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1. The bouncing effect: the drum membrane “throws” the stick
back at the drummer.
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Drum Rolls

◮ Drummers can control drum rolls at rates up to 30Hz.
◮ The human neuromuscular system has a reaction time of

over 100ms.
◮ How is this possible?!

1. The bouncing effect: the drum membrane “throws” the stick
back at the drummer.

2. Impedance modulation: the drummer can alter the
impedance of his or her hand in real time.

K Rout
hand
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Above The Drum Membrane

z
mg*

handK Rout
Drum membrane

Figure: Drumstick dynamics for z > 0

◮ For the purposes of investigating drum rolls, we model the
drumstick as a bouncing ball with mass m.

◮ The spring and dashpot are commuted to the end.
◮ Drummer can adjust rest position zh0 of the spring Khand .
◮ Letting zss = zh0 − mg∗/Khand , we have

mz̈ + Rout ż + Khand (z − zss) = 0.
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“Inside” The Drum Membrane

◮ At DC, a drumstick being pressed into a drum membrane
behaves like a linear spring Kcoll .

◮ There is still damping Rin due to losses in the hand and
collision.

−z

*mg

handK Rin

collK
Drum Membrane

Figure: Drumstick dynamics for z < 0

mz̈ + Rinż + Khand (z − zss) + Kcollz = 0
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Coefficient Of Restitution

◮ Let β be the coefficient of restitution (COR) of
drumstick/membrane collisions.

◮ For a collision beginning at any time tin and ending at any
time tout , if ż(tin) = v0, then ż(tout) = −βv0.

◮ Perfectly elastic collisions: β = 1
◮ Inelastic collisions: 0 < β < 1
◮ β ≈ exp −Rinπ√

4mKcoll−R2
in
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Summary Of Model Dynamics

◮ Above membrane (z > 0, COR α):
mz̈ + Rout ż + Khand (z − zss) = 0

◮ “Inside” membrane (z < 0, COR β):
mz̈ + Rinż + Khand (z − zss) + Kcollz = 0

z

z
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Haptic Drumstick

◮ We use the three DOF Model T PHANTOM robotic arm1.

1From SensAble Technologies, see http://www.sensable.com.
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Altering The Drumstick Dynamics

◮ Noise and deterministic chaos are not physically intuitive.
◮ Stable limit cycles, or self-sustaining attractive oscillations,

describe biological oscillations such as the heart beating.
◮ Limit cycles also manifest themselves in bowed strings,

vibrating reeds, and drum rolls.
◮ Goal: Assist the drummer in playing drum rolls.
◮ We can help bring about self-oscillations with

1. system delay
2. a hysteretic spring Kcoll

3. negative damping Rout

4. forcing the drumstick in the z-dimension every time that the
stick enters the simulated membrane

h(t) =
m∆vpulse

τ
e−t/τ
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Forced Pulses Can Induce Limit Cycles

d

*

z

. zpulse
starts

◮ Here we choose each pulse to be of constant magnitude.
◮ But is d stable?
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ABabcdfghiejkl

Related Discrete-Time System

e

**

pulse
starts

d
p

U

P(q)E
q

z

. z

◮ P(·) is a Poincaré map.
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Related Discrete-Time System
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◮ P(·) is a Poincaré map.
◮ Let vi is the velocity of the drumstick tip at the end of

the i th collision with the drum membrane.
◮ We analyze the stability of the closed orbit d by analyzing

the stability of:
vi+1 = P(vi) = αβvi + β∆vpulse
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Applying Pulses With Constant Magnitude

◮ Choose ∆vpulse = k/β, where k is constant

◮ vi+1 = P(vi) = αβvi + k = α(β + k
αvi

)vi

◮ At small amplitudes, the effective COR β̂ = (β + k
αvi

) > 1.

◮ At large amplitudes, the effective COR β̂ = (β + k
αvi

) ≈ β.
◮ α < 1 and β < 1 ⇒ αβ < 1

◮ ⇒ limi→∞
vi = k

1−αβ

∆

= vlc is positive and finite.
◮ The discrete-time system is stable.
◮ P(·) is a Poincaré map ⇒ d is a stable limit cycle
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Conclusions

◮ Informal testing suggests that the altered dynamics make it
easier to play drum rolls.

◮ Drum roll limit cycles are guaranteed to be stable.
◮ Drummers can increase the drum roll rate by increasing

Khand or decreasing zh0 as in traditional drum roll playing.
◮ The previous point suggests that the new musical instrument

is physically intuitive–i.e., the new instrument supports
physical interactions that are familiar to traditional
performers of traditional drums.
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Thank You!

Questions?
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