

STOMPBOX DESIGN WORKSHOP

Esteban Maestre

CCRMA - Stanford University
July 2012

Stompboxes traditionally operated in the analog domain. Here we will work with signals in the digital domain, by means of <u>Digital Signal Processing</u> (**DSP**) techniques.

SIGNAL | PERIODIC SIGNAL

Signal: function of time, representing a given magnitude

Periodic Signal: signal whose value profile repeats over time: s(t+T) = s(t)

Some examples of basic periodic signals:

t = 0

SINUSOIDAL SIGNAL

T=1/f t=0

A = amplitude

Angle $\boldsymbol{\phi}$ at time t

 $s(t) = A \cdot sin(\omega \cdot t) = A \cdot sin(2 \cdot \pi \cdot f \cdot t)$

 ϕ_0 = phase (initial ϕ at time t =0)

FOURIER ANALYSIS | FREQUENCY DOMAIN

Any function of time can be expressed as an **infinite sum of sinusoidal functions** of different frequencies, each function with a particular **amplitude** and **phase**.

Such function, previously expressed in the **Time Domain**, can therefore be expressed in the **Frequency Domain**.

The **Fourier Transform (FT)** is a **mathematical operator** that allows to go from Time Domain to Frequency Domain and vice-versa:

FOURIER TRANSFORM OF IMPORTANT SIGNALS

LINEARITY

The **Fourier Transform**, **F[]**, is a **linear operation**:

$$F[a \cdot x(t) + b \cdot y(t)] = a \cdot F[x(t)] + b \cdot F[y(t)]$$

FT

TIME DOMAIN

$$s(t) = x(t) + y(t)$$

FREQUENCY DOMAIN

FOURIER TRANSFORM OF PERIODIC SIGNALS

TIME DOMAIN

FREQUENCY DOMAIN

HARMONIC SERIES:

This partial should correspond to the main oscillation

EXAMPLE

Reconstruction of periodic signals using finite number of partials / harmonics.

ORIGINAL SIGNAL

—— RECONSTRUCTED

http://www.youtube.com/watch?v=Lu2nnvYORec
http://www.youtube.com/watch?v=SpzNQOOBeRg

SHORT-TIME FOURIER TRANSFORM | SPECTROGRAM

Time sequence frequency domain representations

FOURIER TRANSFORM OF SAMPLED SIGNALS

TIME DOMAIN FREQUENCY DOMAIN |S(f)| s(t) ' $\mathsf{T}_{\mathsf{MAX}}$ BW Repeated spectral images are called 'ALIASES' |S(f)| If these overlap around $f_s/2 \rightarrow ALIASING$ s(t) $-f_S$ $f_S/2$ $T_s=1/f_s$ **NYQUIST-SHANNON THEOREM f**_s = sampling frequency $f_s/2$ = Nyquist frequency Sampling frequency **f**_s must be at

BW = Bandwidth

least twice the bandwidth BW

DECIBELS | LOGARITHMIC SCALES

deciBel (dB)

[1920s - Bell Labs defined it to measure losses in telephone cable]

Logarithmic unit indicating the ratio of a physical quantity (power or intensity) relative to a specified/implied reference level:

• Power units (e.g. Watts):
$$L_{dB} = 10 \cdot log_{10}(P/P_{ref})$$

• Amplitude units (e.g. Volts):
$$L_{dB} = 20 \cdot log_{10}(V/V_{ref})$$

→ Logarithmic scales (intensity and frequency) are more representative of human perception.

