

FOUNDATIONS FOR ON-THE-FLY LEARNING IN THE
CHUCK PROGRAMMING LANGUAGE

Rebecca Fiebrink Ge Wang Perry R. Cook
Princeton University
Computer Science

fiebrink@princeton.edu

Stanford University
Center for Computer Research

in Music and Acoustics
ge@ccrma.stanford.edu

Princeton University
Computer Science (also

Music)
prc@cs.princeton.edu

ABSTRACT

Machine learning techniques such as classification have
proven to be vital tools in both music information
retrieval and music performance, where they are useful
for leveraging data to learn and model relationships
between low-level features and high-level musical
concepts. Explicitly supporting feature extraction and
classification in a computer music programming
language could lower barriers to musicians applying
classification in more performance contexts and
encourage exploration of music performance as a unique
machine learning application domain. Therefore, we
have constructed a framework to execute feature
extraction and classification in ChucK, forming a
foundation for porting MIR solutions into a real-time
performance context as well as developing new
solutions directly in the language. We describe this
work in depth, prefaced by introductions to music
information retrieval, machine learning, and the ChucK
language. We present three case studies of applying
learning in real-time to performance tasks in ChucK,
and we propose that fusing learning abilities with
ChucK’s real-time, on-the-fly aesthetic suggests
exciting new ways of using and interacting with learning
algorithms in live computer music performance.

1. INTRODUCTION

Music information retrieval (MIR) involves much active
research on making sense of audio, symbolic, and other
representations of musical information, so that the vast
quantities of musical data available to us may be
searched through, visualized, explored, and otherwise
better understood and efficiently utilized. Machine
learning is widely used in MIR to translate from the
low-level features that are easily extracted from musical
data to higher-level representations that are more
directly relevant to retrieval tasks of interest. While
most MIR research focuses on off-line analysis and
retrieval (e.g., of audio files stored on disk), numerous
MIR problems—including beat tracking, transcription,
score following, and identification of instrumentation
and gesture—are directly applicable to live music
performance as well. Adding explicit support of
machine learning to a computer music language thus
lowers barriers to implementing MIR solutions in a real-
time performance context, making these solutions
accessible to a wider user base of composers and
performers and encouraging MIR researchers to
consider creative applications of their work.

Of course, computer music composers and
developers have long employed machine learning
techniques to a variety of imaginative ends, only some
of which involve the straightforward learning of musical
concepts from low-level features. A computer music
language that supports employment of “out-of-the-box”
machine learning algorithms for traditional learning
applications yet also allows easy modification of the
algorithms and architecture code within the language
could facilitate many kinds of creative experimentation.

Finally, we believe the creative and practical
possibilities presented by real-time, on-the-fly
application of machine learning in music performance
are under-explored, along with their ramifications for
research in machine learning and human-computer
interaction. By constructing a foundation for machine
learning in ChucK, a language that embraces a strongly-
timed, live-coding/on-the-fly aesthetic, we hope to
encourage exploration of such issues in research and
performance contexts.

In summary, we intend that ChucK offer a high-level
programming environment wherein users may easily
port existing MIR solutions to a performance context,
develop new MIR solutions, and generally apply
machine learning algorithms to music performance in
novel ways. By facilitating development of systems in
ChucK’s rapid prototyping and on-the-fly programming
paradigm, this work creates new possibilities for
exploration in a variety of research, musical, and
pedagogical contexts.

To these ends, we begin by acquainting the reader
with the general landscape of MIR and the use of
machine learning in that field, and we present examples
of some ways in which learning has been used in music
performance. Building upon the analysis/synthesis
paradigm and tools recently integrated into ChucK, we
introduce our foundational architecture for incorporating
machine learning and MIR tools into this real-time
performance language. We present several case studies
in which we have used ChucK to build learning
algorithms and apply them to musical problems in a
real-time, on-the-fly context via a simple and general-
purpose user interface.

2. BACKGROUND

2.1. MIR and Machine Learning
MIR is broadly concerned with the analysis, search,
discovery, recommendation, and visualization of
musical data in its many forms. A few avenues of work

in MIR include transcribing from audio to some type of
score representation [10]; identifying tempo and meter
[14]; automatically annotating a work with genre [26],
mood [16], or social tags1 [9]; and identifying
instruments [12] or performance gestures [24].

As in other areas of multimedia information retrieval,
much research in MIR confronts a “semantic gap”
between readily computable low-level features and the
high-level semantic concepts described above. For
example, it is not readily apparent how to translate from
common audio features such as the magnitude spectrum,
zero-crossing rate, or MFCCs (see [2] and [26] for a
good overview of common audio features) to target
concepts of interest such as harmony, meter,
instrumentation, or genre. Such a semantic gap is often
effectively addressed with machine learning methods
such as classification, wherein standard algorithms such
as k-nearest neighbor [21] (pp. 733–5), neural networks
[21] (pp. 736–48), or AdaBoost [22] are used to predict
the target concept, or class, for vectors of features
extracted from the audio (or other data representation).
Specifically, in the training stage of classification, the
algorithm is presented with a set of training examples
consisting of example feature vectors and their
associated class labels (i.e., the ground truth). The
learning algorithm outputs a prediction rule that is then
able to predict the class labels for new data (i.e., feature
vectors for which the class label is not known a priori).
This is illustrated in Figure 1. For example, a classifier
trained for instrument identification might predict the
label “flute” or “violin” for a vector of spectral features
extracted from a frame of audio.

Figure 1. Training and running a classifier.

Learning algorithms differ in the forms of the
prediction rules they output, their approaches to
constructing those rules from the training data, their
flexibility in handling different types of data (e.g., the
number of class labels accommodated), and the
computational requirements for training and
classification. All classifiers, however, share the

1 Users of social tagging services such as Flikr, Del.icio.us, and last.fm
apply free-form textual “social tags” to content such as pictures, URLs,
and music.

property of being a data-driven approach to learning to
apply labels to feature vectors. The quality of the
predictions is dependent in large part on the quantity
and quality of the training data. Designing a new
system—no matter the form of the raw data or target
concept—thus entails choosing a method to extract
relevant features, constructing a labeled training data
set, choosing a suitable classifier for the problem of
interest, and training the classifier on the data. The
generality of classification algorithms and their
straightforward requirements for application make them
an attractive alternative to designing predictors from
scratch; in fact, classifiers often provide working
solutions to problems that are otherwise intractable (e.g.,
prediction of fine-grained genre from frame-level audio
features).

The first applications of classification in MIR date to
the late 1990s [23], and classification has been used in
copious MIR systems since then. In fact, all of the
example systems referenced in the first paragraph of this
section have employed classification as a central
component. The MIREX competition [8] offers
benchmark datasets against which participating teams
may submit classifiers for problems such as genre and
mood; now entering its fourth year, it is a testament to
MIR’s established reliance on classification.

Most MIR research on music itself (as opposed to
related social/cultural data or metadata) is restricted to
pre-recorded audio, symbolic data files, or other static,
non-performative musical representations and contexts.
However, there are notable exceptions: following
Dannenberg [7], Kapur [13] and Raphael [18] have built
impressive systems that carry out MIR tasks in the
context of robot/computer accompaniment of a live
human performer, and there exist other systems such as
[5] that accomplish real-time, non-performance analysis
tasks. Furthermore, many of the analysis tasks
commonly undertaken in MIR are still relevant to real-
time music performance, and in some cases the
algorithms can in principle be applied to live, streaming
musical data without modification. Clearly, there exists
great potential for application and adaptation of MIR
techniques by composers and performers.

2.2. Computer Music and Machine Learning

There is a rich history of applications of machine
learning techniques in computer music. Neural
networks’ parallels to human musical perception and
cognition make them a compelling tool (see e.g. [25]),
and they were used in some of the earliest applications
of learning in music, including real-time pitch tracking
[19] and gesture identification [31]. Whereas MIR
typically uses machine learning as an analysis tool,
computer musicians have also used learning algorithms
for music creation, for example as tools for generating
compositions in a given style [6], expressive
performance rendering [4], and interactive
improvisation [17][30]. In general, many applications of
machine learning in music can be seen as supporting
facets of machine musicianship, or implementing

components of human musicianship in a computer in
order to expand opportunities for composition,
interactive performance, and pedagogy (see [20], which
also provides numerous examples of approaches to
incorporating learning in computer music). Learning
thus often serves a similar purpose as in MIR, to bridge
the gap between available features and the high-level
musical concepts essential for musicianship.

The sort of analysis tasks performed in many
computer music learning systems—even those whose
end goal is music creation—have much in common with
MIR systems. In fact, many of these systems, as well as
the score following systems in [13][18] mentioned
above, so blur the line between MIR and computer
music performance that labeling them in one category or
the other is purely a matter of context. However, despite
the overlap in goals between the two fields, and the
huge potential for application of existing MIR solutions
to computer music performance, there is not much
sharing of tools between MIR research and computer
music. Most MIR systems are designed within a
framework that does not easily accommodate music
generation. The MARSYAS framework [3] and CLAM
library [7] are two exceptional MIR tools that do
support sound synthesis, but they are toolkits that are
used within C++, not a language designed to fully
support computer music. On the other hand, computer
music languages’ support for the analysis tasks
necessary for learning are problematic, in that analysis
code must be written outside the language. This impedes
tight integration among analysis, synthesis, and control
interface code, limits flexibility (the external must be
edited and recompiled after modification), and requires
the user to have high fluency in another programming
language.

3. CHUCK

ChucK is a high-level audio programming language
whose programming model promotes a strong
awareness of, and provides low-level access and control
over, time and concurrency [28]. The operational and
programmatic aesthetics of the language encourage
rapid experimentation via on-the-fly programming, and
its syntax promotes clarity and readability. ChucK also
supports a precise concurrent programming model in
which processes (called shreds) can be naturally
synchronized with both time and data. These aspects of
the language lend themselves well (and in different
ways) to synthesis, analysis, and the integration of the
two.

In the recently developed ChucK analysis framework
[29], we introduced the notion of a “Unit Analyzer”
(UAna) and a new syntax and semantics specifically
tailored to audio analysis programming. These
leveraged existing synthesis infrastructure where
appropriate, introduced new programming constructs to
specify and control audio analysis, and provided basic
UAnae for domain transformation (e.g., FFT, DCT),
data routing, and simple feature extraction (e.g.,
Centroid, Flux). The UAna model offers complete and

dynamic control over low-level parameters such as FFT
windowing and hop size, as well as the ability to craft
sophisticated analysis networks. Furthermore, analysis
tasks can run in tandem with each other and work
cooperatively with synthesis processes in real-time. This
programming model and system provided the first steps
necessary for on-the-fly learning: the means to perform
highly customized feature extraction solely from within
the language.

4. INFRASTRUCTURE FOR LEARNING

4.1. Feature Extraction

Desiring to supply standard features used in MIR
analysis, we have implemented several new feature
extraction UAnae in ChucK. A selection of
implemented feature extractors is shown in Table 1.
Note that additional composite features can be defined
directly in ChucK using these basic features; for
example, MFCCs can be computed directly by the
MFCC UAna, or constructed by combining more basic
UAnae (e.g., FFT, code for Mel frequency scaling,
DCT, etc.). This presents the programmer with ready-to-
use components as well as the option to make low-level
modifications.

FFT
DCT
Spectral Centroid
Spectral Flux
Spectral Rolloff

Cross correlation
Autocorrelation
LPC coefficients
MFCC coefficients

Table 1. ChucK audio feature extractors.

We have also implemented a FeatureCollector
UAna class to extract vectors of arbitrary features at
synchronous time points, offering easy ability to extract
one feature vector per frame or per detected note onset,
for example. The code in Figure 2 sets up a UAna patch
to extract spectral centroid, spectral flux, and RMS from
the mic input for every sliding-window analysis frame.

4.2. Architecture for Classification

We have implemented a basic object-oriented
architecture to support classification. Our architecture is
based on that of Weka [33], a machine learning and data
mining toolkit that is popular in MIR, though we do not
use the Weka libraries themselves. A data point,
example, or instance (depending on your preferred
terminology) is represented by the Instance object; an
Instance contains a feature vector with an associated
class label. The Instances class represents a full dataset
(of zero or more Instance objects). All classifiers inherit
from the Classifier class, which has methods for
training (using a training set of Instances) and
classifying (outputting the predicted class label for an
arbitrary Instance). Currently implemented classifiers
include k-nearest neighbor, AdaBoost.M1 (a multi-class
version of Adaboost [22]), and decision stumps
(decision trees with a height of one, for use with
AdaBoost.M1). Instance, Instances, and all Classifiers
are implemented directly in ChucK, so extending this

Figure 2. Classification in ChucK: performing
feature extraction with a FeatureCollector,
creating a new Instance with the extracted
features, and using AdaBoostM1 (trained
elsewhere) to classify each frame.

framework requires merely adding the appropriate
ChucK code. For example, modifying a classifier
implementation or adding a new classifier does not
require any coding outside ChucK, recompiling, or even
restarting of ChucK code already running. The while-
loop in Figure 2 shows a new Instance being created
from a feature vector and classified by an AdaBoost
Classifier.

4.3. User Interface for On-the-fly Classification
To demonstrate the usefulness of our system and
provide new users with a convenient starting place, we
have implemented a simple keyboard-driven interface in
ChucK for extracting features, training a binary (two-
class) classifier, and performing classification of new
inputs on-the-fly. The controls for this interface are
described in Table 2, along with the parameters one
might wish to set for each step of classification.

The use of a FeatureCollector ensures that, in order
to change the types of features used for classification,
one need only change the definition of the global
UGen/UAna patch where the inputs to the
FeatureCollector are defined. The adherence of all
Classifiers to a common interface ensures that, in order
to change the classifier used, one need only change the
instantiation of the classifier and set any classifier-
specific parameters (e.g., the number of training rounds
used by AdaBoost). It is easy to use one hop size for

extracting training data (to control the size and variety
of the training set) and another when making predictions
on new data (to control the granularity of the
predictions, as well as the computational costs of feature
extraction in both cases). Furthermore, note that the
extracted audio features do not necessarily have to
correspond to the features supplied to the classifier; for
example, one might wish to train and run the classifier
on higher-level statistics such as the means and (co-)
variances of features over several subsequent frames, as
done in [2], [26]. This involves a trivial code
modification of a few lines.

User
Action Result

Parameters
(in code)

Hold
‘1’

While key is pressed, extracts
one feature vector per frame,
creates from it a new Instance
of Class 1, and adds it to the
training set.

Hop size

Hold
‘2’

Same as above, but labels as
Class 2. Hop size

Press
‘3’

Trains classifier on all training
instances recorded so far.

Classifier
parameters

Hold
‘4’

While key is pressed, extracts
one feature vector per frame,
creates from it a new unlabeled
Instance, and classifies it with
the trained classifier.

Hop size,
action taken
based on
predicted
class

Press
‘5’

Resets classifier and throws out
all recorded training examples.

Table 2. Controls for on-the-fly classification
interface.

5. CASE STUDIES

To demonstrate the usefulness of our ChucK
classification architecture and motivate discussion of the
aesthetic and technical considerations involved in on-
the-fly learning, we have implemented three case studies
applying classification to simple real-time musical tasks.
The complexity of the code in each case is such that an
experienced ChucK coder should be able to implement
any within a few minutes, starting from the
classification framework and user interface described
above. The first two tasks were chosen as examples of
simple classification problems that might be useful in an
improvisatory, interactive live-coding context, and for
which training data would be easy to obtain in such a
context. The third task is intended as a proxy for an
arbitrary audio classification task of greater complexity,
where the chosen features are a poor match for the task
(as is entirely likely for arbitrary complex tasks chosen
on-the-fly), but the learning algorithm is powerful. In
each test, we provide rough assessment of qualitative
and quantitative metrics of success pertinent to an on-
the-fly, interactive context, in lieu of rigorous
quantitative performance testing that is unlikely to be
relevant to users applying our infrastructure to different
problems using different features and different
classifiers. In circumstances in which a more traditional

evaluation paradigm is desired, one can use ChucK’s
file I/O capabilities to load training and testing datasets
from saved files and produce accuracy scores given the
ground truth. Upcoming work includes augmenting I/O
functionality for saving and reloading trained classifiers.

5.1. kNN for Vowel/Consonant and Sung Range
Identification

K-nearest neighbor (kNN) classifiers employ a
conceptually simple learning method. During the
training phase, they merely record the feature and class
values of each training instance. To make a prediction
for a new instance, kNN finds its k nearest neighbors
using a Euclidean distance metric in the feature space,
then assigns the instance a class label based on a
majority vote of those k neighbors.

In our first example task, we extracted the RMS,
spectral centroid, spectral rolloff, and spectral flux for
two classes of speech input: vowels and consonants.
Training features were extracted in 1024-sample frames
using a 512-sample Hann window and a hop size of 0.1
second. Training data is simple to supply: a speaker can
simply say several vowels while holding ‘1,’ then say
several consonants while holding ‘2.’ Because no
training procedure is required beyond recording the
labelled feature vectors, the classifier is immediately
ready to use, and it will very accurately classify vowels
and consonants in speech input while the user holds ‘4.’

Instead of merely recording the predicted class label
for each new frame, as one might do in a traditional
classification system, we broadcast the incoming audio
panned to the left or right output channel according to
whether it is classified as a vowel or consonant.
Classification accuracy is near-perfect if the training
data lasts a second or two and covers a good range of
inputs (e.g., “aaeeeiiioouuhh”, “kkffsssttshhh/silence/”),
and the panning is acceptably responsive for hop sizes
of 0.05 second.

It is trivial to change the classification task
performed. For example, we might decide to pan based
on the range of the sung pitch (high/low) instead of
vowel/consonant. To accomplish this, we can simply
replace the timbral features with the magnitude
spectrum in the UAna feature extraction patch and
retrain the classifier (holding ‘1’ while singing a few
low pitches and ‘2’ while singing a few high pitches).
For approximately 1 second of training data (i.e., 5
training instances from each class), kNN performs
nearly flawlessly on this task.

5.2. kNN for Trackpad Gesture Identification
The user interface code can be used with slight
modification to classify data other than audio features.
For example, it may be useful to classify gestures from
sensor data or other computer inputs. This requires
merely defining and extracting features from that data
source over time and constructing from them the
labelled instances to pass to the classifier.

In our second example, we performed classification
of trackpad finger gestures (e.g., line, circle, figure-

eight, etc.). We modified the user interface code to
extract features for just one training instance every time
‘1’ or ‘2’ was held down, and to accept one new
instance to classify every time ‘4’ was held down, where
in both cases the trackpad gesture was assumed to take
place over the duration of the key press. Our feature
vector consisted of ten (x,y) trackpad position
coordinates, sampled uniformly over the duration of the
gesture, and normalized to a starting position of (0,0).
Using a kNN classifier trained on three instances of
each class, we were able to distinguish between
horizontal and diagonal lines, between circles and
spirals, or between circles and figure-eights nearly
perfectly.

5.3. AdaBoost for Artist Identification
Audio artist identification, wherein the performance
artist must be classified from the raw audio of a song, is
a task more representative of the level of challenge of
MIR research problems (artist identification has its own
MIREX track, for example). Unlike the examples above,
there is no way to guess a means of differentiating
between arbitrary artists on the basis of frame-level
audio features; some sort of learning or modelling is
truly essential.

AdaBoost is a powerful algorithm that been used
successfully for artist classification (e.g., by Bergstra et
al. in [2], placing 2nd in MIREX 2005). AdaBoost is a
“meta-learning” algorithm that repeatedly applies a base
classifier to variants of the original learning problem,
each with a different weight distribution over the
training instances. The output of each of these training
rounds is a simple prediction rule, each of which is
weighted and combined into a single complex prediction
rule output by AdaBoost at the completion of training.
In essence, boosting algorithms such as AdaBoost are
“based on the observation that finding many rough rules
of thumb can be a lot easier than finding a single, highly
accurate prediction rule” [22]. The method by which
AdaBoost weights training instances and weak
predictors allows for theoretical bounds on its training
error and classification error under appropriate
conditions, and the algorithm also often performs very
well in practice on a variety of problems.

Bergstra et al.’s industrial-strength application of
AdaBoost to artist classification used decision trees and
decision stumps as base learners, in conjunction with a
suite of state-of-the-art features. Here, we also boosted
on a decision stump, but we merely used the same four
timbral features as in Section 5.1. Furthermore, while
Bergstra aggregated audio feature statistics over several
consecutive frames, we continued to classify a single
frame at a time. We also limited AdaBoost to 50
training rounds (a relatively low number).

To provide training data, we played a two-second clip
from each of three songs by Led Zeppelin (class 1) and
three songs by Joni Mitchell (class 2) (played into the
laptop’s internal microphone). During training, we
extracted the features using the same parameters as in
section 5.1, but with a hop size of .05 seconds, therefore

supplying 120 training instances for each class. After 50
training rounds (taking about 5 seconds total), AdaBoost
achieved 82.5% accuracy. To test, we played 10 seconds
from each of 3 different songs by each artist. AdaBoost
achieved 72.3% accuracy in frame-level classification
(in fact, accuracy for most songs was much higher,
except frames from “Stairway to Heaven” were
overwhelmingly classified as Joni Mitchell).

This accuracy is significantly less than Bergstra (77%
on a 77-artist dataset), yet impressively better than
random when considering the unsuitability of the
features, the short training time, and the paltry amount
of training data. Depending on the context, accuracy
might easily be improved by supplying more data, using
more informative features, using feature statistics
averaged over multiple frames, allowing AdaBoost to
train for more rounds, etc. These modifications could be
made on-the-fly according to the desired accuracy and
the time available. In the extreme case, one could
duplicate Bergstra’s implementation in ChucK, train the
classifier on a large amount of data, and expect excellent
classification accuracy.

6. DISCUSSION OF ON-THE-FLY
CLASSIFICATION IN MUSIC

Machine learning research focuses to a great extent on
the theoretical properties of classifiers and their
implications for accuracy on different categories of
problems. Applied machine learning—including work in
MIR—is also concerned with discovering how
accurately and quickly algorithms perform on real data.
Much intuition and knowledge from both areas is
directly applicable to on-the-fly classification in music
performance. For example, kNN is known to be easily
overwhelmed by noisy, irrelevant, or too numerous
features [32], making its application problematic if it is
not clear which available features will be most relevant
to the target concept. AdaBoost may be a wiser choice
for such problems, as its accuracy is not hurt by these
properties (assuming a suitable base learner).

While standard quantitative metrics such as time and
accuracy may be very relevant to applying classification
in a music performance context, the tradeoffs among
these metrics may be quite different than in more
traditional applications. Whereas a MIR researcher may
look for the most accurate algorithm whose training
time is feasible on the available data (where “feasible”
may entail days or even weeks!), a user of on-the-fly
classification in music may demand that the training
time is absolutely minimal (and predictably so), even at
significant costs in prediction accuracy. Additionally,
applying machine learning in a music performance
context brings to light the importance of more
qualitative aspects of algorithm behavior: Are the sorts
of mistakes a classifier makes musically consequential?
aesthetically unforgivable? actually desirable? Is the
time required to train a classifier to the desired
accuracy—more precisely, to an appropriate level of
risk considering the likelihood and consequences of
inaccurate predictions—appropriate for a performance?

a rehearsal? solitary experimentation? Is the interface
for controlling a classifier suitable to the context and the
user? Does there exist adequate means of reasoning
about and mitigating time requirements and incurred
risk, using the control interface and the available
feedback?

Different classifiers, control interfaces, and musical
contexts imply different responses to these questions.
For example, one finds in practice that it is very easy to
iteratively improve kNN’s accuracy with our simple
user interface by adding training examples on-the-fly. If
one notices that the kNN vowel/consonant system does
not classify /ar/ correctly, one can simply record some
new training input of this sound with the desired label
and expect the classifier performance to improve from
then on without further effort. However, if one wishes to
add examples to AdaBoost to improve its performance,
one has to re-run the training stage of the algorithm (i.e.,
repeat all 50 training iterations). Even when the
performance context allows for this delay, there is
something less gratifying than the immediacy of the
train/listen/re-train/listen interaction offered by kNN.
On the other hand, the classification time of kNN scales
less well with the number of training examples, so an
over-eager user who supplies very many examples may
overload the system and result in classification
computation interfering with audio sample generation.
While the examples presented above worked without
problem in real-time, the computational feasibility of
any particular approach to learning is highly dependent
on the user, goal, and context.

Unfortunately, the peculiar requirements for on-the-
fly-music classification are not characteristic of
problems most typically considered in theoretical or
applied machine learning, so there does not exist a
standard body of algorithms addressing these
requirements, nor established rules of thumb for
managing these requirements when building and using
such systems. In fact, many qualitatively desirable
behaviors, such as the tight interaction offered by kNN,
may not even be considered explicitly until users build a
system, begin to use it, and find that they are satisfied or
dissatisfied. The first implication of this observation is
that tools supporting on-the-fly classification in music
performance should support rapid prototyping and
experimentation, so that users may efficiently explore a
range of possible implementations until they find one
that “feels good.” We strive to accomplish this in
ChucK, a language whose design goals have included
rapid prototyping ability since its birth, but we plan to
continue improving upon prototyping ability by making
available a growing set of feature extractors and
classifiers that users can employ out-of-the-box. We are
currently developing a central repository where users
can also contribute their own classifiers and interface
code.

The second implication of the uniqueness of this
problem space is the need to consider in a principled
way the matching of tools (algorithms and their control
interfaces) to musical tasks. Framed thus, real-time

classification in performance is an HCI problem, and
one that researchers relentlessly explore in music under
the umbrella of controller design (see e.g. [27]).

It is safe to say that there exist many tools from
machine learning that have great potential to better
match the task of real-time music performance than the
standard classifiers discussed above. Most obviously,
on-line learning algorithms continue learning as data
becomes available [11], alleviating the need to re-train
from scratch and improving the immediacy of
interaction between the algorithm and the user. We
venture, however, that the uniqueness of real-time, on-
the-fly learning in music performance precludes existing
algorithms developed for other fields from effectively
addressing all the relevant requirements of this problem
space. We are therefore also excited to consider
adapting existing algorithms for use especially in this
context, for example by devising and exposing
musically-relevant, semantic-level control parameters,
or by adapting learning objective functions to reflect
aspects of the musical context.

7. CONCLUSIONS

We have built upon our prior integration of analysis and
synthesis in ChucK to provide a foundation to extract
features and learn from them using standard
classification algorithms. Using ChucK’s extractors for
commonly-used features, growing collection of standard
classifiers, and extensible architecture for adding new
learning algorithms, many MIR algorithms can be easily
ported to ChucK without modification. ChucK’s support
for rapid prototyping also makes it possible for
researchers to explore implementation of new MIR
algorithms in the language. The same tools for feature
extraction, classification, and prototyping are also useful
to computer music performers and composers who
continue a tradition of employing learning to support
facets of machine musicianship and algorithmic
composition.

While MIR researchers and musicians already have
several choices of toolkits and languages for integrating
learning into their work, we are excited that ChucK
offers both groups the abilities to perform flexible
feature extraction, employ robust standard classification
algorithms, and apply state-of-the-art MIR solutions in a
widely-used and ever-evolving computer music
performance language. We hope this work will
significantly lower barriers to applying powerful MIR
algorithms for harmonic, rhythmic, structural, and other
high-level analysis tasks to live musical performance
contexts, where they may open up opportunities for new
forms of interaction between computers and humans.
Moreover, the code for these tasks is written in ChucK,
so users can modify and extend these behaviors without
the need for externals, re-compilation, or otherwise
interrupting the music.

Our work also naturally facilitates the training and
application of classifiers on-the-fly, a task for which we
have constructed a simple user interface and which we
have begun to explore in three case studies. Learning

new concepts during performance has rarely been
considered in MIR or computer music, but it is a
compelling tool for allowing computers to bridge the
semantic gap between available audio or gestural
features and high-level musical concepts of immediate
interest, permitting interaction between humans and
computers to occur on this higher level.

In general, the integration of classification tools into
a music performance language raises interesting
questions about how to manage both quantitative and
qualitative aspects of classifier behavior in a
performance context. Applying a human-computer
interaction perspective to on-the-fly learning in music
will motivate our next steps in exploring existing and
new learning algorithms. In the meantime, we hope that
other researchers and performers will begin to explore
ChucK’s learning abilities for themselves and become
inspired to create new kinds of music, apply existing
algorithms in new ways, and otherwise build on the
foundation we have established.

ACKNOWLEDGEMENTS

We would like to thank LibXtract for providing an
open-source and highly useful set of feature extraction
primitives and their implementations, and to gratefully
acknowledge the reviewers for their insightful
comments. This material is based upon work supported
under a National Science Foundation Graduate Research
Fellowship.

REFERENCES

[1] Amatriain, X., P. Arumi, and D. Garcia, “CLAM: A
framework for efficient and rapid development of
cross-platform audio applications,” Proceedings of
ACM Multimedia, Santa Barbara, CA, 2006.

[2] Bergstra, J., N. Casagrande, D. Erhan, D. Eck, and
B. Kégl, “Aggregate features and AdaBoost for
music classification,” Machine Learning, vol. 65,
pp. 473–84, 2006.

[3] Bray, S., and G. Tzanetakis, “Implicit patching for
dataflow-based audio analysis and synthesis,”
Proceedings of the International Conference on
Music Information Retrieval, London, UK, 2005.

[4] Bresin, R., “Artificial neural networks based models
for automatic performance of musical scores,”
Journal of New Music Research, vol. 27, no. 3,
1998, pp. 239–70.

[5] Casagrande, N., D. Eck, and B. Kégl, “Frame-level
audio feature extraction using AdaBoost,”
Proceedings of the International Conference on
Music Information Retrieval, London, UK, 2005,
pp. 345–50.

[6] Cope, D., Computers and musical style. Madison,
WI: A-R Editions, Inc. 1991.

[7] Dannenberg, R., “An on-line algorithm for real-time
accompaniment,” Proceedings of the International
Computer Music Conference, 1985, 193–8.

[8] Downie, J. S., K. West, A. Ehmann, and E. Vincent,
“The 2005 Music Information Retrieval Evaluation

eXchange (MIREX 2005): Preliminary overview,”
Proceedings of the International Symposium on
Music Information Retrieval, London, UK, 2005,
pp. 320–3.

[9] Eck, D., T. Bertin-Mahieux, and P. Lamere,
“Autotagging music using supervised machine
learning,” Proceedings of the International
Conference on Music Information Retrieval, Vienna,
Austria, 2007.

[10] Ellis, D. P. W., and G. E. Poliner, “Classification-
based melody transcription,” Machine Learning,
vol. 65, 2006, pp. 439–56.

[11] Freund, Y., and R. E. Schapire, “Game theory, on-
line prediction and boosting,” Proceedings of the
Ninth Annual Conference on Computational
Learning Theory, 1996, pp. 325–32.

[12] Fujinaga, I., and K. MacMillan, “Realtime
recognition of orchestral instruments,” Proceedings
of the International Computer Music Conference,
2000, pp. 141–3.

[13] Kapur, A., and E. Singer, “A retrieval approach for
human/robotic musical performance,” Proceedings
of the International Conference on Music
Information Retrieval, 2006, pp. 363–4.

[14] Klapuri, A. P., A. J. Eronen, and J. T. Astola,
“Analysis of the meter of acoustic musical signals,”
IEEE Transactions on Audio, Speech and Language
Processing, vol. 14, no. 1, 2006.

[15] Lew, M. S., N. Sebe, C. Djeraba, and R. Jain,
“Content-based multimedia information retrieval:
State of the art and challenges,” ACM Transactions
on Multimedia Computing, Communications and
Applications, vol. 2, no. 1, Feb., 2006, pp. 1–19.

[16] Liu, D., L. Lu, and H.-J. Zhang, “Automatic mood
detection from acoustic music data,” Proceedings of
the International Symposium on Music Information
Retrieval, 2003.

[17] Pachet, F., “The Continuator: Musical interaction
with style,” Proceedings of the International
Computer Music Conference, 2002, pp. 211–8.

[18] Raphael, C., “A Bayesian network for real-time
musical accompaniment,” Proceedings of Neural
Information Processing Systems, Vancouver,
Canada, 2001.

[19] Rodet, X., “What would we like to see our music
machines capable of doing?” Computer Music
Journal, vol. 15, no. 4, Winter 1991, pp. 51–4.

[20] Rowe, R., Machine musicianship. Cambridge, MA:
The MIT Press, 2001.

[21] Russell, S., and P. Norvig, Artificial intelligence: A
modern approach, 2nd ed. Upper Saddle River, NJ:
Pearson, 2003.

[22] Schapire, R., “The boosting approach to machine
learning: An overview,” MSRI Workshop on
Nonlinear Estimation and Classification, Berkeley,
CA, 2001.

[23] Scheirer, E., and M. Slaney, “Construction and
evaluation of a robust multifeature speech/music
discriminator,” Proceedings of the International
Conference on Acoustics, Speech, and Signal
Processing, 1997, pp. 1331–4.

[24] Tindale, A., A. Kapur, G. Tzanetakis, and I.
Fujinaga, “Retrieval of percussion gestures using
timbre classification techniques,” Proceedings of the
International Conference on Music Information
Retrieval, 2004, pp. 541–5.

[25] Todd, P., and D. Loy, Music and connectionism.
Cambridge, MA: The MIT Press, 1991.

[26] Tzanetakis, G., G. Essl, and P. R. Cook, “Automatic
musical genre classification of audio signals,”
Proceedings of the International Symposium on
Music Information Retrieval, 2001.

[27] Wanderley, M. M., and N. Orio, “Evaluation of
input devices for music expression: Borrowing tools
from HCI,” Computer Music Journal, vol. 26, no. 3,
2002, pp. 62–76.

[28] Wang, G., and P. R. Cook, “ChucK: A concurrent,
on-the-fly audio programming language,”
Proceedings of the International Computer Music
Conference, 2003.

[29] Wang, G., R. Fiebrink, and P. R. Cook, “Combining
analysis and synthesis in the ChucK programming
language,” Proceedings of the International
Computer Music Conference, Copenhagen,
Denmark, 2007.

[30] Weinberg, G., and S. Driscoll, “Toward robotic
musicianship,” Computer Music Journal, vol. 30,
no. 4, Winter 2006, pp. 28–45.

[31] Wessel, D., “Instruments that learn, refined
controllers, and source model loudspeakers,”
Computer Music Journal, vol. 15, no. 4, Winter
1991, pp. 82–6.

[32] Wettschereck, D., D. W. Aha, and T. Mohri, “A
review and empirical evaluation of feature
weighting methods for a class of lazy learning
algorithms,” Artificial Intelligence Review, vol. 11,
1997, pp. 273–314.

[33] Witten, I. H., and E. Frank, Data mining: Practical
machine learning tools and techniques, 2nd ed. San
Francisco: Morgan Kaufmann, 2005.

