

STOMPBOX DESIGN WORKSHOP

Esteban Maestre

CCRMA - Stanford University
July 2011

Stompboxes traditionally operated in the analog domain. Here we will work with signals in the digital domain, by means of <u>Digital Signal Processing</u> (**DSP**) techniques.

SIGNAL | PERIODIC SIGNAL

Signal: function of time, representing a given magnitude

s(t)

Periodic Signal: signal whose value profile repeats over time: s(t+T) = s(t)

Some examples of basic periodic signals:

SINUSOIDAL

t=0

SINUSOIDAL SIGNAL

ω = angular velocity (rad/s)

Angle ϕ at time t $\omega = 2 \cdot \pi \cdot f$ $s(t) = A \cdot sin(\omega \cdot t) = A \cdot sin(2 \cdot \pi \cdot f \cdot t)$

A = amplitude

 ϕ_0 = phase (initial ϕ at time t =0)

Angle φ at time t

$$s(t) = A \cdot sin(\omega \cdot t + \phi_0) = A \cdot sin(2 \cdot \pi \cdot f \cdot t + \phi_0)$$

FOURIER ANALYSIS | FREQUENCY DOMAIN

Any function of time can be expressed as an **infinite sum of sinusoidal functions** of different frequencies, each function with a particular **amplitude** and **phase**.

Such function, previously expressed in the **Time Domain**, can therefore be expressed in the **Frequency Domain**.

The **Fourier Transform (FT)** is a **mathematical operator** that allows to go from Time Domain to Frequency Domain and vice-versa:

FOURIER TRANSFORM OF IMPORTANT SIGNALS

LINEARITY

The Fourier Transform, F[], is a linear operation:

$$F[a \cdot x(t) + b \cdot y(t)] = a \cdot F[x(t)] + b \cdot F[y(t)]$$

TIME DOMAIN

+

$$s(t) = x(t) + y(t)$$

FREQUENCY DOMAIN

FOURIER TRANSFORM OF PERIODIC SIGNALS

TIME DOMAIN

FREQUENCY DOMAIN

to the main oscillation

EXAMPLE

Reconstruction of periodic signals using finite number of partials / harmonics.

ORIGINAL SIGNAL

RECONSTRUCTED

http://www.youtube.com/watch?v=Lu2nnvYORec
http://www.youtube.com/watch?v=SpzNQOOBeRg

SHORT-TIME FOURIER TRANSFORM | SPECTROGRAM

Time sequence frequency domain representations

FOURIER TRANSFORM OF SAMPLED SIGNALS

DECIBELS | LOGARITHMIC SCALES

deciBel (dB)

[1920s - Bell Labs defined it to measure losses in telephone cable]

Logarithmic unit indicating the ratio of a physical quantity (power or intensity) relative to a specified/implied reference level:

• Power units (e.g. Watts): $L_{dB} = 10 \cdot log_{10}(P/P_{ref})$

• Amplitude units (e.g. Volts): $L_{dB} = 20 \cdot log_{10}(V/V_{ref})$

→ Logarithmic scales (intensity and frequency) are more representative of **human perception**.

