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ABSTRACT 

Machine learning techniques such as classification have 
proven to be vital tools in both music information 
retrieval and music performance, where they are useful 
for leveraging data to learn and model relationships 
between low-level features and high-level musical 
concepts. Explicitly supporting feature extraction and 
classification in a computer music programming 
language could lower barriers to musicians applying 
classification in more performance contexts and 
encourage exploration of music performance as a unique 
machine learning application domain. Therefore, we 
have constructed a framework to execute feature 
extraction and classification in ChucK, forming a 
foundation for porting MIR solutions into a real-time 
performance context as well as developing new 
solutions directly in the language. We describe this 
work in depth, prefaced by introductions to music 
information retrieval, machine learning, and the ChucK 
language. We present three case studies of applying 
learning in real-time to performance tasks in ChucK, 
and we propose that fusing learning abilities with 
ChucK’s real-time, on-the-fly aesthetic suggests 
exciting new ways of using and interacting with learning 
algorithms in live computer music performance. 

1. INTRODUCTION 

Music information retrieval (MIR) involves much active 
research on making sense of audio, symbolic, and other 
representations of musical information, so that the vast 
quantities of musical data available to us may be 
searched through, visualized, explored, and otherwise 
better understood and efficiently utilized. Machine 
learning is widely used in MIR to translate from the 
low-level features that are easily extracted from musical 
data to higher-level representations that are more 
directly relevant to retrieval tasks of interest. While 
most MIR research focuses on off-line analysis and 
retrieval (e.g., of audio files stored on disk), numerous 
MIR problems—including beat tracking, transcription, 
score following, and identification of instrumentation 
and gesture—are directly applicable to live music 
performance as well. Adding explicit support of 
machine learning to a computer music language thus 
lowers barriers to implementing MIR solutions in a real-
time performance context, making these solutions 
accessible to a wider user base of composers and 
performers and encouraging MIR researchers to 
consider creative applications of their work. 

Of course, computer music composers and 
developers have long employed machine learning 
techniques to a variety of imaginative ends, only some 
of which involve the straightforward learning of musical 
concepts from low-level features. A computer music 
language that supports employment of “out-of-the-box” 
machine learning algorithms for traditional learning 
applications yet also allows easy modification of the 
algorithms and architecture code within the language 
could facilitate many kinds of creative experimentation. 

Finally, we believe the creative and practical 
possibilities presented by real-time, on-the-fly 
application of machine learning in music performance 
are under-explored, along with their ramifications for 
research in machine learning and human-computer 
interaction. By constructing a foundation for machine 
learning in ChucK, a language that embraces a strongly-
timed, live-coding/on-the-fly aesthetic, we hope to 
encourage exploration of such issues in research and 
performance contexts.  

In summary, we intend that ChucK offer a high-level 
programming environment wherein users may easily 
port existing MIR solutions to a performance context, 
develop new MIR solutions, and generally apply 
machine learning algorithms to music performance in 
novel ways. By facilitating development of systems in 
ChucK’s rapid prototyping and on-the-fly programming 
paradigm, this work creates new possibilities for 
exploration in a variety of research, musical, and 
pedagogical contexts.  

To these ends, we begin by acquainting the reader 
with the general landscape of MIR and the use of 
machine learning in that field, and we present examples 
of some ways in which learning has been used in music 
performance. Building upon the analysis/synthesis 
paradigm and tools recently integrated into ChucK, we 
introduce our foundational architecture for incorporating 
machine learning and MIR tools into this real-time 
performance language. We present several case studies 
in which we have used ChucK to build learning 
algorithms and apply them to musical problems in a 
real-time, on-the-fly context via a simple and general-
purpose user interface. 

2. BACKGROUND 

2.1. MIR and Machine Learning 
MIR is broadly concerned with the analysis, search, 
discovery, recommendation, and visualization of 
musical data in its many forms. A few avenues of work 



  
 
in MIR include transcribing from audio to some type of 
score representation [10]; identifying tempo and meter 
[14]; automatically annotating a work with genre [26], 
mood [16], or social tags1 [9]; and identifying 
instruments [12] or performance gestures [24].  

As in other areas of multimedia information retrieval, 
much research in MIR confronts a “semantic gap” 
between readily computable low-level features and the 
high-level semantic concepts described above. For 
example, it is not readily apparent how to translate from 
common audio features such as the magnitude spectrum, 
zero-crossing rate, or MFCCs (see [2] and [26] for a 
good overview of common audio features) to target 
concepts of interest such as harmony, meter, 
instrumentation, or genre. Such a semantic gap is often 
effectively addressed with machine learning methods 
such as classification, wherein standard algorithms such 
as k-nearest neighbor [21] (pp. 733–5), neural networks 
[21] (pp. 736–48), or AdaBoost [22] are used to predict 
the target concept, or class, for vectors of features 
extracted from the audio (or other data representation). 
Specifically, in the training stage of classification, the 
algorithm is presented with a set of training examples 
consisting of example feature vectors and their 
associated class labels (i.e., the ground truth). The 
learning algorithm outputs a prediction rule that is then 
able to predict the class labels for new data (i.e., feature 
vectors for which the class label is not known a priori). 
This is illustrated in Figure 1. For example, a classifier 
trained for instrument identification might predict the 
label “flute” or “violin” for a vector of spectral features 
extracted from a frame of audio. 

 

 
Figure 1. Training and running a classifier. 

Learning algorithms differ in the forms of the 
prediction rules they output, their approaches to 
constructing those rules from the training data, their 
flexibility in handling different types of data (e.g., the 
number of class labels accommodated), and the 
computational requirements for training and 
classification. All classifiers, however, share the 

                                                             
1 Users of social tagging services such as Flikr, Del.icio.us, and last.fm 
apply free-form textual “social tags” to content such as pictures, URLs, 
and music. 

property of being a data-driven approach to learning to 
apply labels to feature vectors. The quality of the 
predictions is dependent in large part on the quantity 
and quality of the training data. Designing a new 
system—no matter the form of the raw data or target 
concept—thus entails choosing a method to extract 
relevant features, constructing a labeled training data 
set, choosing a suitable classifier for the problem of 
interest, and training the classifier on the data. The 
generality of classification algorithms and their 
straightforward requirements for application make them 
an attractive alternative to designing predictors from 
scratch; in fact, classifiers often provide working 
solutions to problems that are otherwise intractable (e.g., 
prediction of fine-grained genre from frame-level audio 
features).  

The first applications of classification in MIR date to 
the late 1990s [23], and classification has been used in 
copious MIR systems since then. In fact, all of the 
example systems referenced in the first paragraph of this 
section have employed classification as a central 
component. The MIREX competition [8] offers 
benchmark datasets against which participating teams 
may submit classifiers for problems such as genre and 
mood; now entering its fourth year, it is a testament to 
MIR’s established reliance on classification.  

Most MIR research on music itself (as opposed to 
related social/cultural data or metadata) is restricted to 
pre-recorded audio, symbolic data files, or other static, 
non-performative musical representations and contexts. 
However, there are notable exceptions: following 
Dannenberg [7], Kapur [13] and Raphael [18] have built 
impressive systems that carry out MIR tasks in the 
context of robot/computer accompaniment of a live 
human performer, and there exist other systems such as 
[5] that accomplish real-time, non-performance analysis 
tasks. Furthermore, many of the analysis tasks 
commonly undertaken in MIR are still relevant to real-
time music performance, and in some cases the 
algorithms can in principle be applied to live, streaming 
musical data without modification. Clearly, there exists 
great potential for application and adaptation of MIR 
techniques by composers and performers. 

2.2. Computer Music and Machine Learning  

There is a rich history of applications of machine 
learning techniques in computer music. Neural 
networks’ parallels to human musical perception and 
cognition make them a compelling tool (see e.g. [25]), 
and they were used in some of the earliest applications 
of learning in music, including real-time pitch tracking 
[19] and gesture identification [31]. Whereas MIR 
typically uses machine learning as an analysis tool, 
computer musicians have also used learning algorithms 
for music creation, for example as tools for generating 
compositions in a given style [6], expressive 
performance rendering [4], and interactive 
improvisation [17][30]. In general, many applications of 
machine learning in music can be seen as supporting 
facets of machine musicianship, or implementing 



  
 
components of human musicianship in a computer in 
order to expand opportunities for composition, 
interactive performance, and pedagogy (see [20], which 
also provides numerous examples of approaches to 
incorporating learning in computer music). Learning 
thus often serves a similar purpose as in MIR, to bridge 
the gap between available features and the high-level 
musical concepts essential for musicianship.  

The sort of analysis tasks performed in many 
computer music learning systems—even those whose 
end goal is music creation—have much in common with 
MIR systems. In fact, many of these systems, as well as 
the score following systems in [13][18] mentioned 
above, so blur the line between MIR and computer 
music performance that labeling them in one category or 
the other is purely a matter of context. However, despite 
the overlap in goals between the two fields, and the 
huge potential for application of existing MIR solutions 
to computer music performance, there is not much 
sharing of tools between MIR research and computer 
music. Most MIR systems are designed within a 
framework that does not easily accommodate music 
generation. The MARSYAS framework [3] and CLAM 
library [7] are two exceptional MIR tools that do 
support sound synthesis, but they are toolkits that are 
used within C++, not a language designed to fully 
support computer music. On the other hand, computer 
music languages’ support for the analysis tasks 
necessary for learning are problematic, in that analysis 
code must be written outside the language. This impedes 
tight integration among analysis, synthesis, and control 
interface code, limits flexibility (the external must be 
edited and recompiled after modification), and requires 
the user to have high fluency in another programming 
language. 

3. CHUCK 

ChucK is a high-level audio programming language 
whose programming model promotes a strong 
awareness of, and provides low-level access and control 
over, time and concurrency [28]. The operational and 
programmatic aesthetics of the language encourage 
rapid experimentation via on-the-fly programming, and 
its syntax promotes clarity and readability. ChucK also 
supports a precise concurrent programming model in 
which processes (called shreds) can be naturally 
synchronized with both time and data. These aspects of 
the language lend themselves well (and in different 
ways) to synthesis, analysis, and the integration of the 
two. 

In the recently developed ChucK analysis framework 
[29], we introduced the notion of a “Unit Analyzer” 
(UAna) and a new syntax and semantics specifically 
tailored to audio analysis programming. These 
leveraged existing synthesis infrastructure where 
appropriate, introduced new programming constructs to 
specify and control audio analysis, and provided basic 
UAnae for domain transformation (e.g., FFT, DCT), 
data routing, and simple feature extraction (e.g., 
Centroid, Flux). The UAna model offers complete and 

dynamic control over low-level parameters such as FFT 
windowing and hop size, as well as the ability to craft 
sophisticated analysis networks. Furthermore, analysis 
tasks can run in tandem with each other and work 
cooperatively with synthesis processes in real-time. This 
programming model and system provided the first steps 
necessary for on-the-fly learning: the means to perform 
highly customized feature extraction solely from within 
the language. 

4. INFRASTRUCTURE FOR LEARNING 

4.1. Feature Extraction 

Desiring to supply standard features used in MIR 
analysis, we have implemented several new feature 
extraction UAnae in ChucK. A selection of 
implemented feature extractors is shown in Table 1. 
Note that additional composite features can be defined 
directly in ChucK using these basic features; for 
example, MFCCs can be computed directly by the 
MFCC UAna, or constructed by combining more basic 
UAnae (e.g., FFT, code for Mel frequency scaling, 
DCT, etc.). This presents the programmer with ready-to-
use components as well as the option to make low-level 
modifications. 

FFT 
DCT 
Spectral Centroid 
Spectral Flux 
Spectral Rolloff 

Cross correlation 
Autocorrelation 
LPC coefficients 
MFCC coefficients 

Table 1. ChucK audio feature extractors. 

We have also implemented a FeatureCollector 
UAna class to extract vectors of arbitrary features at 
synchronous time points, offering easy ability to extract 
one feature vector per frame or per detected note onset, 
for example. The code in Figure 2 sets up a UAna patch 
to extract spectral centroid, spectral flux, and RMS from 
the mic input for every sliding-window analysis frame. 

4.2. Architecture for Classification 

We have implemented a basic object-oriented 
architecture to support classification. Our architecture is 
based on that of Weka [33], a machine learning and data 
mining toolkit that is popular in MIR, though we do not 
use the Weka libraries themselves. A data point, 
example, or instance (depending on your preferred 
terminology) is represented by the Instance object; an 
Instance contains a feature vector with an associated 
class label. The Instances class represents a full dataset 
(of zero or more Instance objects). All classifiers inherit 
from the Classifier class, which has methods for 
training (using a training set of Instances) and 
classifying (outputting the predicted class label for an 
arbitrary Instance). Currently implemented classifiers 
include k-nearest neighbor, AdaBoost.M1 (a multi-class 
version of Adaboost [22]), and decision stumps 
(decision trees with a height of one, for use with 
AdaBoost.M1). Instance, Instances, and all Classifiers 
are implemented directly in ChucK, so extending this 



  
 

 

 
Figure 2. Classification in ChucK: performing 
feature extraction with a FeatureCollector, 
creating a new Instance with the extracted 
features, and using AdaBoostM1 (trained 
elsewhere) to classify each frame. 

framework requires merely adding the appropriate 
ChucK code. For example, modifying a classifier 
implementation or adding a new classifier does not 
require any coding outside ChucK, recompiling, or even 
restarting of ChucK code already running. The while-
loop in Figure 2 shows a new Instance being created 
from a feature vector and classified by an AdaBoost 
Classifier. 

4.3. User Interface for On-the-fly Classification 
To demonstrate the usefulness of our system and 
provide new users with a convenient starting place, we 
have implemented a simple keyboard-driven interface in 
ChucK for extracting features, training a binary (two-
class) classifier, and performing classification of new 
inputs on-the-fly. The controls for this interface are 
described in Table 2, along with the parameters one 
might wish to set for each step of classification. 

The use of a FeatureCollector ensures that, in order 
to change the types of features used for classification, 
one need only change the definition of the global 
UGen/UAna patch where the inputs to the 
FeatureCollector are defined. The adherence of all 
Classifiers to a common interface ensures that, in order 
to change the classifier used, one need only change the 
instantiation of the classifier and set any classifier-
specific parameters (e.g., the number of training rounds 
used by AdaBoost). It is easy to use one hop size for 

extracting training data (to control the size and variety 
of the training set) and another when making predictions 
on new data (to control the granularity of the 
predictions, as well as the computational costs of feature 
extraction in both cases). Furthermore, note that the 
extracted audio features do not necessarily have to 
correspond to the features supplied to the classifier; for 
example, one might wish to train and run the classifier 
on higher-level statistics such as the means and (co-) 
variances of features over several subsequent frames, as 
done in [2], [26]. This involves a trivial code 
modification of a few lines. 

 
User 
Action Result 

Parameters 
(in code) 

Hold 
‘1’ 

While key is pressed, extracts 
one feature vector per frame, 
creates from it a new Instance 
of Class 1, and adds it to the 
training set. 

Hop size 

Hold 
‘2’ 

Same as above, but labels as 
Class 2. Hop size 

Press 
‘3’ 

Trains classifier on all training 
instances recorded so far. 

Classifier 
parameters 

Hold 
‘4’ 

While key is pressed, extracts 
one feature vector per frame, 
creates from it a new unlabeled 
Instance, and classifies it with 
the trained classifier. 

Hop size, 
action taken 
based on 
predicted 
class 

Press 
‘5’ 

Resets classifier and throws out 
all recorded training examples.  

Table 2. Controls for on-the-fly classification 
interface. 

5. CASE STUDIES 

To demonstrate the usefulness of our ChucK 
classification architecture and motivate discussion of the 
aesthetic and technical considerations involved in on-
the-fly learning, we have implemented three case studies 
applying classification to simple real-time musical tasks. 
The complexity of the code in each case is such that an 
experienced ChucK coder should be able to implement 
any within a few minutes, starting from the 
classification framework and user interface described 
above. The first two tasks were chosen as examples of 
simple classification problems that might be useful in an 
improvisatory, interactive live-coding context, and for 
which training data would be easy to obtain in such a 
context. The third task is intended as a proxy for an 
arbitrary audio classification task of greater complexity, 
where the chosen features are a poor match for the task 
(as is entirely likely for arbitrary complex tasks chosen 
on-the-fly), but the learning algorithm is powerful. In 
each test, we provide rough assessment of qualitative 
and quantitative metrics of success pertinent to an on-
the-fly, interactive context, in lieu of rigorous 
quantitative performance testing that is unlikely to be 
relevant to users applying our infrastructure to different 
problems using different features and different 
classifiers. In circumstances in which a more traditional 



  
 
evaluation paradigm is desired, one can use ChucK’s 
file I/O capabilities to load training and testing datasets 
from saved files and produce accuracy scores given the 
ground truth. Upcoming work includes augmenting I/O 
functionality for saving and reloading trained classifiers. 

5.1. kNN for Vowel/Consonant and Sung Range 
Identification 

K-nearest neighbor (kNN) classifiers employ a 
conceptually simple learning method. During the 
training phase, they merely record the feature and class 
values of each training instance. To make a prediction 
for a new instance, kNN finds its k nearest neighbors 
using a Euclidean distance metric in the feature space, 
then assigns the instance a class label based on a 
majority vote of those k neighbors. 

In our first example task, we extracted the RMS, 
spectral centroid, spectral rolloff, and spectral flux for 
two classes of speech input: vowels and consonants. 
Training features were extracted in 1024-sample frames 
using a 512-sample Hann window and a hop size of 0.1 
second. Training data is simple to supply: a speaker can 
simply say several vowels while holding ‘1,’ then say 
several consonants while holding ‘2.’ Because no 
training procedure is required beyond recording the 
labelled feature vectors, the classifier is immediately 
ready to use, and it will very accurately classify vowels 
and consonants in speech input while the user holds ‘4.’ 

Instead of merely recording the predicted class label 
for each new frame, as one might do in a traditional 
classification system, we broadcast the incoming audio 
panned to the left or right output channel according to 
whether it is classified as a vowel or consonant. 
Classification accuracy is near-perfect if the training 
data lasts a second or two and covers a good range of 
inputs (e.g., “aaeeeiiioouuhh”, “kkffsssttshhh/silence/”), 
and the panning is acceptably responsive for hop sizes 
of 0.05 second. 

It is trivial to change the classification task 
performed. For example, we might decide to pan based 
on the range of the sung pitch (high/low) instead of 
vowel/consonant. To accomplish this, we can simply 
replace the timbral features with the magnitude 
spectrum in the UAna feature extraction patch and 
retrain the classifier (holding ‘1’ while singing a few 
low pitches and ‘2’ while singing a few high pitches). 
For approximately 1 second of training data (i.e., 5 
training instances from each class), kNN performs 
nearly flawlessly on this task. 

5.2. kNN for Trackpad Gesture Identification 
The user interface code can be used with slight 
modification to classify data other than audio features. 
For example, it may be useful to classify gestures from 
sensor data or other computer inputs. This requires 
merely defining and extracting features from that data 
source over time and constructing from them the 
labelled instances to pass to the classifier. 

In our second example, we performed classification 
of trackpad finger gestures (e.g., line, circle, figure-

eight, etc.). We modified the user interface code to 
extract features for just one training instance every time 
‘1’ or ‘2’ was held down, and to accept one new 
instance to classify every time ‘4’ was held down, where 
in both cases the trackpad gesture was assumed to take 
place over the duration of the key press. Our feature 
vector consisted of ten (x,y) trackpad position 
coordinates, sampled uniformly over the duration of the 
gesture, and normalized to a starting position of (0,0). 
Using a kNN classifier trained on three instances of 
each class, we were able to distinguish between 
horizontal and diagonal lines, between circles and 
spirals, or between circles and figure-eights nearly 
perfectly. 

5.3. AdaBoost for Artist Identification 
Audio artist identification, wherein the performance 
artist must be classified from the raw audio of a song, is 
a task more representative of the level of challenge of 
MIR research problems (artist identification has its own 
MIREX track, for example). Unlike the examples above, 
there is no way to guess a means of differentiating 
between arbitrary artists on the basis of frame-level 
audio features; some sort of learning or modelling is 
truly essential. 

AdaBoost is a powerful algorithm that been used 
successfully for artist classification (e.g., by Bergstra et 
al. in [2], placing 2nd in MIREX 2005). AdaBoost is a 
“meta-learning” algorithm that repeatedly applies a base 
classifier to variants of the original learning problem, 
each with a different weight distribution over the 
training instances. The output of each of these training 
rounds is a simple prediction rule, each of which is 
weighted and combined into a single complex prediction 
rule output by AdaBoost at the completion of training. 
In essence, boosting algorithms such as AdaBoost are 
“based on the observation that finding many rough rules 
of thumb can be a lot easier than finding a single, highly 
accurate prediction rule” [22]. The method by which 
AdaBoost weights training instances and weak 
predictors allows for theoretical bounds on its training 
error and classification error under appropriate 
conditions, and the algorithm also often performs very 
well in practice on a variety of problems. 

Bergstra et al.’s industrial-strength application of 
AdaBoost to artist classification used decision trees and 
decision stumps as base learners, in conjunction with a 
suite of state-of-the-art features. Here, we also boosted 
on a decision stump, but we merely used the same four 
timbral features as in Section 5.1. Furthermore, while 
Bergstra aggregated audio feature statistics over several 
consecutive frames, we continued to classify a single 
frame at a time. We also limited AdaBoost to 50 
training rounds (a relatively low number). 

To provide training data, we played a two-second clip 
from each of three songs by Led Zeppelin (class 1) and 
three songs by Joni Mitchell (class 2) (played into the 
laptop’s internal microphone). During training, we 
extracted the features using the same parameters as in 
section 5.1, but with a hop size of .05 seconds, therefore 



  
 
supplying 120 training instances for each class. After 50 
training rounds (taking about 5 seconds total), AdaBoost 
achieved 82.5% accuracy. To test, we played 10 seconds 
from each of 3 different songs by each artist. AdaBoost 
achieved 72.3% accuracy in frame-level classification 
(in fact, accuracy for most songs was much higher, 
except frames from “Stairway to Heaven” were 
overwhelmingly classified as Joni Mitchell). 

This accuracy is significantly less than Bergstra (77% 
on a 77-artist dataset), yet impressively better than 
random when considering the unsuitability of the 
features, the short training time, and the paltry amount 
of training data. Depending on the context, accuracy 
might easily be improved by supplying more data, using 
more informative features, using feature statistics 
averaged over multiple frames, allowing AdaBoost to 
train for more rounds, etc. These modifications could be 
made on-the-fly according to the desired accuracy and 
the time available. In the extreme case, one could 
duplicate Bergstra’s implementation in ChucK, train the 
classifier on a large amount of data, and expect excellent 
classification accuracy. 

6. DISCUSSION OF ON-THE-FLY 
CLASSIFICATION IN MUSIC 

Machine learning research focuses to a great extent on 
the theoretical properties of classifiers and their 
implications for accuracy on different categories of 
problems. Applied machine learning—including work in 
MIR—is also concerned with discovering how 
accurately and quickly algorithms perform on real data. 
Much intuition and knowledge from both areas is 
directly applicable to on-the-fly classification in music 
performance. For example, kNN is known to be easily 
overwhelmed by noisy, irrelevant, or too numerous 
features [32], making its application problematic if it is 
not clear which available features will be most relevant 
to the target concept. AdaBoost may be a wiser choice 
for such problems, as its accuracy is not hurt by these 
properties (assuming a suitable base learner). 

While standard quantitative metrics such as time and 
accuracy may be very relevant to applying classification 
in a music performance context, the tradeoffs among 
these metrics may be quite different than in more 
traditional applications. Whereas a MIR researcher may 
look for the most accurate algorithm whose training 
time is feasible on the available data (where “feasible” 
may entail days or even weeks!), a user of on-the-fly 
classification in music may demand that the training 
time is absolutely minimal (and predictably so), even at 
significant costs in prediction accuracy. Additionally, 
applying machine learning in a music performance 
context brings to light the importance of more 
qualitative aspects of algorithm behavior: Are the sorts 
of mistakes a classifier makes musically consequential? 
aesthetically unforgivable? actually desirable? Is the 
time required to train a classifier to the desired 
accuracy—more precisely, to an appropriate level of 
risk considering the likelihood and consequences of 
inaccurate predictions—appropriate for a performance? 

a rehearsal? solitary experimentation? Is the interface 
for controlling a classifier suitable to the context and the 
user? Does there exist adequate means of reasoning 
about and mitigating time requirements and incurred 
risk, using the control interface and the available 
feedback? 

Different classifiers, control interfaces, and musical 
contexts imply different responses to these questions. 
For example, one finds in practice that it is very easy to 
iteratively improve kNN’s accuracy with our simple 
user interface by adding training examples on-the-fly. If 
one notices that the kNN vowel/consonant system does 
not classify /ar/ correctly, one can simply record some 
new training input of this sound with the desired label 
and expect the classifier performance to improve from 
then on without further effort. However, if one wishes to 
add examples to AdaBoost to improve its performance, 
one has to re-run the training stage of the algorithm (i.e., 
repeat all 50 training iterations). Even when the 
performance context allows for this delay, there is 
something less gratifying than the immediacy of the 
train/listen/re-train/listen interaction offered by kNN. 
On the other hand, the classification time of kNN scales 
less well with the number of training examples, so an 
over-eager user who supplies very many examples may 
overload the system and result in classification 
computation interfering with audio sample generation. 
While the examples presented above worked without 
problem in real-time, the computational feasibility of 
any particular approach to learning is highly dependent 
on the user, goal, and context. 

Unfortunately, the peculiar requirements for on-the-
fly-music classification are not characteristic of 
problems most typically considered in theoretical or 
applied machine learning, so there does not exist a 
standard body of algorithms addressing these 
requirements, nor established rules of thumb for 
managing these requirements when building and using 
such systems. In fact, many qualitatively desirable 
behaviors, such as the tight interaction offered by kNN, 
may not even be considered explicitly until users build a 
system, begin to use it, and find that they are satisfied or 
dissatisfied. The first implication of this observation is 
that tools supporting on-the-fly classification in music 
performance should support rapid prototyping and 
experimentation, so that users may efficiently explore a 
range of possible implementations until they find one 
that “feels good.” We strive to accomplish this in 
ChucK, a language whose design goals have included 
rapid prototyping ability since its birth, but we plan to 
continue improving upon prototyping ability by making 
available a growing set of feature extractors and 
classifiers that users can employ out-of-the-box. We are 
currently developing a central repository where users 
can also contribute their own classifiers and interface 
code. 

The second implication of the uniqueness of this 
problem space is the need to consider in a principled 
way the matching of tools (algorithms and their control 
interfaces) to musical tasks. Framed thus, real-time 



  
 
classification in performance is an HCI problem, and 
one that researchers relentlessly explore in music under 
the umbrella of controller design (see e.g. [27]).  

It is safe to say that there exist many tools from 
machine learning that have great potential to better 
match the task of real-time music performance than the 
standard classifiers discussed above. Most obviously, 
on-line learning algorithms continue learning as data 
becomes available [11], alleviating the need to re-train 
from scratch and improving the immediacy of 
interaction between the algorithm and the user. We 
venture, however, that the uniqueness of real-time, on-
the-fly learning in music performance precludes existing 
algorithms developed for other fields from effectively 
addressing all the relevant requirements of this problem 
space. We are therefore also excited to consider 
adapting existing algorithms for use especially in this 
context, for example by devising and exposing 
musically-relevant, semantic-level control parameters, 
or by adapting learning objective functions to reflect 
aspects of the musical context. 

7. CONCLUSIONS 

We have built upon our prior integration of analysis and 
synthesis in ChucK to provide a foundation to extract 
features and learn from them using standard 
classification algorithms. Using ChucK’s extractors for 
commonly-used features, growing collection of standard 
classifiers, and extensible architecture for adding new 
learning algorithms, many MIR algorithms can be easily 
ported to ChucK without modification. ChucK’s support 
for rapid prototyping also makes it possible for 
researchers to explore implementation of new MIR 
algorithms in the language. The same tools for feature 
extraction, classification, and prototyping are also useful 
to computer music performers and composers who 
continue a tradition of employing learning to support 
facets of machine musicianship and algorithmic 
composition. 

While MIR researchers and musicians already have 
several choices of toolkits and languages for integrating 
learning into their work, we are excited that ChucK 
offers both groups the abilities to perform flexible 
feature extraction, employ robust standard classification 
algorithms, and apply state-of-the-art MIR solutions in a 
widely-used and ever-evolving computer music 
performance language. We hope this work will 
significantly lower barriers to applying powerful MIR 
algorithms for harmonic, rhythmic, structural, and other 
high-level analysis tasks to live musical performance 
contexts, where they may open up opportunities for new 
forms of interaction between computers and humans. 
Moreover, the code for these tasks is written in ChucK, 
so users can modify and extend these behaviors without 
the need for externals, re-compilation, or otherwise 
interrupting the music. 

Our work also naturally facilitates the training and 
application of classifiers on-the-fly, a task for which we 
have constructed a simple user interface and which we 
have begun to explore in three case studies. Learning 

new concepts during performance has rarely been 
considered in MIR or computer music, but it is a 
compelling tool for allowing computers to bridge the 
semantic gap between available audio or gestural 
features and high-level musical concepts of immediate 
interest, permitting interaction between humans and 
computers to occur on this higher level. 

In general, the integration of classification tools into 
a music performance language raises interesting 
questions about how to manage both quantitative and 
qualitative aspects of classifier behavior in a 
performance context. Applying a human-computer 
interaction perspective to on-the-fly learning in music 
will motivate our next steps in exploring existing and 
new learning algorithms. In the meantime, we hope that 
other researchers and performers will begin to explore 
ChucK’s learning abilities for themselves and become 
inspired to create new kinds of music, apply existing 
algorithms in new ways, and otherwise build on the 
foundation we have established. 
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