
Musical Tapestry: Re-composing Natural Sounds{

Ananya Misra1, Ge Wang2 and Perry Cook1

1Princeton University, USA, 2Stanford University, USA

Abstract

A system to aid composition with analysis, transforma-
tion, and re-synthesis of natural sounds is described.
Sinusoidal analysis is used to isolate and extract
deterministic sounds, and transients are also isolated/
extracted, leaving the stochastic background which is
parameterized by wavelet tree analysis. All of these
components become templates for the synthesis phase,
which is controlled (1) by placing templates on timelines
or in groups, (2) by real-time manipulation of para-
meters, and (3) via scripting using the ChucK language.
The result is a flexible ‘‘workbench’’ for doing modern
day musique concrète or acousmatic composition, sound
design, and other sonic sculpting tasks.

1. Motivation

Around 1950, Pierre Schaeffer developed musique con-
crète (Schaeffer, 1950, 1952). Unlike traditional music,
musique concrète starts with existing or concrete
recorded sounds, which are organized into abstract
musical structures. The existing recordings often include
natural and industrial sounds that are not conventionally
musical, but can be manipulated to make music, either by
editing magnetic tape or now more commonly through
digital sampling. Typical manipulations include cutting,
copying, reversing, looping and changing the speed of
recorded segments. Today, several other forms of
electronic/electroacoustic music also involve manipulat-
ing a set of recorded sounds. Acousmatic music

(Dhomont, 1995), for instance, evolved from musique
concrète and refers to compositions designed for
environments that emphasize the sound itself rather than
the performance-oriented aspects of the piece.

The acoustic ecology (Schafer, 1977) movement gave
rise to soundscape composition (Truax, 2002) or the
creation of realistic soundscapes from recorded environ-
mental audio. One of the key features of soundscape
composition, according to Truax, is that ‘‘most pieces can
be placed on a continuum between what might be called
‘found sound’ and ‘abstracted’ approaches’’ (Truax, 2002,
p. 6). However, while ‘‘contemporary signal processing
techniques can easily render such sounds unrecognizable
and completely abstract’’ (Truax, 2002, p. 6) a soundscape
composition piece is expected to remain recognizable even
at the abstract end of the continuum.

Sound designers for movies, theatre and art often have
a related goal of starting with real world sounds and
creating emotionally evocative sound scenes, which are
still real, yet transformed and transformative. Classic
examples include layering of various sounds to build up
the final wave sound in The Perfect Storm (‘‘Voice of the
Beast’’, 2000), and incorporating a helicopter theme into
the sound design for Black Hawk Down (Rudy, 2004).
These sound designers are ‘‘sound sculptors’’ as well, but
transform sounds to enhance or create a sense of reality,
rather than for purely musical purposes.

Artists from all of the above backgrounds share the
process of manipulating recordings, but aim to achieve
different effects. We present a single framework for
starting with recordings and producing sounds that can

{Winner of the Journal of New Music Research Distinguished Paper Award at the International Computer Music Conference 2006.

Correspondence: Ananya Misra, Department of Computer Science, Princeton University, 35 Olden Street, Princeton, NJ 08540, USA.
E-mail: amisra@cs.princeton.edu
Ge Wang is currently an assistant professor at the Center for Computer Research in Music and Acoustics (CCRMA), Stanford
University, USA. E-mail: ge@ccrma.stanford.edu
Perry Cook is also in Department of Music, Princeton University, USA. E-mail: prc@cs.princeton.edu

Journal of New Music Research
2007, Vol. 36, No. 4, pp. 241 – 250

DOI: 10.1080/09298210801984839 ! 2007 Taylor & Francis

D
ow

nl
oa

de
d 

by
 [7

3.
15

.1
99

.1
44

] a
t 2

0:
34

 0
9 

D
ec

em
be

r 2
01

4 



lie anywhere on a ‘‘found’’ to ‘‘unrecognizable’’ con-
tinuum. ‘‘Found’’ sounds can be modified in subtle ways
or extended indefinitely, while moving towards the
‘‘unrecognizable’’ end of the spectrum unleashes a range
of manipulations beyond time-domain techniques. In
fact, the same set of techniques applies throughout the
continuum, differing only in how each is used. We call
this framework TAPESTREA: Techniques and Para-
digms for Expressive Synthesis, Transformation and
Rendering of Environmental Audio.

The TAPESTREA system integrates sinusoidal ana-
lysis, stochastic background modelling, transient detec-
tion, and a new class of user interface that lends itself to
any composition that originates in recorded environ-
mental audio. This envelops a novel form of musique
concrète that extends to manipulations in the frequency
as well as time domain. Advantages of the TAPESTREA
approach include:

. TAPESTREA lets the sound sculptor select a region
in both time and frequency, essentially specifying,
‘‘Give me this part of that sound’’, to extract a
reusable sound template.

. TAPESTREA defines three fundamental types of
sound components/templates, based on the model-
ling techniques for which they are best suited.
Sinusoidal, transient, and stochastic background
components are modelled separately, using methods
to which they are most amenable, leading to
specialized control and more powerful transforma-
tions on each type.

. To realize these ideas, TAPESTREA provides a set of
interfaces that allow the sound designer or composer
to assert parametric control over each phase in the
process, from component extraction to the final re-
synthesis.

TAPESTREA manipulates sounds in several phases
(Figure 1). In the analysis phase, the sound is separated
into reusable components that correspond to individual
foreground events or background textures. In the
synthesis phase, these components are transformed,
combined and re-synthesized using time- and fre-
quency-domain techniques that can be controlled on
multiple levels. While we highlight the synthesis methods
here, the analysis phase is also integral as it enables the
most flexible means for dealing with real-world sonic
material.

2. Related work

Related audio processing techniques include sinusoidal
modelling (McAulay & Quatieri, 1986), where a sound
is decomposed into a set of sine waves at varying
frequencies. Spectral modelling synthesis (Serra, 1989)
extends sinusoidal modelling by separating a sound
into sinusoids (or the deterministic component) plus
noise, where shaped noise models parts of the sound
that are not characterized well by sine waves. This
technique was originally used for modelling instrument
sounds.

Fig. 1. Creating musical tapestries. User-selected regions of input sounds (left) are analysed into reusable templates, which are
separately transformed and re-synthesized into new sounds (right). Numbered diamonds (right) correspond to instances of original
sound components (circle, left). The framework allows flexible control at every stage in the process.

242 Ananya Misra et al.

D
ow

nl
oa

de
d 

by
 [7

3.
15

.1
99

.1
44

] a
t 2

0:
34

 0
9 

D
ec

em
be

r 2
01

4 



Past work on analysing transients, or short spurts of
noise, include detection and modelling techniques that
can sometimes be understood as a time-domain counter-
part of sinusoidal modelling (Verma & Meng, 1998).
Methods for onset detection in music (Bello et al., 2005)
are also closely related.

Also relevant is granular synthesis (Truax, 1990;
Roads, 2002). This synthesis technique functions
in the time domain and involves continuously controlling
very brief sonic events, or sound grains. The temporal
positioning and audio properties of the sound grains
determine the characteristics of the synthesized sound.

TAPESTREA employs aspects of all of the above,
using the separation techniques on environmental sounds
and controlling the temporal placement of resulting
events. Another technique used is an extension of a
wavelet tree learning algorithm (Dubnov et al., 2002) for
sound texture synthesis. This method performs wavelet
decomposition on a sound clip and uses machine learning
on the wavelet coefficients to generate similar non-
repeating sound texture. The algorithm works well for
sounds that are mostly stochastic, but can break
extended pitched portions in objectionable ways. It can
also be slow in its original form. TAPESTREA takes
advantage of this technique by improving the speed of
the algorithm, and only using it on the types of (non-
deterministic) sound for which it works well.

There exist other tools for spectral analysis, transfor-
mation, and re-synthesis, such as AudioSculpt (Bogaards
et al., 2004), SPEAR (Klingbeil, 2005), and the CLAM
library (Amatriain & Arumi, 2005). However, these
generally have an automated analysis phase and thus do
not offer the same level of flexible, interactive control
over all stages of audio processing. They also lack a
framework for handling transients and stochastic back-
ground components.

3. Analysis phase

TAPESTREA starts by separating a recording into
sinusoidal events or stable sinusoidal components of the
sound, transient events or brief noisy bursts of energy,
and the remaining stochastic background or din. This
separation can be parametrically controlled and takes
place in the analysis phase. In a sense, boundaries between
component types are not rigid, but are interactively
defined by the user.

The analysis interface is shown in the accompanying
figures. A loaded sound is simultaneously displayed as a
waveform and a spectrogram (Figure 2). The spectro-
gram display can also be toggled with a frame-by-frame
spectrum view (Figure 3). Selecting a rectangle on
the spectrogram, or selecting an analysis region on the
waveform and the frame-by-frame spectrum, limits the
analysis to the associated time and frequency ranges,

facilitating the selection and extraction of specific
events.

Sinusoidal events are foreground events extracted by
sinusoidal modelling based on the spectral modelling
framework (Serra, 1989). Overlapping frames of the
sound are transformed into the frequency domain using
the FFT. For each spectral frame, the n highest peaks
above a specified magnitude threshold (Figure 3) are
recorded, where n can range from 1 to 50. These peaks
can also be loaded from a preprocessed file. The highest
peaks from every frame are then matched across frames
by frequency, subject to a controllable ‘‘frequency
sensitivity’’ threshold, to form sinusoidal tracks. Tracks
can be ‘‘mute’’ (below the magnitude threshold) for a
specified maximum number of frames, or can be
discarded if they fail to satisfy a minimum track length
requirement (Figure 4). Un-discarded tracks are option-
ally grouped (Ellis, 1994; Melih & Gonzalez, 2000) by

Fig. 2. Spectrogram view in analysis face.

Fig. 3. Spectrum view in analysis face. The slanting line specifies
the magnitude threshold.

Musical tapestry 243

D
ow

nl
oa

de
d 

by
 [7

3.
15

.1
99

.1
44

] a
t 2

0:
34

 0
9 

D
ec

em
be

r 2
01

4 



harmonicity, common amplitude and frequency modula-
tion, and common onset/offset, to form sinusoidal
events, which are essentially collections of related
sinusoidal tracks. If the grouping option is not selected,
all the tracks found are together interpreted as a single
sinusoidal event. After the separation, the sinusoidal
tracks found are marked on the spectrogram display.
Each sinusoidal event can be individually played and
saved as a template for use in the synthesis phase.

Transient events or brief noisy foreground events can
be detected in the time-domain by observing changes in
signal energy over time (Verma & Meng, 1998; Bello
et al., 2005). TAPESTREA analyses the recorded sound
using a non-linear one-pole envelope follower filter with
a sharp attack and slow decay and finds points where the
derivative of the envelope is above a threshold. These
points mark sudden increases in energy and are inter-
preted as transient onsets. A transient event is considered
to last for up to half a second from its onset. The exact
transient length, as well as the threshold, and filter
parameters can all be modified in real-time via sliders
(Figure 5). Detected transients can be individually
replayed and saved as templates.

The stochastic background represents parts of the
recording that constitute background noise, and is
obtained by removing the detected sinusoidal and
transient events from the initial sound. Sinusoidal events
are removed by eliminating the peaks of each sinusoidal
track from the corresponding spectral frames; the
magnitudes of the bins beneath the peak are smoothed
down, while the phases in these bins are randomized
(Figure 6). Transient events, in turn, are removed in the
time-domain by applying wavelet tree learning (Dubnov,
2002) to generate a sound clip that resembles nearby
transient-free segments of the recording. This synthesized
‘‘clean’’ background replaces the samples containing the
transient event to be removed. Once separated, the

stochastic background can be saved, played, or loaded
into the interface for further iterative analysis.

Separating a sound into components in this way has
several advantages. The distinction between foreground
and background components is semantically clear to
humans, who can therefore work within the framework
with a concrete understanding of what each component
represents. The different component types are also stored
and processed separately according to their defining
characteristics, thus allowing flexible transformations on
individual components. Each transformed component
can be saved as a template and later reloaded, reused,
copied, further transformed, or otherwise treated as a
single object. In addition, the act of separating a sound
into smaller sounds makes it possible to ‘‘re-compose’’
them into a variety of pieces by combining templates in
diverse ways.

Fig. 4. Sliders for sinusoidal analysis.
Fig. 5. Transient analysis sliders.

Fig. 6. Spectrum of separated sinusoidal peaks (top) and
stochastic residue (bottom).

244 Ananya Misra et al.

D
ow

nl
oa

de
d 

by
 [7

3.
15

.1
99

.1
44

] a
t 2

0:
34

 0
9 

D
ec

em
be

r 2
01

4 



4. Synthesis phase

Once the components of a sound have been separated
and saved as templates, TAPESTREA allows each
template to be transformed and synthesized individually.
The synthesis interface (Figure 7) provides access to the
current library of saved templates, displayed as objects
(Figure 8). Templates saved to file from prior sittings can
be loaded into the library, too. Selecting any template in
the library displays a set of transformation and synthesis
parameters suited to the template type. A selected
template can be synthesized to generate sound at any
time, including while its transformation parameters are
being modified. At this point, TAPESTREA also offers
additional synthesis templates to control the placement
or distribution of basic components in a composition.
Thus, components can be manipulated individually and
in groups, modelling both single sound and group
characteristics. The transformation and synthesis options
for the different template types are as follows.

4.1 Sinusoidal events

Sinusoidal events are synthesized from their tracks via
sinusoidal re-synthesis. Frequency and magnitude be-
tween consecutive frames in a track are linearly inter-
polated, and time-domain samples are computed from
this information.

The track representation allows considerable flexibil-
ity in applying frequency and time transformations on a
sinusoidal event. The event’s frequency can be linearly

scaled before computing the time-domain samples, by
multiplying the frequency at each point on its tracks by a
specified factor. Similarly, the event can be stretched
or shrunk in time by scaling the time values in the time-
to-frequency trajectories of its tracks. This works for
almost any frequency or time scaling factor without
producing artifacts. Frequency and time transformations
can take place in real-time in TAPESTREA, allowing an
event to be greatly stretched, shrunk or pitch shifted even
as it is being synthesized.

4.2 Transient events

Since transient events are brief by definition, TAPES-
TREA stores them directly as time-domain audio frames.
Synthesizing a transient event without any transforma-
tions, therefore, involves playing back the samples in the
audio frame.

In addition, TAPESTREA allows time-stretching
and pitch-shifting in transient events as well. This is
implemented using a phase vocoder (Dolson, 1986).
While a phase vocoder itself does not impose a limit on
the scaling range, it is more computationally expensive
than the transformations on sinusoidal events, and the
results may often sound less clean. This is because the
sinusoidal tracks drive a sine oscillator bank, allowing
smooth frequency and amplitude transitions with no
need to store phase information, whereas a phase
vocoder would require an extremely small hop size to
achieve a similar effect. Hence, to facilitate fast
interactive transformations on transients, TAPESTREA

Fig. 7. Screenshot of transformation þ synthesis interface.

Musical tapestry 245

D
ow

nl
oa

de
d 

by
 [7

3.
15

.1
99

.1
44

] a
t 2

0:
34

 0
9 

D
ec

em
be

r 2
01

4 



limits their scaling factors to a range smaller than what is
available for sinusoidal events, yet large enough to create
noticeable effects.

Transient events by nature can also act as ‘‘grains’’ for
traditional granular synthesis (Truax, 1990; Roads,
2002). The transformation tools for transients, along
with the additional synthesis templates described in
Sections 4.4 to 4.6, can thus provide an interactive
‘‘granular synthesis’’ interface.

4.3 Stochastic background

The internal representation of a stochastic background
template begins with a link to a sound file containing the
related background component extracted in the analysis
phase. However, merely looping through this sound file or
randomly mixing segments of it does not produce a
satisfactory background sound. Instead, our goal here is to
generate ongoing background that sounds controllably
similar to the original extracted stochastic background.

Therefore, the stochastic background is synthesized
from the saved sound file using an extension of the
wavelet tree learning algorithm (Dubnov et al., 2002). In
the original algorithm, the saved background is decom-
posed into a wavelet tree where each node represents a
coefficient, with depth corresponding to resolution. The
wavelet coefficients are computed using the Daubechies
wavelet with 5 vanishing moments. A new wavelet tree is
then constructed, with each node selected from among
the nodes in the original tree according to similarity of
context. A node’s context includes its chain of ancestors
as well as its first k predecessors – nodes at the same level
as itself but preceding it in time (Figure 9). The context of
the next node for the new tree is compared to the
contexts of nodes in the original tree, yielding a distance
value for each original tree node considered. Eventually,
the next new tree node is selected from among those
original tree nodes whose distance values fall below a

specified threshold. The learning algorithm also takes
into account the amount of randomness desired. Finally,
the new wavelet tree undergoes an inverse wavelet
transform to provide the synthesized time-domain
samples. This learning technique works best with the
separated stochastic background as input, where the
sinusoidal events it would otherwise chop up have been
removed.

TAPESTREA uses a modified and optimized version
of the algorithm, which follows the same basic steps but
varies in details. For instance, the modified algorithm
includes the option of incorporating randomness into the
first level of learning, and also considers k as dependent
on node depth rather than being constant. More
importantly, it optionally avoids learning the coefficients
at the highest resolutions. These resolutions roughly
correspond to high frequencies, and randomness at these
levels does not significantly alter the results, while the
learning involved takes the most time. Optionally
stopping the learning at a lower level thus optimizes
the algorithm and allows it to run in real-time.

Further, TAPESTREA offers interactive control over
the learning parameters in the form of ‘‘randomness’’
and ‘‘similarity’’ parameters. The size of a sound segment
to be analysed as one unit can also be controlled, and
results in a ‘‘smooth’’ synthesized background for larger
sizes versus a more ‘‘chunky’’ background for smaller
sizes. Creatively manipulating these parameters can, in
fact, yield interesting musical compositions generated
through ‘‘stochastic background’’ alone.

Fig. 9. Context of a given node n (coloured dark grey) in a
wavelet tree. The ancestors of n are the nodes encountered in
the path (marked with thick lines and medium grey colouring)
between n and the root of the wavelet tree. The predecessors
(coloured light grey) are nodes at the same level as n but
preceding it in time.

Fig. 8. Library of saved templates.

246 Ananya Misra et al.

D
ow

nl
oa

de
d 

by
 [7

3.
15

.1
99

.1
44

] a
t 2

0:
34

 0
9 

D
ec

em
be

r 2
01

4 



4.4 Event loops

Event loops (Figure 10) are synthesis templates designed
to facilitate the parametric repetition of a single event.
Any sinusoidal or transient event template can be formed
into a loop. When the loop is played, instances of the
associated event are synthesized at the specified density
and periodicity, and within a specified range of random
transformations. These parameters can be modified while
the loop is playing, to let the synthesized sound change
gradually.

The density refers to how many times the event
is repeated per second, and could be on the order of
0.001 to 1000. At the higher densities, and especially
for transient events, the synthesized sound is often
perceived as continuous, thus resembling granular
synthesis.

The periodicity, ranging from 0 to 1, denotes how
periodic the repetition is, with a periodicity of 1 meaning
that the event is repeated at fixed time intervals. The
interval between consecutive occurrences of an event is
generally determined by feeding the desired periodicity
and density into a Gaussian random number generator.
It is straightforward to replace this generator with one
that follows a Poisson or other user-specified probability
distribution.

In addition to the parameters for specifying the
temporal placement of events, TAPESTREA allows each
instance of the recurring event to be randomly trans-
formed within a range. The range is determined by
selected average frequency- and time-scale factors, and a
randomness factor that dictates how far an individual
transformation may vary from the average. Individual
transformation parameters are uniformly selected from
within this range. Apart from frequency and time scaling,
the gain and pan of event instances can also randomly
vary in the same way.

4.5 Timelines

While a loop parametrically controls the repetition of a
single event, with some amount of randomization, a
timeline allows a template to be explicitly placed in time,
in relation to other templates. Any number of existing
templates can be added to a timeline, as well as deleted
from it or re-positioned within it once they have been
added.

A template’s location on the timeline indicates its
onset time with respect to when the timeline starts
playing. When a timeline is played, each template on it is
synthesized at the appropriate onset time, and is played
for its duration or until the end of the timeline is reached.
The duration of the entire timeline can be on the order of
milliseconds to weeks, and may be modified after the
timeline’s creation.

TAPESTREA also allows the placement of timelines
within timelines (or even within themselves). This allows
for template placement to be controlled at multiple time-
scales or levels, making for a ‘‘multiresolution synthesis’’.

4.6 Mixed bags

Another template for synthesis purposes is the mixed bag
(Figure 11), which is designed to control the relative
densities of multiple, possibly repeating, templates. Like
a timeline, a mixed bag can contain any number of
templates, but these are randomly placed in time and
transformed, as in loops. The goal is to facilitate the
synthesis of a composition with many repeating compo-
nents, without specifying precisely when each event
occurs. The real-time parameters for controlling this
also enable the tone of a piece to change over time while
using the same set of components, simply by synthesizing
these components differently.

When a template is added to a mixed bag, it can be set
to play either once or repeatedly. It also has a ‘‘likelihood’’
parameter, which determines the probability of that

Fig. 11. Sliders for controlling items in a mixed bag.Fig. 10. Sliders for controlling an event loop.

Musical tapestry 247

D
ow

nl
oa

de
d 

by
 [7

3.
15

.1
99

.1
44

] a
t 2

0:
34

 0
9 

D
ec

em
be

r 2
01

4 



template’s being played in preference over any of the other
templates in the bag. Finally, it has a ‘‘randomness’’
parameter, which controls the range for random trans-
formations on that template, analogous to the random-
ness control in event loops.

Beyond these individual template parameters, each
mixed bag has overall periodicity and density settings,
which control the temporal distribution of repeating
templates in the same way that an event loop does.
However, while an event loop plays instances of a single
event, a mixed bag randomly selects a repeating template
from its list whenever it is time to synthesize a new
instance. Templates with higher likelihood settings are
more likely to be selected for synthesis.

One way to think of a mixed bag is as a physical bag
of marbles. The overall periodicity and density para-
meters determine when and how often someone dips his
hand in the bag and pulls out a marble, or a template to
be synthesized. The likelihood setting of a template or
marble controls how likely it is for the hand to pull out
that particular marble. A repeating marble is tossed back
into the bag as soon as it has been drawn and observed
(played).

4.7 Pitch and time quantizations

While sliders control the synthesis parameters in a
continuous way, more customized musical control can
be exerted by quantizing pitches and times to user-
specified values. Pitch and time tables can be loaded on-
the-fly for each template.

The frequency scaling factor of a template is quantized
to the nearest entry in its pitch table, if it has one. This
directly sets the frequency at which a sinusoidal or
transient event is synthesized. For event loops and mixed
bags, it controls the possible frequency scaling during
random transformations on the underlying events. The
frequencies of individual templates on a timeline are
scaled, in the order in which they are played, by successive
entries on the timeline’s pitch table. This allows a user-
defined musical scale to be applied to most templates.

Rhythm can be similarly specified by quantizing time
to the nearest entry in a time table. In event loops and
mixed bags, this quantizes the event density parameter as
well as the intervals between consecutive events. On
timelines, templates are positioned only at time points
corresponding to table entries, if a table exists. Thus,
templates can start synthesizing at particular beats.

4.8 Score language

The manipulations described so far can be controlled via
a visual interface. Even finer control over the synthesis
can be obtained through the use of a score language. The
audio programming language ChucK (Wang and Cook,
2003) is used here both for specifying precise parameter

values and for controlling exactly how these values
change over time. Since ChucK allows the user to specify
events and actions precisely and concurrently in time, it is
straightforward to write scores to dynamically evolve a
sound tapestry.

A ChucK virtual machine is attached to TAPESTREA,
which registers a set of API bindings with which ChucK
programs can access and control sound templates and
automate tasks. Each script (called a shred) can be loaded
as a sound template and be played or put on timelines.
Scripts can run in parallel, synchronized to each other
while controlling different parts of the synthesis. It is also
possible to create, from within a script, user interface
elements for controlling intermediate variables and events
used in the script itself. Further, scripting is an easy way to
add ‘‘traditional’’ sound synthesis algorithms as well as
real-time control via MIDI and Open Sound Control.

4.9 Other controls

TAPESTREA also offers some generic synthesis and
playback controls. The gain and stereo panning of
templates can be controlled individually, or randomly
set by event loops and mixed bags. A reverb effect
adapted from STK (Cook & Scavone, 1999) can also be
added to the final synthesized sound.

The synthesis interface provides several ways to
instantiate new templates. Any existing template can be
copied, while sinusoidal and transient event templates
can also be saved as event loops. New timelines and
mixed bags can be freely created, and existing templates
can be dragged onto or off these as needed. Templates
can also be deleted from the library, provided they are
not being used in a timeline or a mixed bag. Finally,
while sound is generally synthesized in real-time,
TAPESTREA offers the option of writing the synthe-
sized sound to file.

5. Discussion

TAPESTREA makes it possible to create a wide range of
musical tapestries. We describe one example re-composi-
tion here. The spectrogram (Figure 12) represents a
5 min improvised piece called Etude pour un Enfant Seul
(Study for a Child Alone). The source sound templates
were extracted from the BBC Sound Effects Library.
They include the following: a baby’s cry (from CD 27,
#6, 69.4 to 70.8 s; extracted as sinusoidal: 5 tracks), a bell
(CD 14, #8, 0.5 to 7; sinusoidal: 25 tracks), glass
breaking (CD 18, #13, 0.5 to 1.5; sinusoidal: 4 tracks),
a horn honk (CD 9, #12, 42.9 to 43.4; sinusoidal: 10
tracks), a bird chirp (CD 12, #11, 19.8 to 20; sinusoidal: 4
tracks), and several battlefield sounds (CD 18, #68, 0.5 to
0.8 and 31 to 31.5; CD 18, #69, 1.47 to 1.97 and 31.9 to
32.4; transients). Additional templates, including an

248 Ananya Misra et al.

D
ow

nl
oa

de
d 

by
 [7

3.
15

.1
99

.1
44

] a
t 2

0:
34

 0
9 

D
ec

em
be

r 2
01

4 



ocean background with bird chirps removed, were
extracted but not used here.

We highlight some areas of interest in the re-
composition (denoted by numbered diamonds in
Figure 12). In area (1) are time/frequency-warped
instances of the baby (76 time-stretch, 0.56 fre-
quency-scaled), horns (66 time, 0.26 and 0.286 freq),
and glass (46 time, 0.56 freq). The percussion involving
the battlefield transient templates begins around (2) and
is dynamically coordinated by scripts. In (3), the
percussion develops, punctuated by a solitary glass
breaking sound. At (4), greatly modified bird chirps
(0.156 time; 0.46 freq) fade in as part of a periodic
loop, which is so dense that chirps are triggered at audio
rates, forming a rich tone. As time-stretch, frequency-
scale, and density are modified, the tone gradually
morphs into a flock of birds and back. Combined with
further modifications to periodicity and randomness, the
flock reaches its peak at (5), modelling the sound of more
than 30 birds spread out in time, frequency, volume, and
pan – all from a single bird chirp template. The flock is
then manipulated to sparser texture, and the child
returns at (6) with three longer cries (baby cry; 96 time,
0.46 freq).

Short excerpts from the original recordings, along
with extracted templates and the final re-composition,
are available online at:

http://taps.cs.princeton.edu/jnmr_sound_examples/

This simple example led to a more complex re-composi-
tion, Etude II pour un Enfant Seul (Loom), which was
played at the International Computer Music Conference,
2006. A two-channel version of Etude II is also available
at the above website.

While these examples make good use of TAPES-
TREA, it is equally possible to create completely
differently styled compositions using the same tool and
even the same initial sounds.

6. Conclusion

TAPESTREA is a technique and system for ‘‘re-
composing’’ recorded sounds by separating them into

distinct components and weaving these components into
musical tapestries. The technique is applicable to musique
concrète, soundscape composition and beyond, while the
system combines algorithms and interfaces for imple-
menting the concepts. Key contributions include: (1) an
approach for re-composing natural sounds, defining
semantically clear sound template types linked to specific
processing techniques, (2) a system for extracting selected
sound components into reusable templates, and for
transforming and synthesizing these, (3) a class of user
interfaces aimed to facilitate the process.

The TAPESTREA interface simultaneously provides
visual and audio information, while the system provides
the means to interactively extract sound components,
transform them radically while maintaining salient
features, model them individually or in groups, and
synthesize the final multi-level ‘‘re-composition’’ in any
number of ways ranging from a pre-set score to
dynamically in real-time. Even with a modest set of
original sounds, there is no end to the variety of musical
tapestries one might weave.

Acknowledgements

We are grateful to the extended Princeton Sound Lab
family for their help and support.

References

Amatriain, X. & Arumi, P. (2005). Developing cross-
platform audio and music applications with the CLAM
framework. In: Proceedings of the International Computer
Music Conference, pp. 403–410.

Bello, J.P., Daudet, L., Abdallah, S., Duxbury, C., Davies,
M. & Sandler, M.B. (2005). A tutorial on onset detection
in music signals. IEEE Transactions on Speech and Audio
Processing, 13(5), 1035–1047.

Bogaards, N., Röbel, A. & Rodet, X. (2004). Sound analysis
and processing with AudioSculpt 2. In: Proceedings of the
International Computer Music Conference, Miami, USA.

Cook, P.R. & Scavone, G.P. (1999). The Synthesis ToolKit
(STK). In: Proceedings of the International Computer
Music Conference, Beijing, China.

Dhomont, F. (1995). Acousmatic update. Contact!, 8(2).

Fig. 12. Example of a soundscape re-composition. Diamonds represent areas of significant shift in the piece.

Musical tapestry 249

D
ow

nl
oa

de
d 

by
 [7

3.
15

.1
99

.1
44

] a
t 2

0:
34

 0
9 

D
ec

em
be

r 2
01

4 



Dolson, M.B. (1986). The phase vocoder: a tutorial.
Computer Music Journal, 10(4), 14–27.

Dubnov, S., Bar-Joseph, Z., El-Yaniv, R., Lischinski, D. &
Werman, M. (2002). Synthesizing sound textures through
wavelet tree learning. IEEE Computer Graphics and
Applications, 22(4), 38–48.

Ellis, D.P.W. (1994). A computer implementation of
psychoacoustic grouping rules. In: Proceedings of the
12th International Conference on Pattern Recognition,
Jerusalem, Israel, pp. 108–112.

Klingbeil, M. (2005). Software for spectral analysis, editing,
and synthesis. In: Proceedings of the International
Computer Music Conference, Barcelona, Spain, pp. 107–
110.

McAulay, R.J. & Quatieri, T.F. (1986). Speech analysis/
synthesis based on a sinusoidal representation. IEEE
Transactions on Acoustics, Speech, and Signal Processing,
34(4), 744–754.

Melih, K. & Gonzalez, R. (2000). Source segmentation for
structured audio. In: Proceedings of IEEE International
Conference on Multimedia and Expo (II), New York,
USA, pp. 811–814.

Roads, C. (2002). Microsound. Cambridge: MIT Press.
Rudy, P. (2004). Spectromorphology hits hollywood: black

hawk down – a case study. In: Proceedings of the
International Computer Music Conference, pp. 658–663.

Schaeffer, P. (1950). Introduction à la musique concrète. La
Musique Mécanisée: Polyphonie, 6, 30–52.

Schaeffer, P. (1952). À la recherche d’une musique concrète.
Paris: Seuil.

Schafer, R.M. (1977). The tuning of the world. New York:
Knopf.

Serra, X. (1989). A system for sound analysis/transforma-
tion/synthesis based on a deterministic plus stochastic
decomposition. PhD thesis, Stanford University, USA.

Truax, B. (1990). Composing with real-time granular sound.
Perspectives of New Music, 28(2).

Truax, B. (2002). Genres and techniques of soundscape
composition as developed at Simon Fraser University.
Organised Sound, 7(1), 5–14.

Verma, T.S. & Meng, T.H. (1998). An analysis/synthesis
tool for transient signals that allows a flexible sinesþ
transientsþnoise model for audio. In: Proceedings of
1998 IEEE International Conference on Acoustics, Speech,
and Signal Processing, Seattle, USA, pp. 3573–3576.

‘‘Voice of the beast – The sounds of The Perfect
Storm.’’ (2000). DVD-ROM Featurette on DVD release
of The Perfect Storm, Warner Home Video. Also
on WarnerVideo.com website: http://warnervideo.com/
perfectstormevents/popup/video/voice_300.html

Wang, G. & Cook, P.R. (2003). ChucK: a concurrent, on-
the-fly, audio programming language. In: Proceedings of
the International Computer Music Conference, Singapore,
pp. 219–226.

250 Ananya Misra et al.

D
ow

nl
oa

de
d 

by
 [7

3.
15

.1
99

.1
44

] a
t 2

0:
34

 0
9 

D
ec

em
be

r 2
01

4 


