation randomly every 100 milliseconds.

In reading this (or any ChucK) code, it is often
helpful to follow the code sequentially and through
the various control structures (e.g., for and while

// Synthesis patch
SinOsc foo => dac;

// Infinite time loop
while(true)
{

// Randomly choose a frequency
Math.random2f(30, 1000) => foo.freq;
// Advance time
100::ms => now;

}

Figure 1. A simple program
that moves through time
and randomly chooses a
frequency every 100 msec.
The manner and rate of

moving through time is
precise, dynamic, and
completely up to the
programmer.

loops, if–else statements), and noting the point (or
points) at which “ChucK time” is advanced. For
example, line 2 instantiates a SinOsc (sine-wave
generator) called foo, and connects it to dac (an
abstraction for audio output). The program flow
enters the while loop on line 5, then randomly
chooses a frequency between 30 and 1,000 Hz for the
sine wave (line 8). The program advances time by 100
milliseconds on line 10, before returning to check
the loop conditional again on line 5. It is important
at this point to understand what really happens on
line 10. By chucking (a way to send values in ChucK)
the duration 100::ms to the special ChucK time
construct now, the program flow pauses and returns
control to the ChucK virtual machine and synthesis
engine, which generates audio for exactly (precisely,
to the nearest sample) 100 milliseconds, before
returning control back to our program. In this sense,
advancing time in ChucK is similar to a sleep()
functionality found in many languages, such as
C, C++, and Java. The difference is that ChucK
synchronously guarantees precision in logical time
(mapped to the nearest audio sample), allowing
one to specify versatile timing behaviors across the
system. Furthermore, the same method of reading
the code can be applied to complex ChucK programs,
to reason about the timing in a straightforward
way.

The Meaning of “Strongly Timed”

We define a strongly timed programming language
as one in which there is a well-defined, precise

Wang, Cook, and Salazar 11

(“sample-synchronous”), and predictable mecha-
nism for controlling time at various timescales
(temporal determinism) and across concurrent code
modules (time-mediated concurrency). ChucK con-
structs a view of logical time (realized through the
now keyword) that can be independent from “actual”
time. Via this system, programs can be designed and
specified without concern for external factors, such
as machine speed, portability, and timing behavior
across different systems, allowing one to more
easily specify, debug, and reason about programs.
Furthermore, this mechanism can be used to specify
deterministic concurrent behavior. Owing to this
model, ChucK appears to be unique in supporting
tightly interleaved control over audio computation,
allowing the programmer to move smoothly from
the domain of digital signal processing and audio
synthesis at the sample level to higher levels of mu-
sical and interactive control—directly in a single,
high-level language.

In ChucK, the programmer manipulates time via
the now construct (ChucK’s logical present time).
By setting the value of now to a future time, the
programmer can allow ChucK time to advance
accordingly. This is achieved precisely (control of
time is sample synchronous and is accurate to the
sample) and deterministically (the same code will
behave identically across different executions and
machines, free from underlying hardware timing
and nondeterministic scheduling in the operating
system). The programmer can make the extremely
useful assumption that they are coding in a type
of “suspended animation.” ChucK time does not
advance until explicitly instructed, and any code
sequence between time-altering instructions can be
deterministically mapped to a particular point on a
logical ChucK timeline. This provides a framework
to specify and reason about time, and naturally
establishes a strong temporal ordering of when code
executes.

More generally, we define logical time as the
deterministic accounting of time internal to an audio
environment (typically by counting audio samples),
and which—depending on the environment—may or
may not be exposed to the programmer. By contrast,
we think of actual time more as the continuous
flow of time as we experience it (system clocks

and timers track this). Logical time is a useful
construct because it is decoupled from actual time.
In real-time systems, logical time aims to keep up
with actual time while maintaining some notion
of determinism. (In non-real-time situations logical
time may run “as fast as possible”—which can be
faster or slower than actual time—e.g., we might
compute 60 logical seconds of audio in 1 second of
actual time.)

The second facet of strong timing relates to con-
current programming, which is an attractive asset
because it allows many complex interactions to
be refactored into independent sequential modules
with considerable versatility (Hoare 1978). Yet con-
currency can bring difficulties for the programmer
as well. For example, preemptive thread program-
ming must manage the indeterminism of scheduling
to avoid incorrect behavior (e.g., through the use
of locks, semaphores, and other synchronization
mechanisms); although nonpreemptive concurrency
is more predictable, it requires programmers to man-
ually yield the currently running module, which
can be cumbersome to write and suboptimal in
performance. Is it possible to design a solution that
keeps the benefits of concurrency and naturally
avoids the difficulties?

While this remains a difficult task in general,
ChucK’s solution directly takes advantage of its
domain-specificity: ChucK programmers already are
required to continually and explicitly deal with time
in order to work with sound, and this interaction can
be used to schedule concurrency in a predictable,
simple manner. (Advancing time in ChucK effec-
tively yields the current code, but we argue that
it is more natural for the programmer because the
focus is on time rather than context switching—
a user would advance for a single code module
the same as they would for concurrent modules.)
Communication and context switching between
concurrent blocks are efficient and logically precise,
and they uphold the sample-synchronous and deter-
ministic properties of ChucK’s timing mechanism.
Moreover, this can be achieved without losing gen-
erality in the language—low-level audio algorithms
(e.g., granular synthesis, formant wave functions,
physical models) can be directly implemented in
ChucK.

12 Computer Music Journal

Related Work

ChucK descends from the lineage of “Music N”
languages (starting with Music V, cf. Mathews 1969),
which also directly influenced computer music
programming environments such as CSound (Vercoe
1986), Common Lisp Music (Schottstaedt 1994),
Max/MSP (Puckette 1991), Pure Data (Puckette
1996), SuperCollider (McCartney 2002), and Nyquist
(Dannenberg 1997)—the last of these an interactive
computer music language based on Lisp (Touretzky
1984). While adopting familiar elements of audio
programming found in earlier Music N languages,
Nyquist (along with SuperCollider) is among the first
computer music languages to remove the distinction
between the “orchestra” (sound synthesis) and the
“score” (musical events)—both can be implemented
in the same framework. This tighter integration
allows both synthesis and musical entities to be
specified using a shared “mindset,” favoring the high
customizability of code over the ease and simplicity
of note lists.

Some music programming languages do not di-
rectly synthesize audio, but operate purely at a
higher symbolic level. Formula, short for Forth
Music Language, is a programming language for
computing control signals based on concurrent pro-
cesses operating in a unified runtime environment
(Anderson and Kuivila 1991). Various processes can
be specified to compute pitch sequences as well as
control for parameters such as volume, duration,
and articulation. Haskore is a set of modules in the
Haskell programming language created for express-
ing musical structures in a high-level declarative
style of functional programming (Hudak et al. 1996).
Like Formula, it is not a language for describing
sound synthesis, but primarily for music informa-
tion (in the case of Haskore, mostly Western music).

The inspiration from languages such as these,
as well as the core departures from them, form
the thesis for this article. For example, unlike any
synthesis language before it, ChucK’s timing mech-
anism inherently eliminates the traditional need
to deal with system-side control rate. Furthermore,
the aesthetics of the language itself favor a more
immediate, deterministic mindset for specifying
computer music programs.

ChucK is not the first to address this issue of
enabling low-level timing in a high-level audio
programming language. Music V, HMSL (Burk,
Polansky, and Rosenboom 1990), and Nyquist have
all embodied some form of sample-synchronous
programming model. Chronic (Brandt 2002), with its
temporal type constructors, was designed to make
arbitrary, sub-control-rate timing programmable for
synthesis. Although the mechanisms of Chronic are
very different from ChucK’s, one aim is the same: to
free programmers from having to implement “black-
box” unit generators in a lower-level language,
such as C/C++, when a new lower-level feature
is desired. In a sense, Chronic “zooms out” and
deals with time in a global, non-real-time way. On
the other hand, ChucK “zooms in” and operates
at specific points in time, in a “pathologically”
immediate manner. Another way to think of the
difference: in Chronic the time is “all times”; in
ChucK time is always instantly “now.”

The practice of enabling the programmer to op-
erate with an arbitrarily fine granularity is partially
derived from the Synthesis Tool Kit (STK; cf. Cook
and Scavone 1999), which exposes a manageable
programming interface for efficient single-sample
operations, while hiding the complexity of audio
input/output management.

In a high-level sense, the idea of concurrency in
ChucK is similar to the idea of mixing independent
“tracks” of audio samples in CMix (Lansky 1990) and
later RTCMix (http://rtcmix.org). Lansky’s original
idea was to provide a programming environment
where the composer can deal with and perfect
individual parts independently (Pope 1993). ChucK
extends this idea by allowing full programmability
for each concurrent code module.

On-the-Fly Programming Environments

ChucK’s 2003 release coincided with the rise of live
coding and influential packages such as JITLib (the
Just in Time Library) for SuperCollider (Collins et al.
2003). Indeed, on-the-fly programming, although
not the focus of this article, was a goal in the
creation of ChucK (Wang and Cook 2004a). In the
decade since, a number of new environments have

Wang, Cook, and Salazar 13

http://rtcmix.org

been developed to support programming either as
live performance practice or as a tool for rapid
prototyping. They include Sonic Pi and Overtone
(Aaron and Blackwell 2013), the latter using a
Clojure front-end language with SuperCollider as
the back-end synthesis engine; Gibber (Roberts et al.
2013), a browser-based environment for live coding
in pure JavaScript; Tidal (http://yaxu.org/tidal), a
mini-language for live coding embedded in Haskell;
as well as Extempore, the successor to Impromptu
(Sorenson 2005).

Extempore (Sorenson and Gardner 2010) takes on
live coding with a notion of a “cyber-physical pro-
gramming,” where a human programmer interacts
with a distributed real-time system procedurally by
writing and editing code on the fly. The syntax of Ex-
tempore is based on Scheme, and uses a just-in-time
compiled backend using LLVM (http://llvm.org) for
real-time audio synthesis. Extempore makes use
of temporal recursion, a design pattern in which
a function can schedule itself as its final action,
establishing a callback loop. A key distinction be-
tween Extempore and ChucK is that the former
uses an asynchronous “schedule and forget” style
of programming (i.e., events are scheduled to be
executed in the future while the current code eval-
uation proceeds without blocking), whereas ChucK
code is completely synchronous (i.e., the code waits
precisely until the desired timing is fulfilled). In
other words, whereas environments like Extempore
schedule events, ChucK code schedules itself. The
tradeoff is that while ChucK’s synchronous seman-
tics provide an elegant determinism in reasoning
about time, Extempore (like SuperCollider) favors
an asynchronous approach that more naturally facil-
itates nondeterministic distributed architectures.

Synchronous Reactive Systems

In addition to the realm of audio and music pro-
gramming, it is worthwhile to provide context for
this work with respect to synchronous languages for
reactive systems. A reactive system maintains an on-
going interaction with its environment, rather than
(or in addition to) producing a final value upon termi-
nation (Halbwachs 1993). Typical examples include

air traffic control systems and control kernels for
mechanical devices (such as wristwatches), trains,
and even nuclear power plants. These systems must
react to their environment at the environment’s
speed. They differ from transformational systems,
which emphasize data computation instead of the
ongoing interaction between systems and their
environments, and from interactive systems, which
influence and react to their environments at their
own rate (e.g., Web browsers).

In synchronous languages for reactive systems,
a synchrony hypothesis states that computations
happen infinitely fast, allowing events to be con-
sidered atomic and truly synchronous. This affords
a type of logical determinism that is an essential
aspect of a reactive system (which should pro-
duce the same output at the same points in time,
given the same input), and reconciles determinism
with the modularity and expressiveness of con-
currency. Such determinism can lead to programs
that are significantly easier to specify, debug, and
analyze compared with nondeterministic ones—for
example, those written in more “classical” concur-
rent languages. Several programming languages not
dealing specifically with audio have embodied this
synchrony hypothesis, including: Esterel, a textual
imperative language (Berry and Gonthier 1992);
Lustre, a declarative dataflow language for reactive
systems (Caspi et al. 1987); and SIGNAL, a dataflow
language for signal processing (Le Guernic et al.
1985).

ChucK embodies some elements of synchronous
languages, as there is an ongoing interaction be-
tween code and audio synthesis processes, although
this interaction is not strictly reactive. In ChucK,
computation is assumed to happen instantaneously
with respect to logical ChucK time, which can only
be advanced as explicitly requested and allowed by
the system. Hence, any code between instructions
to advance time can be considered atomic in time—
presumed to happen instantaneously at a single
point in time. This is a highly useful feature—the
programmer can depend on the language to map any
finite amount of computation to a specific point
in time. Existing synchronous languages empha-
size reaction, whereas ChucK’s design goals and
programming style are intended to be reactive as

14 Computer Music Journal

http://yaxu.org/tidal
http://llvm.org

well as proactive and interactive—code drives and
defines the environment in addition to responding
to it. (This is embodied in even simple programs
such as that in Figure 1.) The ChucK program-
ming model offers events and signals as well as
the ability to specify concurrent processes that
move themselves through logical time, to both
control and to define the system. This encourages a
fundamentally different, proactive mentality when
programming. Additionally, ChucK presents a visi-
ble and centralized view of logical time (via now) that
reconciles logical time with real time. This mecha-
nism deterministically couples and interleaves user
computation with audio computation, providing a
continuous notion of time mapped explicitly to the
audio synthesis stream.

Core Language Features

Motivated by these observations, we present core
elements that form the foundation of ChucK:

1. A unifying ChucK operator intended to
represent action and directionality.

2. A precise timing model that unifies high-
level and low-level timing and is straight-
forward to write as well as reason about
from code. This is the foundation of strongly
timed programming in ChucK.

3. A precise concurrent programming model
that supports arbitrarily fine granularity, as
well as multiple, simultaneous, and dynamic
rates of control. Integrated into the timing
model, this forms the concurrent aspect of
strongly timed audio programming.

The ChucK Operator (=>)

At the heart of ChucK’s language syntax is the
ChucK operator (written as =>). Although this is
not an essential element for strongly timed pro-
gramming, its notation pervades the experience of
working with ChucK. This left-to-right operator
originates from the slang term “to chuck,” meaning
to throw an entity into or at another entity. The
language uses this notion to help express sequential

operations and dataflow. The => operator (and re-
lated operators) form the “syntactic glue” that binds
ChucK code elements together. The ChucK operator
conveys the ordering of synthesis elements (e.g.,
unit generators) and is overloaded on operand types
so it makes sense in a variety of contexts (UGen
connection, UGen parameter control, assignment,
etc.). In contrast to graphical patching environments
such as Max/MSP and Pure Data, ChucK’s text-
based combination of the ChucK operator, timing
directives, and object-oriented programming make
an efficient shorthand for precisely and clearly rep-
resenting signal chains and temporal behaviors. The
ChucK operator, as used to connect unit generators,
visually resembles physical and graphical patching,
a feature that resonates well with new ChucK pro-
grammers, especially those with previous computer
music experience. Furthermore, ChucK includes
a flexible set of base unit generators and library
functions, making built-in synthesis and logic easy
“out of the box.”

Controlling Time and Temporal Determinism

A central idea in ChucK’s approach is to make
time itself computable, and to allow a program
to be “self aware” in the sense that it always
knows its position in time, and can control its own
progress over time. Furthermore, many program
components can share a central notion of logical
ChucK time, making it possible to automatically
synchronize parallel code based on time, as well as
to precisely express sophisticated temporal behavior
of a program. This gives rise to a programming
mentality in which programs have intimate, precise,
and modular control over their own timing. With
respect to synthesis and analysis, an immediate
ramification is that control can be asserted over any
unit generator at any time and at any rate. In order
to make this happen:

1. ChucK provides time and dur as native
types in the language (to represent time and
duration values, respectively).

2. The language allows well-defined arithmetic
on time and duration (see Table 1).

Wang, Cook, and Salazar 15

Table 1. Arithmetic Operations on Operand Types

Type Op Type Result Type Commute?

dur + dur → dur Yes
dur − dur → dur
dur * float → dur Yes
dur / float → dur
dur / dur → float
time + dur → time Yes
time − dur → time
time − time → dur

The operand types, which can be time, dur, or float, and the
types of the results. The final column indicates whether the
operation is commutative.

3. The model provides a deterministic and
total mapping between code, time, and audio
synthesis. It is straightforward to reason
about timing from anywhere in a program.

4. The language provides now, a special keyword
(of type time) that holds the current ChucK
time. It provides a flexible granularity that
can operate at (or finer than) the sample rate,
and it provides a way to work with time in a
deterministic and well-defined manner.

5. ChucK offers a globally consistent means to
advance time from anywhere in the program
flow: by duration (D => now;) or by absolute
time (T => now;).

The code example shown in Figure 1 describes
one of two ways to “advance time” in ChucK. In
the first method, “chuck to now,” the programmer
can allow time to advance by explicitly chucking
a duration value or a time value to now, as shown
previously. This embeds the timing control directly
in the language, giving the programmer the ability
to precisely “move forward” in ChucK time. The
second method to advance time in ChucK is called
“wait on event.” An event could represent syn-
chronous software triggers, as well as asynchronous
messages from MIDI, Open Sound Control (OSC;
Wright and Freed 1997), serial, and human interface
devices (HIDs). User code execution will resume
when the synchronization condition is fulfilled.
While waiting for the event, the ChucK virtual
machine is free to schedule audio synthesis and

other synchronous computations. Wait on event is
similar in spirit to chuck to now, except that events
have no precomputed time of arrival.

It is essential to note that the logical ChucK
time stands still until explicitly instructed to move
forward in time (by one of these two methods to
advance time). This allows an arbitrary amount
of computation to be specified at any single point
in time, and fulfills the synchrony assumption
that computation can be viewed as happening
infinitely fast. Although this seems like an absurd
assumption to make, it establishes a type of temporal
determinism to logically reason about when things
happen. In practice, real-time audio will remain
robust up to the limit imposed by computing
speed, after which audio will experience glitches
and interruptions—as is the case for any real-
time synthesis system. The deterministic timing
principle is always upheld, however, independently
of robustness or performance. By combining this
abstraction with the mapping of time to the audio
sample stream, ChucK’s timing mechanism provides
absolute assurance that code is always logically
mapped in time.

Another important point to note is that all syn-
thesis systems, at some level, have to be sample
synchronous (samples precisely synchronized with
time)—or else DSP just does not happen. Most
languages generally do not expose the ability to
control all computational timing directly, however.
In contrast, ChucK makes it possible to exert direct
and precise control over time at all granularities.
The deterministic assurance of time relationship be-
tween code and audio signal processing is essential
to the design of many synthesis algorithms, espe-
cially at small timescales (e.g., on the order of tens of
milliseconds and smaller, as with the single-sample
example in Figure 2). As for dealing with higher-
level, more “musical” timescales (e.g., fractions of
seconds and above), the same timing mechanism
can be used, unifying low- and high-level timing
into a single construct. Alternately, the programmer
can abstract the timing mechanism into high-level
functions (e.g., a playNote() function that also
takes a duration) and data structures (e.g., an object
that can take and interpret an array of numbers as
a temporal pattern). In these higher-level instances,

16 Computer Music Journal

// Carrier
SinOsc c => dac;
// Modulator (driven by blackhole -- like dac but no sound)
SinOsc m => blackhole;

// Carrier frequency
220 => float cf;
// Modulator frequency
550 => float mf => m.freq;
// Index of modulation
200 => float index;

// Time loop
while(true)
{

// Modulate around cf by polling modulator using .last()
// (.last() returns the most recently computed sample)
cf + (index * m.last()) => c.freq;
// Advance time by duration of one sample
1::samp => now;

}

Figure 2. FM synthesis “by
hand” in ChucK. Although
there are more efficient
means to do FM synthesis
in ChucK, this extreme

example program
illustrates precise control
over time at any rate—in
this case, one sample at a
time.

the timing mechanism serves as a temporal building
block that can be used to craft arbitrarily complex
behavior in the user’s programming style.

In summary, the timing mechanism moves the
primary control over time from inside opaque
unit generators, and a control layer of fixed time
granularity, to the code directly, explicitly coupling
computation to time. The programmer knows not
only what is to be computed, but also precisely
when, relative to ChucK time. This global control
over time enables programs to specify arbitrarily
complex timing, allowing a programmer or composer
to “sculpt” a sound or passage into perfection by
operating on it at any granularity or rate.

Time-Based Concurrency

Up to this point, we have discussed programming
ChucK using one path of execution, controlling it
through time. Time alone is not sufficient, however,
because audio and music often involve the presence
and cooperation of multiple parallel processes. We
desire concurrency to expressively capture such
parallelism.

If ChucK’s timing serializes operations, the con-
current programming model parallelizes multiple
independent code sequences precisely and deter-
ministically. Concurrency in ChucK works because
the programmer already supplies precise timing
information, which can be used, it turns out, to
interleave computation across all code running in
parallel.

The design uses a form of nonpreemptive concur-
rent programming, whereby programmers have to
explicitly yield the current process. ChucK program-
mers already do this when they explicitly advance
time on a continual basis—and these operations
contain all the necessary information to automati-
cally schedule concurrency modules (e.g., when to
yield, when to wake up). This concurrency adds no
additional work for the programmer and requires
no further synchronization. Crucially, this inherits
the sample-precise determinism that the timing
mechanism provides.

Such deterministic concurrency offers the versa-
tility to specify behaviors as independent sequences
of instructions, allowing complex systems to be bro-
ken down into synchronous building blocks, called
shreds in ChucK, spawned via a special spork ∼

Wang, Cook, and Salazar 17

operation on functions (which serves as entry points
and bodies of code for the shreds). A shred, much
like a thread, is an independent, lightweight process,
which operates concurrently and can share data
with other shreds. But unlike conventional threads,
whose execution is interleaved in a nondetermin-
istic manner by a preemptive scheduler, a shred
is a deterministic piece of computation that has
sample-accurate control over audio timing, and is
naturally synchronized with all other shreds via
the shared timing mechanism and synchronization
constructs called events.

ChucK shreds are programmed in much the same
spirit as traditional threads, with the exception of
several key differences:

1. A ChucK shred cannot be preempted by
another. This not only enables a single shred
to be locally deterministic, but also an entire
set of shreds to be globally deterministic in
their timing and order of execution.

2. A ChucK shred must voluntarily relinquish
the processor for other shreds to run. (In
this, shreds are like nonpreemptive threads.)
When a shred advances time or waits for an
event, it relinquishes the processor, and gets
“shreduled” by the “shreduler” to resume
at a future logical time. A consequence of
this approach is that shreds can be naturally
synchronized to each other via time, with-
out using any traditional synchronization
primitives.

3. ChucK shreds are implemented completely
as user-level primitives, and the ChucK
virtual machine runs entirely in user space.
User-level parallelism has significant perfor-
mance benefits over kernel threads, allowing
“even fine-grain processes to achieve good
performance if the cost of creation and
managing parallelism is low” (Anderson
et al. 1992, p. 54). Indeed, ChucK shreds are
lightweight—each contains only minimal
state. The cost of context switching between
ChucK shreds is also low, since no kernel
interaction is required.

Traditionally, concurrency—especially the pre-
emptive kind—is difficult to deal with, even for

seasoned programmers. Race conditions, possibili-
ties for deadlock, and other common pitfalls are easy
to introduce and difficult to track down, stemming
from the inherently nondeterministic and hence
imprecise nature of preemptive scheduling. ChucK’s
time-based concurrency sidesteps these pitfalls by
removing preemption and deriving the schedul-
ing only by requesting that each shred mange its
own timing behavior. One potential drawback of
nonpreemptive concurrency is that a single shred
could hang the ChucK virtual machine (along with
all other active shreds) if it fails to relinquish the
processor. There are ways to alleviate this drawback,
however. For example, any hanging shreds can eas-
ily be identified by the ChucK virtual machine (it
would be the currently running shred), and it would
be straightforward to locate and remove the shred.

Multishredded programs can make the task of
managing concurrency and timing much easier (and
more enjoyable), just as threads make concurrent
programming manageable and potentially increase
overall system throughput. In this sense, shreds are
powerful programming constructs. We argue that
the flexibility of shreds to support deterministic,
precisely timed, concurrent audio programming
significantly outweighs the potential drawbacks.

Aside from asynchronous input events (e.g.,
incoming HID, MIDI, or OSC messages), a ChucK
program is completely deterministic in nature—
there is no preemptive background processing or
scheduling. The order in which shreds and the rest
of the ChucK virtual machine execute is completely
determined by the timing and synchronization
specified in the shreds. This makes it easy to reason
about the global sequence of operations and timing
in ChucK, and it enables multiple shreds to run at
independent rates, at which they can assert control
over synthesis and other parameters.

This design yields a programming model in which
multiple concurrent shreds synchronously construct
and control a global unit-generator network over
time. The shreduler uses the timing information
to serialize the shreds and the audio computation
in a globally synchronous manner. It is completely
deterministic (real-time input aside) and the synthe-
sized audio is guaranteed to be correct, even when
real time is not feasible.

18 Computer Music Journal

// Synthesis patch
Impulse i => TwoZero t => TwoZero t2 => OnePole lpf;

// Formant filters
lpf => TwoPole f1 => Gain node => NRev reverb => dac;
lpf => TwoPole f2 => node;
lpf => TwoPole f3 => node;

// ... (Omitted: initialization code to set formant filter Qs,
// adjust reverb mix, etc.) ...

spork ˜ generate(); // Concurrency: spawn shred #1: voice source
spork ˜ interpolate(); // Spawn shred #2: interpolate pitch and formants

while(true) // Shred #3: main shred
{

// Set next formant targets
Math.random2f(230.0, 660.0) => target_f1freq;
Math.random2f(800.0, 2300.0) => target_f2freq;
Math.random2f(1700.0, 3000.0) => target_f3freq;
// Random walk the scale, choose next frequency
32 + scale[randWalk()] => Std.mtof => freq;
// Set target period from frequency
1.0 / freq => target_period;
// Wait until next note
Std.rand2f(0.2, 0.9)::second => now;

}

// Shred #1: generate pitched source, with vibrato
fun void generate()
{

while(true)
{

// Fire impulse!
masterGain => i.next;
// Advance phase based on period
modphase + period => modphase;
// Advance time (modulated to achieve vibrato)
(period + 0.001*Math.sin(2*pi*modphase*6.0))::second => now;

}
}

Figure 3. Singing synthesis
program (some code
omitted for brevity)
(continued on next page).

Case Study: Singing Synthesis

To demonstrate both the timing mechanism and
concurrency at work, we present a code example to
synthesize singing (see Figure 3).

This code example demonstrates three concurrent
shreds working together, each at different rates.

Shred 1, generate(), explicitly creates an impulse
train as a pitched source (time advancement changes
dynamically as a function of current pitch and to
create vibrato); shred 2, interpolate(), smoothly
interpolates the fundamental period as well as three
formant frequencies (rate: 10::ms); shred 3, the
main shred, randomly chooses formant frequencies

Wang, Cook, and Salazar 19

// Shred #2: to perform interpolation for various parameters
fun void interpolate()
{

0.10 => float slew; // Slewing factor to control interpolation rate
while(true)
{
(target_period - period) * slew + period => period;
(target_f1freq - f1freq) * slew + f1freq => f1freq => f1.freq;
(target_f2freq - f2freq) * slew + f2freq => f2freq => f2.freq;
(target_f3freq - f3freq) * slew + f3freq => f3freq => f3.freq;
10::ms => now;

}
}

Figure 3. Singing synthesis
program (some code
omitted for brevity)
(continued from previous
page).

and the next frequency to be sung (rate: random
intervals, between 0.2::ms and 0.9::ms). The
shreds all operate precisely at their respective
optimal rates.

Architecture Design

To support the behaviors of the ChucK language,
a variety of system design decisions were required.
The architecture includes a dedicated lexer, a parser,
a typing checker and type system, and a virtual
machine (VM) employing a user-level shreduler,
which shredules the shreds. We address the core
components of the system and outline the central
shreduling algorithms.

Architecture Overview

ChucK programs are type-checked, emitted into
ChucK shreds containing bytecode, and then in-
terpreted in the virtual machine. The shreduler
serializes the order of execution between various
shreds and the audio engine. Under this model,
shreds can dynamically connect, disconnect, and
share unit generators in a global synthesis network.
Additionally, shreds can perform computations and
change the state of any unit generators and analyz-
ers at any point in time. These components of the
ChucK runtime are depicted in Figure 4.

Audio is synthesized from the global unit-
generator graph one sample at a time by “pulling”

samples, starting from dedicated UGen “sinks,”
such as dac (the main audio output). Time, as
specified in the shreds, is mapped by the system to
the audio-synthesis stream. When a shred advances
time, it can be interpreted as the shred’s shreduling
itself to be woken up at some future sample. The
passage of time is data-driven, and this guarantees
that the timing in the shreds is bound to the audio
output and not to any other clocks. Furthermore, it
guarantees that the final synthesis/analysis result
is “correct,” reproducible, and sample-faithful,
regardless of whether the system is running in real
time or not. Additional processes interface with I/O
devices and the runtime compiler. A server listens
for incoming network messages. Various parts of the
VM can optionally collect real-time statistics to be
visualized externally in environments such as the
Audicle (Wang and Cook 2004b).

From Code to Bytecode

Compilation of a ChucK program follows the
standard phases of lexical analysis, syntax parsing,
type checking, and emission into instructions (see
Figure 5). Code is emitted into VM instructions
(the ChucK VM instruction set contains more
than a hundred different instructions, from simple
arithmetic and memory operations to complex
time-advance instructions), as part of a new shred,
in class methods, or as globally available routines.
The compiler runs as part of the virtual machine,
and can compile and run new programs on demand.

20 Computer Music Journal

Figure 4. ChucK’s runtime
architecture.

Figure 4

Figure 5. First phases in
the ChucK compiler.

Figure 5

By default, all operations, including instruction
emission, take place in main memory. This has
the advantage of avoiding intermediate steps of
writing instructions to disk and many costly load-
time memory translations that would be necessary
if the compiler and VM were to run in separate
processes. The disadvantage of this in real time is
that the compilation must be relatively fast, which
precludes the possibility of many advanced compiler
optimizations. In practice, this is manageable, and
the global UGen graph computations often dominate
runtime-compiled shred computations.

Figure 6. Components of a
ChucK shred.

Figure 6

Virtual Machine and Shreduler

After compilation, a shred is passed directly to the
ChucK virtual machine, where it is shreduled to
start execution immediately. Each shred has several
components, as shown in Figure 6: (1) bytecode

Wang, Cook, and Salazar 21

Figure 7. Single-shredded
shreduling algorithm.

instructions emitted from the source code; (2) an
operand stack for local calculations (functionally
similar to hardware registers); (3) a memory stack
to store local variables at various scopes, e.g., across
function calls; (4) references to child shreds (shreds
spawned by the current shred) and a parent shred (if
any); and (5) shred-local storage, including a local
view of now, which can be a fractional sample away
from the system-wide now, and is used to maintain
a shred’s own, sub-sample timing.

The state of a shred is completely characterized
by the content of its stacks and their respective
pointers. It is therefore possible to suspend a shred
between two instructions and resume it in full at a
later ChucK time. A shred is suspended only after
instructions that advance time. Shreds can spawn
(or “spork,” in ChucK parlance, as previously shown
in Figure 3) and remove other shreds.

The shreduler serializes the synchronous execu-
tion of shreds with that of the audio engine, while
maintaining the system-wide ChucK now. The value
of now is mapped to the number of samples in the
audio synthesis stream that have elapsed through
the virtual machine since the beginning of the
virtual machine.

For a single shred, the shreduling algorithm is
illustrated in Figure 7. A shred is initially shreduled
to execute immediately—further shreduling beyond
this point is left to the shred. The shreduler checks to
see if the shred is shreduled to wake up at the current

time (now). If so, the shred resumes execution in the
interpreter until it schedules itself for some future
time, say T. At this point, the shred is suspended
and the wake-up time is set to T. Otherwise, if the
shred is not scheduled to presently wake up at now,
the shreduler calls the audio engine, which traverses
the global unit-generator graph and computes the
next sample. The shreduler then advances the value
of now by the duration of one sample, and checks
the wake-up time again. It continues to operate in
this fashion, interleaving shred execution and audio
computation in a completely synchronous manner.

Two points should be noted here. First, it is
possible for a shred to misbehave and never advance
time or, in the real-time case, to perform enough
computation to delay audio. The halting problem
(Turing 1937; Sipser 2005) informs us that the VM
cannot hope to detect this reliably. Nevertheless,
it is possible for the user to identify this situation
and manually remove a hanging shred from the
interpreter. Second, the given algorithm is designed
for causal operations in which time can only be
advanced towards the future. (Advancing time
by zero duration is identical to yielding without
advancing time—relinquishing the VM to other
shreds, if any, that have been shreduled to run at the
current point in time.)

For multiple shreds, the mechanism behaves in
a similar manner, except that the shreduler has a
waiting list of shreds, sorted by requested wake-up
time. A more comprehensive concurrent shreduling
algorithm is shown in Figure 8. Before the system-
wide now is advanced to the next sample, all shreds
waiting to run at the current time must be allowed
to execute.

In addition, it is possible for a shred to advance
time by any amount, even durations less than that of
a sample. To support this, each shred keeps track of
a shred-local now, which is close to the value of
the system-wide now, but with some allowable
fractional sample difference. This enables a shred
to shredule itself ahead by an arbitrarily small
increment. This value is compared against the
system-wide now when determining when to wake
up a shred. It is therefore possible for a shred to run
any number of times before the system-wide now is
advanced to the next sample.

22 Computer Music Journal

Figure 8. Multi-shredded
shreduling decision flow.

Time-Driven Audio Computation

Unit generators (and more recently, unit analyzers)
are created, connected, disconnected, and controlled
from code. The actual computation of the audio
takes place separately, however, in the audio engine
via the global unit-generator graph. When the
shreduler decides that it is appropriate to compute
the next sample and advance time, the audio engine
is invoked. The global UGen graph is traversed
in depth-first order, starting from one of several
well-known sinks, such as dac. Each unit generator
connected to the dac is asked to compute and
return the next sample (which may involve first
recursively requesting the output of upstream
UGens). The system marks visited nodes so that
each unit generator is computed exactly once for
every time step; and the audio output is cached.
The output value of each UGen is stored and can be
recalled, enabling arbitrary (down to single-sample
delay) feedback cycles in the graph. Visiting a
node that has already been marked at the current
time step terminates cyclic recursion.

The architectural components make up the
ChucK runtime system and hide the complexities
of keeping track of logical time, shreduling, and

interleaving user computation with audio synthesis,
while exposing control over time and concurrency
in the language.

Assessment of Design

All together, the core language features and the run-
time architecture make up the ChucK programming
language. Programming in ChucK is imperative and
strongly typed, and may feel like a combination of
Java, C, and something else: ChucK’s own style.
The design presents a complete and unique system
to program in an “in the moment” time-centric
manner. It reconciles logical time with actual time,
and precise timing with concurrent programming;
it does so without loss of generality in specifying
fine-granularity timing algorithms.

ChucK’s synchrony hypothesis is a useful prop-
erty to work with, for it provides a predictable
temporal mapping between code and audio synthe-
sis stream. In practice, this is feasible for real-time
operation, as long as no section of code execution
is sufficiently lengthy to introduce a break in the
audio output. More rigorously, as long as a ChucK
program can run at least as fast as its environment
(i.e., the synthesized audio stream), it runs in real

Wang, Cook, and Salazar 23

time. (In this context, “fast” is taken to mean suffi-
ciently fast to compute each audio buffer within the
allotted time so as to not introduce interruptions in
the resulting audio output.) The determinism such
assumptions provide leads to clearer specification
and debugging of temporal relationships, with no
intrinsic burden to real-time operation.

Although there are unique benefits in ChucK’s
approach, the system also has important tradeoffs
and limitations. First, as discussed earlier, there is no
foolproof way to prevent misbehaving shreds from
temporarily hanging the virtual machine—a user
will not know to take action until after the audio has
been interrupted. Second, ChucK was designed more
for expressiveness than for performance throughput.
The synthesis graph is traversed for each individual
sample, which incurs significant overhead. Although
reasonable effort was put into optimizing the
existing architecture, such a sample-synchronous
audio synthesis system is inherently subject to
performance penalties from additional overhead
dealing with each sample (e.g., extra function calls)
and sacrifices the performance benefits of block
processing (e.g., via certain compiler optimizations
and instruction pipelining). Experiments that use
ChucK’s timing information to adaptively perform
block-based processing have yielded promising, if
preliminary, results. This is a subject of ongoing
research.

Contributions

The core features and architecture of ChucK support
a different way of thinking about audio programming
and the design of synthesis languages. In summary,
we discuss several useful properties that ChucK
affords a programmer.

Temporal Determinism and Audio Programming

The ChucK programmer always codes in “suspended
animation.” This strongly timed property guarantees
that time in ChucK does not change unless the
programmer explicitly advances it. The value of now
can remain constant for an arbitrarily long block
of code, which has the programmatic benefits of

(1) guaranteeing a deterministic timing structure
to use and with which to reason about the system
and (2) providing the programmer with a simple
and natural mechanism of timing control. The
deterministic nature of timing in ChucK also
ensures that the program will flow identically across
different executions and machines, free from the
underlying hardware timing (processor, memory,
bus, etc.) and from nondeterministic scheduling
delays in the operating system kernel scheduler.
The programmer is responsible for “keeping up
with time” (i.e., specifying when to “step out” of
suspended animation to advance time).

ChucK programs naturally have a strong sense of
order regarding time. The timing mechanism guar-
antees that code appearing before time advancement
operations will always evaluate beforehand, and
those that appear after will evaluate only after the
timing or synchronization operation is fulfilled. In
other words, the blocks of code between operations
that advance time are atomic; statements in each
block are considered to take place at the same logical
time instant. This semantic can lead to programs
that are significantly easier to specify, debug, and
reason about.

Furthermore, the timing mechanism allows
feedback loops with single-sample delay, enabling
clear representation of signal-processing networks,
such as the classic Karplus-Strong plucked-string
physical model (see Figure 9). It is straightforward to
implement (for example) various extensions of the
model (Jaffe and Smith 1983; Steiglitz 1996), as well
as a number of other physical models, directly in the
language—and to hear and test them on the spot,
making ChucK an ideal prototyping and teaching
tool.

The same time mechanism can be used both for
fine-grained synthesis and for higher-level “mu-
sical” or compositional timing. ChucK makes
no distinction in its intended use, and it is left
up to the programmer to choose the appropriate
timescales to work with: synthesis (samples to
milliseconds), “note” level (hundreds of millisec-
onds or longer), structural (seconds or minutes), or
“macro-structural” (hours, days, or even years). All
timescales and control strategies are unified under
the same timing mechanism.

24 Computer Music Journal

// Feedforward elements
Noise imp => Delay delay => dac;
// Feedback (single-sample)
delay => Gain attenuate => OneZero lowpass => delay;

// Our radius (comb filter)
.99999 => float R;
// Our delay order
500 => float L;
// Set delay
L::samp => delay.delay;
// Set dissipation factor
Math.pow(R, L) => attenuate.gain;
// Place zero in OneZero filter (for gentle lowpass)
-1 => lowpass.zero;

// Fire excitation...
1 => imp.gain;
// ... for one delay round trip
L::samp => now;
// Cease fire
0 => imp.gain;

// Advance time until desired signal level remains
(Math.log(.0001) / Math.log(R))::samp => now;

Figure 9. Native
Karplus-Strong
plucked-string physical
model in ChucK. The
precise and flexible timing
mechanism allows
complex timing to be
represented directly in the

language, without the
need to depend on opaque
unit generators “outside”
the language; this aspect is
suitable for rapid
prototyping and for clearly
delineating complex
synthesis algorithms.

Figure 9

Figure 10. Block diagram
for the Karplus-Strong
plucked-string model,
directly implemented in
ChucK, as shown in
Figure 9.

Figure 10

Case Study: Native Karplus-Strong Model

This case study shows how to natively construct
a Karplus-Strong plucked-string model (Karplus
and Strong 1983) in ChucK. Note that this is a
straightforward translation of the signal block

diagram (see Figure 10) using only elementary
building blocks (Noise, OneZero filter, Delay).
The key insight here is that ChucK’s sample-
synchronous model naturally allows single-sample
feedback, which is an essential element of this
physical model.

Wang, Cook, and Salazar 25

Notes on Control Rates

The manner with which a shred advances its
way through time can be naturally interpreted as
a kind of control rate (i.e., for asserting control
over audio synthesis). Because the amount of time
to advance at each point is determined by the
programmer, the control rate can be as rapid (e.g.,
approaching or same as the sample rate) and variable
(e.g., milliseconds, minutes, days, or even weeks) as
desired for the task at hand. Additionally, the control
rate can vary dynamically with time, because the
programmer can compute or look up the value
of each time increment. Finally, the possibility
of a dynamic, arbitrary control rate is enhanced
by ChucK’s concurrency model, which allows
multiple, independent control flows to compute in
parallel.

Synchronous Concurrency

Shreds naturally separate each set of independent
tasks into concurrent entities running at their
own control rates. For example, there might be
many different streams of audio samples being
generated at multiple control rates; MIDI and
OSC messages might arrive periodically (e.g.,
on the order of milliseconds) from a variety of
sources, controlling parameters in the synthesis.
Concurrently, packets may arrive over the network
while an array of HID mice and joysticks may be
generating control data. At the same time, higher-
level musical processes may be computing at yet
another timescale. In ChucK, it is straightforward
to design and incrementally develop such a system
via shreds, independently managing their local
timings (refer to Figure 3 for an example of multiple
concurrent shreds each operating at a different
control rate).

In ChucK, timing and synchronization are the
core elements in the larger machinery of strongly
timed programming. On the one hand, explicit
timing generates implicit synchronization (i.e.,
advancing time provides the information needed
by the ChucK VM to precisely synchronize shreds)
and, on the other hand, explicit synchroniza-

tion generates implicit timing (e.g., explicitly
synchronizing on events allows time to advance
meanwhile).

An extremely useful property here is that whereas
shreds are interleaved in time and therefore appear
to be concurrent, code executes without preemption
between advancements in time (e.g., via now).
Thus these code blocks behave as critical sections
or atomic transactions. This naturally precludes
many common issues that arise in preemptive
thread programming (e.g., race conditions) and does
so without need for additional synchronization
mechanisms such as critical sections or mutexes.

Concluding Remarks

ChucK’s language design affords a number of useful
properties, and promotes a different way of thinking
about audio programming. As a software system
and creative tool, it has been applied to, and has
coevolved with, many artistic and design endeavors.
We conclude by examining various experiments
and applications of ChucK, and comment on its
continued evolution.

Applications

The ChucK programming language has found a
variety of applications in composition, performance,
computer music research, interaction design, and
sound design (see Wang 2014b)—and continues to
be applied to new areas of use. Its rapid prototyp-
ing, in-the-moment mentality also helped to spur
experimentation with live coding as a performance
practice, leading to audiovisual development and
performance systems such as the Audicle, and
eventually leading to the more prominent ChucK
integrated development environment, miniAudicle
(Salazar, Wang, and Cook 2006). A strongly timed
system combining audio synthesis and analysis
was designed in 2007 (Wang, Fiebrink, and Cook
2007). ChucK has served as experimental platform
for on-the-fly machine learning for real-time music
information retrieval prototyping (Fiebrink, Wang,
and Cook 2008; Fiebrink 2011). ChucK also served

26 Computer Music Journal

as the sound engine (and a rapid-prototyping tool
during development) of the mobile app Ocarina
(Wang 2014a), which transformed the first genera-
tion of app-based mobile phones (e.g., the iPhone)
into an expressive musical instrument with a social
dimension. Since 2008, more than 10 million users
of Ocarina have blown into their mobile phones
and (unwittingly) used a mobile musical instrument
powered by ChucK.

Laptop Orchestras and Teaching

Many opportunities have arisen to use and evaluate
ChucK as a pedagogical tool for sound synthe-
sis, programming, computer-mediated instrument
design, and live performance. One of the largest
and ongoing evaluations has been taking place in
the context of laptop orchestras (Trueman et al.
2006; Fiebrink, Wang, and Cook 2007; Trueman
2007; Smallwood et al. 2008; Wang et al. 2009),
as ChucK mirrored the development of the first
laptop orchestra at Princeton (the Princeton Laptop
Orchestra, known as PLOrk, in 2005) and subse-
quently at Stanford (Stanford Laptop Orchestra,
SLOrk, in 2008). One of the major research findings
is an approach to effectively teach programming
through music-making, and vice versa (Wang et al.
2008). In the decade since, laptop orchestras have
proliferated. At the time of this writing, there are
more than 75 laptop performance ensembles world-
wide (using a variety of software environments,
including ChucK). These include the Carnegie
Mellon Laptop Orchestra (Dannenberg et al. 2007);
L2Ork (Bukvic et al. 2010); the Laptop Orchestra of
Louisiana (http://laptoporchestrala.wordpress.com),
which created a performance called “In ChucK,”
a reimagining of Terry Riley’s “In C”; and many
others. ChucK has also been extensively integrated
into the music technology curriculum in many pro-
grams worldwide, including art schools such as the
California Institute of the Arts, through its use in
the Machine Orchestra (Kapur et al. 2011). The latter
spawned both a book teaching programming for mu-
sicians and digital artists (Kapur et al. 2015) as well
as a massively open online course of the same name.

Ongoing and Future Work

ChucK research and development began in 2002
and, at the time of this writing, is continuing more
intensively than ever. Active areas of research in-
clude various mechanisms to extend ChucK (Salazar
and Wang 2012), both external to the language (e.g.,
ChuG-ins) and internal (e.g., ChUGens and Chub-
graphs). Although ChucK has internally powered
millions of instances of mobile music apps, recent
research has only begun to explore the use of mobile
devices (e.g., the iPad) as programming platforms
for audio (Salazar and Wang 2014). Another research
direction that is underway examines graphics pro-
gramming integrated with audio in ChucK. To be
able to specify real-time graphics, image, and video
processing in the same strongly timed audio frame-
work seems enticing and promising. Finally, as with
live coding and the Audicle, ChucK is both about
audio programming and the aesthetics and human
mechanics of audio programming. Along this vein, it
would be exciting to explore new social dimensions
of collaborative audio programming, to investigate
both the human–computer and human–human
interaction in such settings.

Conclusion

In this article, we presented the ChucK program-
ming language, its ideas, core language features, and
the various properties associated with the language.
Additionally, we examined several applications of
the language, as well as its evaluation as a pro-
gramming tool and pedagogical vehicle for teaching
programming and music creation in tandem. Al-
though much has been investigated, more remains
to be discovered and explored in the realm of
strongly timed music and audio programming—this
investigation will continue.

Coding can be an expressive, creative, and
ultimately satisfying process. It should aim to feel
empowering (and fun) to write code—and hopefully
not cumbersome to read, debug, or interpret it. A
programming language cannot help but shape the
way we think about solving particular problems.

Wang, Cook, and Salazar 27

http://laptoporchestrala.wordpress.com

It is our hope that ChucK provides a unique way
of working with and thinking about time—and its
variety of interactions with sound and music.

ChucK is open-source and freely available online
at chuck.stanford.edu.

Acknowledgments

A great number of people supported and contributed
to the development, design, and evaluation of
ChucK. Aside from the authors, these include Ajay
Kapur, Dan Trueman, Rebecca Fiebrink, Philip
Davidson, Ari Lazier, Ananya Misra, Adam Tindale,
Kassen Oud, and Chris Chafe, as well as other people
from the Princeton Soundlab, CCRMA, the Stanford
music department, and the ChucK community.

References

Aaron, S., and A. F. Blackwell. 2013. “From Sonic Pi to
Overtone: Creative Musical Experiences with Domain-
Specific and Functional Languages.” In Proceedings
of the ACM SIGPLAN Workshop on Functional Art,
Music, Modeling, and Design, pp. 35–46.

Anderson, D., and R. Kuivila. 1991. “Formula: A Program-
ming Language for Expressive Computer Music.” IEEE
Computer 24(7):12–21.

Anderson, T., et al. 1992. “Scheduler Activations: Effective
Kernel Support for the User-Level Management of
Parallelism.” ACM Transactions on Computer Systems
10(1):53–79.

Berry, G., and G. Gonthier. 1992. “The Esterel Syn-
chronous Programming Language: Design, Semantics,
Implementation.” Science of Computer Programming
19(2):87–152.

Brandt, E. 2002. “Temporal Type Constructors for Com-
puter Music Programming.” PhD dissertation, Carnegie
Mellon University.

Bukvic, I. I., et al. 2010. “Introducing L2Ork: Linux
Laptop Orchestra.” In Proceedings of the International
Conference on New Interfaces for Musical Expression,
pp. 170–173.

Burk, P., L. Polansky, and D. Rosenboom. 1990. “HMSL
(Hierarchical Music Specification Language): A Theoret-
ical Overview.” Perspectives of New Music 28(2):136–
178.

Caspi, P., et al. 1987. “LUSTRE: A Declarative Language
for Programming Synchronous Systems.” In Annual

Symposium on Principles of Programming Languages,
pp. 178–188.

Collins, N., et al. 2003. “Live Coding in Laptop Perfor-
mance.” Organised Sound 8(3):321–330.

Cook, P. R., and G. Scavone. 1999. “The Synthesis Toolkit
(STK).” In Proceedings of the International Computer
Music Conference, pp. 164–166.

Dannenberg, R. 1997. “Machine Tongues XIX: Nyquist,
a Language for Composition and Sound Synthesis.”
Computer Music Journal 21(3):50–60.

Dannenberg, R., et al. 2007. “The Carnegie Mellon
Laptop Orchestra.” In Proceedings of the International
Computer Music Conference, vol. 2, pp. 340–343.

Fiebrink, R. 2011. “Real-Time Human Interaction with
Supervised Learning Algorithms for Music Composi-
tion and Performance.” PhD dissertation, Princeton
University.

Fiebrink, R., G. Wang, and P. R. Cook. 2007. “Don’t
Forget the Laptop: Using Native Input Capabilities for
Expressive Control.” In Proceedings of the International
Conference on New Interfaces for Musical Expression,
pp. 164–167.

Fiebrink, R., G. Wang, and P. R. Cook. 2008. “Support
for MIR Prototyping and Real-Time Applications of
the ChucK Programming Language.” In Proceedings of
the International Conference on Music Information
Retrieval, pp. 153–158.

Halbwachs, N. 1993. Synchronous Programming of
Reactive Systems. Alphen aan den Rijn, Netherlands:
Kluwer.

Hoare, C. A. R. 1978. “Communicating Sequential
Processes.” Communications of the ACM 21(8):666–
677.

Hudak, P., et al. 1996. “Haskore Music Notation: An
Algebra of Music.” Journal of Functional Programming
6(3):465–483.

Jaffe, D., and J. O. Smith. 1983. “Extensions of the Karplus-
Strong Plucked String Algorithm.” Computer Music
Journal 7(2):56–69.

Kapur, A., et al. 2011. “The Machine Orchestra: An Ensem-
ble of Human Laptop Performers and Robotic Musical
Instruments.” Computer Music Journal 35(4):49–63.

Kapur, A., et al. 2015. Programming for Musicians and
Digital Artists: Making Music with ChucK. Shelter
Island, New York: Manning Press.

Karplus, K., and A. Strong. 1983. “Digital Synthesis of
Plucked String and Drum Timbres.” Computer Music
Journal 7(2):43–55.

Lansky, P. 1990. “CMIX.” Release Notes and Manuals.
Princeton, New Jersey: Department of Music, Princeton
University.

28 Computer Music Journal

http://chuck.stanford.edu

Le Guernic, P., et al. 1985. “SIGNAL: A Data Flow
Oriented Language for Signal Processing.” IEEE Trans-
actions on Acoustics, Speech and Signal Processing
34(2):362–374.

Mathews, M. 1969. The Technology of Computer Music.
Cambridge, Massachusetts: MIT Press.

McCartney, J. 2002. “Rethinking the Computer Music
Programming Language: SuperCollider.” Computer
Music Journal 26(4):61–68.

Pope, S. T. 1993. “Machine Tongues XV: Three Packages
for Software Sound Synthesis.” Computer Music
Journal 17(2):23–54.

Puckette, M. 1991. “Combining Event and Signal Process-
ing in the Max Graphical Programming Environment.”
Computer Music Journal 15(3):68–77.

Puckette, M. 1996. “Pure Data.” In Proceedings of
the International Computer Music Conference, pp.
224–227.

Roberts, C., et al. 2013. “Gibber: Abstractions for Creative
Multimedia Programming.” In Proceedings of the ACM
International Conference on Multimedia, pp. 67–76.

Salazar, S., and G. Wang. 2012. “Chugens, Chubgraphs, and
Chugins: 3 Tiers for Extending ChucK.” In Proceedings
of the International Computer Music Conference, pp.
60–63.

Salazar, S., and G. Wang. 2014. “MiniAudicle for iPad:
Touchscreen-Based Music Software Programming.”
In Proceedings of the International Computer Music
Conference, pp. 686–691.

Salazar, S., G. Wang, and P. R. Cook. 2006. “miniAu-
dicle and ChucK Shell: New Interfaces for ChucK
Development and Performance.” In Proceedings of the
International Computer Music Conference, pp. 64–66.

Schottstaedt, B. 1994. “Machine Tongues XVII: CLM:
Music V Meets Common Lisp.” Computer Music
Journal 18(2):3–37.

Sipser, M. 2005. Introduction to the Theory of Computa-
tion. Boston, Massachusetts: Cengage.

Smallwood, S., et al. 2008. “Composing for Laptop
Orchestra.” Computer Music Journal 32(1):9–25.

Sorensen, A. 2005. "Impromptu: An Interactive Program-
ming Environment for Composition and Performance."
In Proceedings of the Australasian Computer Music
Conference, pp. 149–153.

Sorensen, A., and H. Gardner. 2010. “Programming with
Time: Cyber-Physical Programming with Impromptu.”
In Proceedings of the ACM International Conference
on Object Oriented Programming Systems Languages
and Applications, pp. 832–834.

Steiglitz, K. 1996. A Digital Signal Processing Primer:
With Applications to Digital Audio and Computer
Music. Upper Saddle River, New Jersey: Prentice
Hall.

Touretzky, D. S. 1984. LISP: A Gentle Introduction to
Symbolic Computation. New York: Harper and Row.

Trueman, D. 2007. “Why a Laptop Orchestra?” Organised
Sound 12(2):171–179.

Trueman, D., et al. 2006. “PLOrk: Princeton Laptop
Orchestra, Year 1.” In Proceedings of the International
Computer Music Conference, pp. 443–450.

Turing, A. 1937. “On Computer Numbers, with an
Application to the Entscheidungsproblem.” Proceedings
of the London Mathematical Society, series 2 42(1):230–
265.

Vercoe, B. 1986. CSOUND: A Manual for the Audio Pro-
cessing System and Supporting Programs. Cambridge,
Massachusetts: MIT Media Lab.

Wang, G. 2008. “The ChucK Audio Programming Lan-
guage: A Strongly-Timed and On-the-Fly Environ/
Mentality.” PhD dissertation, Princeton University.

Wang, G. 2014a. “Ocarina: Designing the iPhone’s Magic
Flute.” Computer Music Journal 38(2):8–21.

Wang, G. 2014b. The DIY Orchestra of the Future. TED
talk. Available online at www.ted.com/talks/ge wang
the diy orchestra of the future. Accessed September

2015.
Wang, G., and P. R. Cook. 2004a. “On-the-Fly Program-

ming: Using Code as an Expressive Musical Instru-
ment.” In Proceedings of the International Conference
on New Interfaces for Musical Expression, pp. 153–
160.

Wang, G., and P. R. Cook. 2004b. “Audicle: A Context-
Sensitive, On-the-Fly Audio Programming Environ/
Mentality.” In Proceedings of the International Com-
puter Music Conference, pp. 256–263.

Wang, G., R. Fiebrink, and P. R. Cook. 2007. “Combining
Analysis and Synthesis in the ChucK Programming Lan-
guage.” In Proceedings of the International Computer
Music Conference, pp. 35–42.

Wang, G., et al. 2008. “The Laptop Orchestra as Class-
room.” Computer Music Journal 32(1):26–37.

Wang, G., et al. 2009. “Stanford Laptop Orchestra
(SLOrk).” In Proceedings of the International Computer
Music Conference, pp. 505–508.

Wright, M., and A. Freed. 1997. “Open Sound Control:
A New Protocol for Communicating with Sound
Synthesizers.” In Proceedings of the International
Computer Music Conference, pp. 101–104.

Wang, Cook, and Salazar 29

http://www.ted.com/talks/ge_wang_the_diy_orchestra_of_the_future
http://www.ted.com/talks/ge_wang_the_diy_orchestra_of_the_future

