
Phase Response
-Jon Dattorro

There is a misconception that not much in regard to phase can be visually determined from a

pole/zero plot of an associated discrete signal or system [S&K,pg.262].  Here we will give

rules that can be used to eyeball phase, given only a pole/zero plot.

Rule�1) Phase for real signals and phase response of real linear time-invariant systems is
            anti-symmetrical.  

Proof:

( )[ ] ( )[ ]
( )[ ]( )eR

mI
atangrA =

eH

eH
eH j

j
j

ω

ω
ω

                      
(1)

where  Arg[.]  denotes the  principal value  of the phase, [Churchill] and where  ω = 2πƒT ,

for  T  the sample period.  The arctangent function  atan(x)  is an anti-symmetrical function

(of an anti-symmetrical variable x).  Real signals and systems have the property that

h[n]�=�h*[n]�,  hence they possess the property of Hermitian symmetry in their Fourier

transforms; i.e., 

( ) ( )eHeH = ω∗ω− jj
                                 (1A)

The imaginary part of  H(e�j�ω)  is an anti-symmetrical function of frequency, while its real

part is a symmetrical function.  The variable  Im[H(e�j �ω)]/Re[H(e�j �ω)]  is therefore anti-

symmetrical, hence phase response is anti-symmetrical versus ω�.  Alternately, from Equ.(1A)

we know that   |H(e�-j �ω)| e �j Arg[H(e�
-j

�
ω)]  =  |H(e �j �ω)| e�-j Arg[H(e �

j
�
ω)]   that further shows that

phase response must be anti-symmetrical.    ◊

When using Equ.(1) to find system phase, keep in mind that your calculator probably

employs the standard  atan(v/u)  function, hence returning phase in only two quadrants.  For

that reason, the  atan(u,v)  function was introduced into the C programming language,
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Matlab, Mathematica, and other languages to correct that problem.  
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The phase correction of  π  observes the quadrant of the cartesian (u,v) coordinate system in

which  Re[H(e�j �ω)]  and  Im[H(e�j �ω)]  reside.     

Example�1

Suppose  H(e �j �ω)�=�e �j �ω�.    Then the phase calculated using the standard two-

quadrant function  ArgII[H(e �j �ω)]�=�atan(Im[H(e �j �ω)]/Re[H(e �j �ω)])  looks
like this:

ArgII[H(e�j�ω)]/π
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Figure 1.    H(e�j�ω)�=�e�j�ω .    Phase incorrect.

This anti-symmetrical function only uses two of the available quadrants.  On
the other hand, the four-quadrant function

ArgIV[H(e �j �ω)]�=�atan(Re[H(e�j �ω)],�Im[H(e �j �ω)])  looks like this:

ArgIV[H(e�j�ω)]/π
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Figure 2.    H(e�
j�ω)�=�e�

j�ω .    Phase correct.
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The phase function ArgIV[.] uses all four quadrants.  Note that both

atan(v/u)  and  atan(u,v)  are anti-symmetrical, periodic functions; 2π-
periodic in the latter (correct) case.  Also note that the discontinuity in the
phase is genuine, and not an artifact.

The reason that Figure�2 is correct is seen by looking at the complex function
graphed directly in the  u,v  plane as in the Figure�3.

-1 -0.5 0.5 1
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0.5
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v=Im[H(e�jω)]

u=Re[H(e�jω)]
Arg = atan[u,v]

e jωo

Figure 3.    H(e �j �ω)�=�e �j �ω

The normalized radian frequency  ω�=�0  corresponds to the coordinate

(1,�0), while  ω�=�± π  corresponds to (-1,�0).  By tracing H(e�j�ω) with ω,
while measuring the angle of the vector from the origin to the corresponding

point on the contour,1 we see that  ArgII[.]  is clearly wrong in this case

H(e�j �ω)=e�j�ω  and, by induction, wrong in general.

1This graph of the complex function is circular only because H(e�jω) is so simple; this type of graph
is usually more interesting.  
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Rule�2) Phase of any discrete signal, or phase response of any linear time-invariant    
      discrete system is always 2π−periodic in frequency ω �. 

Proof:

All discrete signals and systems can be conceived in terms of some sampled continuous signal

or system.  In the frequency domain, the relation between the discrete and continuous signal

is [O&S,pp.83-87,ch.3.2]
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As a consequence, notice that 

( )( ) ( ) peXeX = jpj ωπ+ω 2 ; regetninarof

Going one step further, we also have that the Laplace transform of a sampled signal or

system2 is periodic in 2π/T-wide strips of the  s  plane oriented perpendicularly to the  j�ω

axis;  viz.,  [M&C,ch.6]
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The generally complex  X(.)  always has a magnitude and phase representation  |X| e�j Arg(X�)

where  Arg(X )  is the phase response.  Hence, periodicity of  |X|  and  Arg(X )  along the  j �ω

axis is irrefutable.  This observation applies whether or not the continuous-time signal is

bandlimited.    ◊ 

2Note that the two-sided time-domain impulse train (the shah) has no Laplace transform.
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Rule�3) Phase Transition

• Zeros outside the unit circle cause negative-going transitions in phase.
• Poles inside    the unit circle cause negative-going transitions in phase.
• Zeros inside   the unit circle cause positive-going transitions in phase.
• Poles outside  the unit circle cause positive-going transitions in phase.
• When a pole or zero is right on the unit circle there is a discontinuity in phase of  π�,  but 
    the direction is difficult to predict.

These bullets are summarized in Table�1 and the accompanying Figure�4.

Table�1.  Phase Transition vs. Pole or Zero
–––––––––––––––––––––––––––––––––
                         Pole               Zero          

 Inside    –   +
Outside   +   –
   On     ±  π    ±  π

unit circleOπ

X

X

O

O

Figure�4.  Phase transitions due to poles and zeros.

Vector Form of the Transfer Function

These results may be easily understood by considering the rational transform description of a

signal or linear time-invariant system as a collection of vectors. [O&S,ch.5.3]  The vectors

are revealed when the system function is written in its rational factored form;

( )
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for  κ  some constant.
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Example�2 
Suppose we have the transfer function  H(z)�=�(z�–�zo)�/�(z�–�zp)�.

z - zo

X
z - po

O

unit circle

po

zo

Figure�4A.  Understanding phase transition in terms of vectors.

In the example shown in Figure�4A, there is a pole at  po  and a zero at  zo�.
The vectors  z–po  and  z–zo  are shown for  z  evaluated along the unit circle.
As we move around the unit circle in a counter-clockwise direction, the angle
associated with the zero changes negatively at the illustrated instant while the
angle associated with the pole changes positively.  But because the pole vector
is in the denominator of H(z), the change ascribed to the pole angle is
actually negative.  

Phase Wrap
A discontinuity in phase of  2π  within an open3 2π-period in frequency, is called a
trigonometric  wrap  and is caused by a branch cut [Churchill] in the trigonometric function

definitions.  It comes about when observing the principal value (-π�<�arg[.]�<�π) of the
inverse trigonometric functions. [O&S,ch.5.3]  Eliminating the discontinuities due to phase
wrap has been studied.4 [Steiglitz]   

MidSummary
What we know thus far is that phase is 2π-periodic for discrete signals and systems, and that
phase for real signals and systems must be anti-symmetrical with respect to frequency.  We
have also seen that phase transitions are produced by the poles and zeros of signals or systems
that can be expressed in those rational terms.  Now we must determine if this information is
of any value to us; e.g., can we use it to sketch a phase response curve simply by viewing a
given pole/zero constellation.  The best approach seems to be the vector approach discussed
under Rule�3.  We now look at some pertinent illustrations of pole/zero constellation,
magnitude, and phase.  

3Open means not including the end-points of the interval 2π �.
4The Matlab function called unwrap() is not flawless.
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Table�2.  Elemental Phase Response
H(z) = z - 1

-1 -0.5 0.5 1
Re z
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Im z

O

                       2 |Sin[ω/2]|                               ArcTan[-2 Sin2[ω/2],  Sin[ω]] / π
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H(z) = 1/(z - 1)

-1 -0.5 0.5 1
Re z
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Im z

X

                    (2 |Sin[ω/2]|)-1                           ArcTan[-2 Sin2[ω/2],  -Sin[ω]] / π
     ∞                                                   ∞
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Comments:  Phase is 2π-periodic on the right and left-hand sides for both illustrations.
  The magnitude is the reciprocal of the previous illustration, while the phase is 
   the negative of the previous illustration.
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H(z) = z - 0.9
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H(z) = 1/(z - 0.9)
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Comments:  Both maximum phase.
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H(z) = z - 1.1

-1 -0.5 0.5 1
Re z

-1

-0.5

0.5

1

Im z

O
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H(z) = 1/(z - 1.1)
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Comments:  Both minimum phase.
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H(z) = 1 - z 
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H(z) = 1/(1 - z 
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H(z) = 1 - 0.9 z  
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H(z) = 1/(1 - 0.9 z 
-1)
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Comments:  Both minimum phase.
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H(z) = 1 - 1.1 z  
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                √(2.21 - 2.2 Cos[ω])                       ArcTan[1 - 1.1 Cos[ω],  1.1 Sin[ω]] / π
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H(z) = 1/(1 - 1.1 z 
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Comments:  Both maximum phase.
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H(z) = z + 1
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H(z) = 1/(z + 1)

-1 -0.5 0.5 1
Re z

-1

-0.5

0.5

1

Im z

X

                    (2 |Cos[ω/2]|)-1                          ArcTan[2 Cos2[ω/2],  -Sin[ω]] / π

                  ∞                        ∞

-2 -1 1 2
w/pi

2.5

5

7.5

10

12.5

15

17.5
 

 

-2 -1 1 2
w/pi

-2

-1.5
-1

-0.5

0.5
1

1.5
2 

Comments:  Magnitude is the reciprocal of the previous illustration, phase is the negative.
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H(z) = z + 0.9
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H(z) = 1/(z + 0.9)
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Comments:  Both maximum phase.
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H(z) = z + 1.1
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Re z
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      √(2.21 + 2.2 Cos[ω])                         ArcTan[1.1 + Cos[ω],  Sin[ω]] / π
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H(z) = 1/(z + 1.1)
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Comments:  Both minimum phase.
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H(z) = 1 + z 
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                   2 |Cos[ω/2]|                                    ArcTan[2 Cos2[ω/2],  -Sin[ω]] / π
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H(z) = 1/(1 + z  
-1)
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H(z) = 1 + 0.9 z 
-1

-1 -0.5 0.5 1
Re z
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Im z

O X

            √(1.81 + 1.8 Cos[ω])                      ArcTan[1 + 0.9 Cos[ω],  -0.9 Sin[ω]] / π
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H(z) = 1/(1 + 0.9 z 
-1)
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        √(1.81 + 1.8 Cos[ω])-1                       ArcTan[1 + 0.9 Cos[ω],  0.9 Sin[ω]] / π
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Comments:  Both minimum phase.
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H(z) = 1 + 1.1 z 
-1

-1 -0.5 0.5 1
Re z
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Im z

O X

            √(2.21 + 2.2 Cos[ω])                      ArcTan[1 + 1.1 Cos[ω],  -1.1 Sin[ω]] / π
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H(z) = 1/(1 + 1.1 z 
-1)

-1 -0.5 0.5 1
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        √(2.21 + 2.2 Cos[ω])-1                       ArcTan[1 + 1.1 Cos[ω],  1.1 Sin[ω]] / π
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Comments:  Both maximum phase.
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Table�2A.  Compound Phase Response

H(z) = 1 + z 
-1 + z  

-2 + z 
-3 + z 

-4 + z  
-5

-1 -0.5 0.5 1
Re z

-1

-0.5

0.5

1

Im z

O

O

O

O

O

*X*

2 |Cos[ω/2] + Cos[(3 ω)/2] + Cos[(5 ω)/2]| 

-2 -1 1 2
w/pi

1

2

3

4

5

6
 

 

ArcTan[1 + Cos[ω] + Cos[2 ω] + Cos[3 ω] + Cos[4 ω] + Cos[5 ω], 
           -Sin[ω] - Sin[2 ω] - Sin[3 ω] - Sin[4 ω] - Sin[5 ω]]  /  π

-2 -1 1 2
w/pi

-2

-1.5
-1

-0.5

0.5
1

1.5
2 

Comment:  Five poles.
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H(z) = 1 - z 
-1 + z 

-2 - z 
-3 + z 

-4 - z 
-5

-1 -0.5 0.5 1
Re z

-1

-0.5

0.5

1

Im z

O

O

O

O

O*X*

2 |Sin[ω/2] - Sin[(3 ω)/2] + Sin[(5 ω)/2]| 

-2 -1 1 2
w/pi

1

2

3

4

5

6
 

 

ArcTan[1 - Cos[ω] + Cos[2 ω] - Cos[3 ω] + Cos[4 ω] - Cos[5 ω], 
          Sin[ω] - Sin[2 ω] + Sin[3 ω] - Sin[4 ω] + Sin[5 ω]] / π

-2 -1 1 2
w/pi

-2

-1.5
-1

-0.5

0.5
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2 

Comment:  Five poles.
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H(z) = (z - 0.9 e�jπ/3) (z - 0.9 e�-jπ/3) / z2

-1 -0.5 0.5 1
Re z

-1

-0.5

0.5

1

Im z

O

O

*X*

 √[(1.81 - 0.9 Cos[ω])2 - 2.43 Sin2[ω]] 

-2 -1 1 2
w/pi

0.5

1

1.5
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ArcTan[1 - 0.9 Cos[ω] + 0.81 Cos[2 ω],  0.9 Sin[ω] - 0.81 Sin[2 ω]] / π

-2 -1 1 2
w/pi

-2

-1.5
-1

-0.5

0.5
1

1.5
2 

Comment:  Minimum phase, two poles.
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H(z) = (z - 0.9 e�jπ/3) / (z - 0.9 e�-jπ/3)

-1 -0.5 0.5 1
Re z

-1

-0.5

0.5

1

Im z

O

X

 √[(1.81 - 0.9 {Cos[ω] + √3 Sin[ω]}) /
     (1.81 - 0.9 {Cos[ω] - √3 Sin[ω]})] 

-2 -1 1 2
w/pi
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ArcTan[0.595 - 0.9 Cos[ω],  √3(0.405 - 0.9 Cos[ω])] / π

-2 -1 1 2
w/pi
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-1.5
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-0.5

0.5
1

1.5
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Comment:  Minimum phase, complex system.
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H(z) = (z - 1.1 e�jπ/3) / (z - 0.9 e�-jπ/3)

-1 -0.5 0.5 1
Re z

-1

-0.5

0.5

1

Im z

O

X

 √[(2.21 - 1.1 {Cos[ω] + √3 Sin[ω]}) /
     (1.81 - 0.9 {Cos[ω] - √3 Sin[ω]})] 

-2 -1 1 2
w/pi
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15
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ArcTan[0.505 - Cos[ω] - 0.1 √3 Sin[ω],  √3 (0.495 - Cos[ω]) + 0.1 Sin[ω]] / π

-2 -1 1 2
w/pi
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-1.5
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-0.5

0.5
1

1.5
2 

Comment:  Maximum phase, complex system.
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Generalized Frequency Response, Linear Phase, and Amplitude

Let’s do a couple of simple examples that can be found in the elemental list of phase
responses.  Then we will generalize the results.

Example�3

H(z) = z - 1

We presume that this transfer function is the result of some sampling process.
Thus we know a priori that it is a 2π-periodic function of frequency ω.
[Rule�2]    Each term of  

H(e�j�ω)�=�e�j�ω�-�1            ; |ω| < π  

is also 2π-periodic due to the assumption of linearity.  We already know what

e�j�ω  looks like from Figure�2.    H(e �j �ω)  can be written equivalently as  

H(e�j�ω)  =  2 j sin(ω/2) e�j�ω/2  =  2 sin(ω/2)  e�j�ω/2 + jπ/2     ; |ω| < 2π        (2)

An important point here is to recognize that the exponential term in Equ.(2)
has been expanded in the frequency domain by a factor of 2 as in Figure�5;

i.e., the argument of  e�j�ω/2  is 4π-periodic as is  sin(ω/2)�.    Even so,  H(e �j �ω)
remains 2π-periodic.

   ArgIV[e �j �ω/2]/π

-4 -2 2 4

-2

-1.5

-1

-0.5

0.5

1

1.5

2

ω/π

Figure 5.  Phase of  e�j�ω  expanded in ω by factor of  2.

If in the previous example it were erroneously assumed that the argument of  e�j�ω/2  is 2π-

periodic, then an incorrect magnitude and phase would ensue.  That is not to say  that the

argument of the function  e�j�ω/2  is always 4π-periodic.  It is so in the previous example

because we know its origin.  
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Example�4 
Suppose that we are specifying an ideal allpass digital filter having an advance
of precisely 1/2 sample.  Then the frequency response would be stated in a
magnitude and phase description like so:

H(e�j�ω) = e�j�ω/2                           ; |ω| < π

The phase  ω/2  of this frequency response is 2π-periodic by definition; it

must be if  H(e �j �ω)  is to be 2π-periodic hence representing a sequence.

Example�5

H(z) = 1 + z 
-1

This transfer function corresponds to a sequence;

h[n] = δ[n] + δ[n-1]

Thus we know a priori that its discrete-time Fourier transform  

H(e�j�ω)�=�1 + e�-j�ω            ; |ω| < π  

is a 2π-periodic function of frequency  ω�.   Each term of  H(e�j�ω)  is also 2π-

periodic due to the assumption of linearity.    H(e�j�ω)  can be written
equivalently as  

H(e�j�ω)  =  2 cos(ω/2) e�-j �ω/2            ; |ω| < 2π                   (3)

The important point here is to recognize that the exponential term has been
expanded in the frequency domain by a factor of 2 as in Figure�6; i.e., the

argument of  e�-j�ω/2  is 4π-periodic as is  cos(ω/2)�.    Even so, H(e�j �ω) remains
2π-periodic.

ArgIV[e �–j �ω/2]/π

-4 -2 2 4
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1

1.5

2

ω/π

Figure�6.  Phase of  e�-j �ω  expanded in ω by factor of  2. 
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The polar form, Equ.(4) shown in Figure�7, is 2π–periodic in both
magnitude and phase.

    H(e�j�ω)  =  |2 cos(ω/2)|  e�-j �ω/2                    ; |ω| < π                 (4)

           |2 cos(ω/2)|                                  arctan[1 + cos(ω),  -sin(ω)] / π

-2 -1 1 2

0.5

1

1.5

2

ω/π

-2 -1 1 2
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-1.5

-1

-0.5

0.5

1

1.5

2

ω/π

                                (a)                                                               (b)

Figure�7.  Magnitude (a) and phase (b) from Equ.(4)�.

It is interesting that the phase of the polar form may be expressed simply

( ) ( )( )ω−ω+≡ω− sin,cos1natcra
2

This 2π-periodicity is, in fact, the conventional specification of linear phase
in DSP.

Example�6

H(z) = 1 + z 
-2

This transfer function corresponds to a sequence;

h[n] = δ[n] + δ[n-2]

Thus we know a priori that its discrete-time Fourier transform  

H(e�j�ω)�=�1 + e�-j�ω2            ; |ω| < π  

is a 2π-periodic function of frequency  ω�.   Each term of  H(e�j�ω)  is also 2π-

periodic due to the assumption of linearity.    H(e�j�ω)  can be written
equivalently as  

H(e�j�ω)  =  2 cos(ω) e�-j �ω            ; |ω| < 2π                   (3a)

The exponential term has once again been expanded in the frequency domain
by a factor of 2; but in this case, it doesn’t matter because both terms of
Equ.(3a) are also periodic in 2π.  To justify this last statement for the
generalized linear phase, we allow phase wrap.
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The concept of generalized frequency response was introduced to help explore the properties

of linear phase FIR filters; [O&W] [S&K]  

H(e�j�ω) = A(e�j�ω) e�-j�ωα  + j�β                                [O&S,Equ.(5.135),pg.255]

where the  generalized amplitude function  A(e�j�ω)  is real (including negative real) and not

necessarily 2π-periodic, and where the  generalized linear phase  is defined�
5 to be  –α�ω + β

and neither necessarily 2π-periodic.  Traditionally one would write the polar form of a

frequency response in terms of magnitude and phase;  H(e�j�ω)�=�|H(e�j �ω)|�e�j�Arg[H(e �
j

�

ω)]  any

part of which is always 2π-periodic.  The relaxation of  the traditional magnitude constraint

upon  A(e�j �ω)  occurs naturally when one considers certain symmetrical impulse responses of

the form  h[n]�=�h*[-n]  (Type�I)  which have the property of zero phase (α=0,�β=0),  or

anti-symmetrical responses  h[n]�=�–h*[-n]  (Type�III)  which have pure imaginary spectra

(α=0,�β=π/2).  

Sequence symmetry is a sufficient condition for generalized linear phase in FIR filter design.

If we move the point of symmetry away from n=0, then we can write a slightly more

encompassing symmetry equation of the form  h[n]�=�h*[2α-n]  (Type�I,�Type�II), while for

anti-symmetry  h[n]�=�–h*[2α-n]  (Type�III,�Type�IV), where  α  is the point of symmetry

and  2α  is an integer.  When causality is thus introduced,  α  becomes nonzero for all FIR

types and is typically equal to half the filter order M/2; just enough to make the impulse

response causal.  These results are summarized in Table�3.  Type�II and Type�IV arise in the

case that  2α  is an odd integer; where the point of symmetry rests precisely between two

samples, as in Example�3, making  A(e�j�ω)  and the generalized linear phase 4π-periodic. 

5The case β≠0 is also called affine linear phase.   For strictly linear phase, β=0.
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               Table�3.   Causal Linear Phase FIR Types                   

––––––––––––––––––––––––––––––––––––––––––––––––––
Type            I                      II                     III                   IV    
 h[n] sym. sym.           anti-sym.        anti-sym.

A(e�j�ω) Sym. Sym.          Anti-Sym.       Anti-Sym.
Periodicity  2π  4π   2π   4π
A(e�j�ω) Real Real Imag. Imag.
  M even odd even odd
  α M/2 M/2 M/2 M/2
  β   0   0  π/2  π/2

Example�7
Let’s look at Example�5.14 from [O&S,ch.5.7.3,pg.260] and try to derive an
equation like Equ.(2) and Equ.(3) here.  We have M=5 and sequence
symmetry about M/2.  The sequence transform is  

H(e�j�ω) = 1 + e�-j�ω + e�-j�2ω + e�-j�3ω + e�-j�4ω + e�-j�5ω       ; |ω| < π         (5)

It is easy to verify that 

H(e�j�ω) - e�-j�ω H(e�j �ω) = 1 - e�-j�6ω                                  ; |ω| < π        (6)

and that each side of Equ.(6) remains 2π-periodic.  From Equ.(6) we may
infer that 

( ) | |

?
( )( )

( )
| |e

M

e

e
eH

π<ω
ω

ω+=

π<ω
−
−=

Mj

j

j
j

ω−

ω−

ω−
ω

2;
2sin

21sin

;
1
1

2

6

                     

(7)

As in Example�3 and Example�5, H(e �j �ω) is 2π-periodic, but the argument of

e�-j �ωM/2  for M=5 is 4π-periodic due to expansion in the frequency domain

(the halving).  We recognize  A(e�j �ω)  in Equ.(7) as a digital sinc() that is also
4π-periodic because  M  is odd.
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Phase Terminology                 - unfinished

These are the terms that we need to be comfortable with:

A) Phase Shift

To accomplish phase shift, +phi on right side spectrum and  -phi on left side.

B) Phase Delay  

C) Group Delay

D) maximum/minimum phase  

  Poles or zeros at infinity.
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