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0.  Introduction
We view truncation noise and quantization noise in basically the same way, arising from
similar phenomena, regardless of  bit rate.  Truncation error feedback has been employed
successfully in the scalar quantization of audio signals for about 20 years.  The fundamental
idea is to gain control over the spectral shape (the color) of the truncation error noise which
is defined as the difference between the original signal and its truncated, rather, quantized
version.  The motivation can be both perceptual and quantitative; that is, in some
circumstances it is advantageous to have colored truncation noise because of a certain
perceptual insensitivity, while in other circumstances the MSE (mean square error), in what
is considered to be the spectral baseband, can actually be reduced by the coloration.1

In this report, we demonstrate and conclude that truncation error feedback is  not  successful
in the quantization of  still images.  In the images we examine, we do not see a
preponderance of quantization error energy localized in any particular spatial frequency
region.  As we will see, the monic FIR noise feedback filters that we choose have the
unfortunate side-effect of  boosting truncation noise in part of the spectral range.  Hence,
truncation error feedback is not effective in reducing bit rate.  This may help to explain why
we have not seen this idea appearing in the literature.  (See [2] for a good survey up to 1991.)

1Two examples of this are: 1) error feedback in a system known to have spectral error localized in a particular
frequency region, and 2) error feedback in over-sampled systems.  The former might occur in digital filtering
applications while the latter might occur in D/A conversion applications [1].
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1.  Truncation Error Feedback in 1 Dimension
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Figure�1.  Truncation error feedback in a quantization application.

Figure�1 shows the basic concept for which we now develop fundamental equations.  H(z) is
the digital filter applied only to the truncation error.  
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Where  *  denotes the convolution operator.  These two time-domain equations are read

directly from Figure�1.  We combine them to get

hxx̂ ε−∗ε+=                                            (2)

Now since these signals are all deterministic, they have Fourier spectra.  Hence we can say

( )HEXX 1ˆ −−=                                        (3)

which is a frequency domain expression where  E ↔ ε�.    We see how the quantized output
signal can be expressed in terms of the original input signal in Equations (2) and (3).
Equation (3) says that the truncation error spectrum  E  is modified by the feedback filter
H(z).  In the absence of the feedback filter (in the case that H=0), Equation (3) would say
that the quantized output signal spectrum can be conceived in terms of the original input
signal spectrum less the error spectrum; that is,

HEXX 0;ˆ =−=                   (3a)

So we see that the impact of the error feedback filter  H  is to somehow change the spectrum
of the quantization error.  That is our intended goal; to gain control over the error spectrum.



2.  Choice of Error Feedback Filter H(z)
The  filter factor  multiplying  E  in Equation (3) is (1 - H �).   H(z) must be a polynomial
having no zero-order terms if  a  delay-free loop is to be avoided in Figure�1.  The simplest
choice is

H(z) = z-1                                                            (5)

This choice is well known to produce limit cycle tones in the circuit of  Figure�1. [3] [4]
Gray [3,ch.6.5] discusses the resultant tones in terms of the spectrum of the error signal  ε
for a restricted class of input signals.  Gray also makes the connection to truncation error
feedback [3,Fig.6.2,Eq.6.5.2,Eq.6.6.4].  Gray explains that for sinusoidal input signals, the
truncation error spectrum  E  will  not  be white for feedback filter orders less than 3. [5]  He
says [3,ch.6.6]

"For third order and higher, however, the noise is white for sinusoids
and finite sums of sinusoids." (proof is in [4])

From [3] and [4] we learn that the best choices for H(z) are all of the form:

H(z) = 1 - (1 - z-1)p            ; p=1,2,3,…                                           (5a)

These choices reduce the likelihood of discrete-frequency limit cycles.  

We have found in our work on this low rate application that the only useful  p  for coding of
images is  p=1  as in (5).  All other choices lead to instability because of  gain in the filter
factor as shown in Figure�2 through Figure�4.  Empirically, we find that instability can be
ameliorated by increasing the size of the codebook.2

3.  Sense of the Error Filter Factor 
By inverting the error filter H, we can change the sense of the filter factor acting on the error
spectrum from high to lowpass.  Equation (3) becomes modified;

( )HEXX 1ˆ +−=                                                (3b)

In one dimension the choices of filter factor up to order 3 would appear as in Figure�2
through Figure�4.  Theoretically, one would select the filter factor sense based upon some
a�priori knowledge of the quantization error spectrum.  For example, were we to know in
advance that the error spectrum were predominantly lowpass, then we would choose the
highpass sense of the error filter factor so as to obliterate low frequency errors during the
encoding process.

In two dimensions (2D), the filter factors become surfaces [6] as we shall see in the examples
of actual error spectrum shaping of images in the attachments.

2We eliminated instability by increasing codebook size, but we found that the SQNR remained inferior for
error feedback processed images.
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Figure�2.  1st order error feedback. 
                     (a) highpass sense                                           (b) lowpass sense

             x̂n  = xn  - (εn - εn-1)                                              x̂n  = xn  - (εn + εn-1)
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Figure�3.  2nd order error feedback.
                     (a) highpass sense                                           (b) lowpass sense

      x̂n  = xn  - (εn - 2εn-1 + εn-2)                                   x̂n  = xn  - (εn + 2εn-1 + εn-2)

                          |1-H(e�jθ)|                                                   |1+H(e �jθ)|
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Figure�4.  3rd order error feedback.
                     (a) highpass sense                                           (b) lowpass sense

  x̂n  = xn  - (εn - 3εn-1 + 3εn-2 - εn-3)                 x̂n  = xn  - (εn + 3εn-1 + 3εn-2 + εn-3)
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4.  Delay-Free Loop when applied to Audio
The first plan was shape the error spectrum of one audio stream subject to vector
quantization.  Under those circumstances, the vector quantizer schematic takes the form
shown in Figure�5, where H(z) is as defined in Equation (5a).  It is important to realize that
Figure�5, less the error feedback circuit, represents the classical interpretation of vector
quantization when applied to one dimensional data streams in time or space; Figure�5 is  not
our own concoction, rather, it is the correct interpretation of  vector quantization.
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Figure�5.   Flawed 2D vector quantization scheme for 1D audio data.

The multiplication of  H(z)  by  z  is a compensation required by the formulation of  εn(i�)

using delayed signals.  Normally,  εn(i�)  would be formulated using the instantaneous input

and output of the quantizer, as in Figure�1.  We believe that our formulation of  εn(i �)  is the

only logical choice.   Choosing ( )ix̃ −n 1 instead of ϕn(i) as the tap point,  for example,

would subject the error spectrum to aliasing caused by the downsampling which is
indigenous to vector quantization of  1D signals.

The reason that the circuit in Figure�5 fails is because it is not realizable due to the implicit
cross-coupling indicated by the dotted line.  Note that  z H(z)  has a straight-through path
[Eq.�(5a)].  The consequence of that cross-path is to create a delay-free loop in the error
feedback scheme.  Hence, the circuit in Figure�5 was never implemented, and our intended
application to audio was abandoned.
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5.  Application of Error Feedback to Images
Not having found success in devising a scheme to shape the spectral error of audio, we
considered application of the idea to the vector quantization of images.  Figure�6 shows the
scheme we selected for the 2D vector quantization (VQ) of images.  The circuit in Figure 6
codes two rows of the image, number  i  and  i+1,  in parallel while applying error feedback.
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Figure�6.   Row-pair 2D vector quantization scheme.

A vector quantizer codebook of size 16 (NUMVECS) two-dimensional vectors is created
using the LBG [2] algorithm in a program written in C by the present author. (See the
attachments.)  The training set is taken to be the entire image.  A new codebook is
determined for each image.  Truncation error feedback is applied only during the encoding
process; that is, only after training independently of any considerations regarding error
feedback. 
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Figure�7.  Nomenclature of signal and Fourier transformed data.

We show in Figure�7 the nomenclature for all our graphical presentation of data.  The
spatial-domain signal data organization is the same as that of the image.  The rows and
columns of input signal data are respectively labelled  y  and  x�,  while their Fourier
transformed counterparts are  v  and  u�.   Hence the variable  xn(i)  denotes the one-

dimensional signal found by reading the spatial sequence in the i�th row.  The Fourier
transform of all our data is organized so that DC in both spatial directions resides at the
center of the graph.

We quantize all the pixel pairs (as in Figure�8) in adjacent rows, number  i  and  i+1�,  then
we proceed to the next pair of rows.  Each time a row pair is begun, all previous memory is
cleared.  The memory in row  i  is of the previous column  n-1  mod 256.   Thus the
columns become our spatial analogue to time. 

 row i                   .         .         .       …      .
 row i+1                .         .         .       …      .
                                   0            1         nth column→      255

Figure�8.   Pixel pairs.
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6.  Attachments
The attachments show the results of applying the VQ circuit in Figure�6 to images.  There we
show:

° the original image and its 2D Fourier transform, 

° a three–dimensional graph of original image luminosity, 

° the vector quantized image with and without error feedback, 

° the error image XX − ˆ  and its 2D |fft|, 

° and the actual magnitude response of the error feedback filter factor (1±H�).

The graph of image luminosity was generated so as to aid understanding of the
corresponding 2D |fft|.  

The |fft|s of the error images without error feedback show some spikiness; energy is
concentrated.  But there are no pronounced trends in the error image Fourier magnitude.  

The actual magnitude response of the error feedback filter factor was determined by dividing

the DFT of the error image  XX − ˆ   by  E  (Eq.(3)).   For that to work, it became necessary
to make the convolution  ε∗h  in Equation (2) circular in the C program.

Table 1.      SQNR of VQ  vs. VQ with first order truncation error feedback.������
Image VQ VQ with lowpass EFB VQ with highpass EFB entropy
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––
cman 17.56 dB 15.00 dB 13.00 dB 1.37 bit
mri 16.90 dB 14.51 dB 11.87 dB 1.47 bit
einstein 13.96 dB 11.50 dB   9.96 dB 1.64 bit
reagan 16.48 dB 14.10 dB 12.26 dB 1.87 bit
smandril 13.21 dB 10.78 dB   9.74 dB 1.88 bit
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

In Table�1 we compare the performance, via the MSE in dB which we call the SQNR (signal
to quantization noise ratio), of ordinary vector quantization to the performance of the same
vector quantizer when truncation error feedback (EFB) is incorporated into the encoding
process as in Figure�6.  Our data reflects both the high (Eq.(3)) and lowpass (Eq.(3b)) sense
of the error filter factor (1±H�).  

The lowpass sense seems to be favored but none of the EFB data surpasses ordinary VQ.
The lowpass favor is a surprise because the spikiness observed in the error images having no
error feedback would seem to favor the highpass sense.  

Since the codebook vectors are unaffected by the use of error feedback, the entropy is the
same in all VQ cases.
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7.  Conclusions
Observation of the 2D |fft| of the error images in the attachments show no preponderance of
energy in localized regions.  Hence it is difficult to incorporate a simple digital filter such as
those we propose here into the error feedback scheme in order to minimize the overall error.
The FIR error filters H(z) are constrained to be monic thus limiting our latitude in the
design procedure.  Further we have found that at very low bit rate, the error filter order
cannot be greater than 1, for then the system becomes unstable.  In light of these findings,
we conclude that this technique is  not  very useful when applied in this manner.  Further
research is required; perhaps incorporating the error feedback into the LBG codebook design
procedure warrants investigation.
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