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Introduction
Meyer’s wavelet construction is fundamentally a solvent method for solving the two-scale
equation.  Given a basis  ϕ  for the approximation space V0�,  Meyer employed Fourier

techniques to derive the DTFT of the two-scale equation coefficients,  go[n],  from Φ(ω);
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Knowledge of go[n] leads naturally to a filterbank interpretation.  An implementation
becomes attractive when  go[n]  is associated with a rational system function of finite order.
But because Meyer’s construction has compact support in the frequency domain, there is no
rational solution.  

We propose approximating the rational transform of go[n] for a Meyer-type construction
specified to a total mean-square fidelity of greater than 100�dB.  We will consider both FIR
and IIR realizations.  The FIR realizations will be shown to be more efficient than the IIR.
The transforms are designed using a construction polynomial β(x).  The superiority of the
FIR implementation is because of the consequent energy compaction in the impulse response
which is controlled by the choice of  β(x).   The IIR transforms are then determined from
the FIR impulse response  go[n]  via the technique known as Prony’s method [Marple].    



Generating the Continuous Filter  go(t)
The first step in the process is to construct the continuous synthesis filter prototype which
will be sampled to get go[n].  We do this with reference to [Mallat,pg.247] and
[Vetterli,pg.226] from which we determine
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where

( ) ( )+−+−=β xxxxxx 4325 07513045024621                                           (2)

This choice of β(x) has four derivatives equal to 0 at each endpoint of the range [0,1].
Equ.(2) provides more energy compaction of the impulse response than [Vetterli,(4.3.2)].
We observed empirically that going to polynomials of higher order than (2) did not offer
significantly more compaction.
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Figure�1.  The continuous prototype synthesis filter.

Figure�1 shows only the significant portion of the infinite impulse response go(t) of our
selected prototype synthesis filter, while Figure�1A shows its Fourier transform. 
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Figure�1A.  Ideal response corresponding to Equ.(1).

We wish to sample go(t) and use it in a discrete wavelet transform (DWT) implemented via
filter bank.  The key to the success of this proposed technique is to sample go(t) using a shah
function advanced by 1/2 sample.  
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We call this asynchronous sampling.  Then choosing an even number of even symmetric

samples forces a zero at π in the frequency response Go(e�
jω). [O&S,pg.265]  That zero is

demanded by Rioul [Vetterli,pg.251] as a necessary condition for convergence of the
iteration [Vetterli,(4.4.9)].

The impact of sampling in the manner of Equ.(2A) is to place a delay into the two-scale
equation for the scaling function.  That is, instead of [Vetterli,(4.2.9)], we now have
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as our two-scale equation.
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Figure�2.  The sampled synthesis filter having even indexed samples discarded.

Figure�2 shows the result of sampling go(t) using the asynchronous sampling scheme
described above.  The many samples of go[n] which are close to zero attest to the energy
compaction.  This sampled signal contains only 66 significant samples and represents
99.99999999051% of the total energy in go(t).  Stated in deciBels, the sampled signal in
Figure�2 represents go(t) [Luthra] to within a total mean-square error of  –100.227�dB.   That
particular error is completely due to support truncation of the infinite impulse response.
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Figure�2A.  Overlaid frequency response of the ideal continuous-time prototype and its

discrete-time approximation.                                                   

We demonstrate in Figure�2A that on an absolute scale, the discrete-time approximation to
the synthesis filter prototype is indistinguishable from its continuous-time counterpart.  Of
course on a dB scale, the discrete-time approximation is seen to be non-ideal but it does have
an absolute zero at π, shown in Figure�2B.
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Figure�2B.  Actual frequency response of the discrete-time synthesis filter.

-2 -1 1 2
Re z

-2

-1

1

2

Im z

OO
O
O
O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O

O
O
O

O

O

O

O

O

O

O

O

O

O

O

O

O
O*X*

Figure�2C.  Pole/zero constellation of the discrete-time synthesis filter.

Figure�2C shows the zero locations for the discrete-time synthesis filter.  The zero at π is
clearly present.
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Expected Shape of the Wavelet
When the filter bank is iterated in an octave-band tree as in [Vetterli,Fig.4.14,pg.238], the
two most remote branches have impulse responses that respectively converge (under the
proper conditions) to the scaling function and the wavelet.  Referring to
[Vetterli,Fig.4.10,pg.228], due to the asynchronous sampling scheme we see that the wavelet
spectrum no longer has even symmetry.  Since the wavelet spectrum now shows odd
symmetry1 as in Figure�3, we therefore expect the wavelet to have odd symmetry as well.  

ω

Ψ(ω) e 
jω3/4

2π/3 8π/3

 j

Figure�3.  The symmetry of the wavelet spectrum is now odd. 

Does the Iterated Filter Bank Converge?
We tested convergence to the scaling function out to 8 iterations as in
[Vetterli,(4.4.9),pg.243].  Figure�4 shows the result of the iteration.
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Figure�4.  The result of 8 iterations on Go(e�
jω).  Note that this is a rendering of a discrete

plot; i.e., there are no lines drawn.                                                   

1We do not derive this result here, but we believe that the sign sense in correct.  See ‘Glory’ n.b. pg.66.
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The result in Figure�4 bears a remarkable resemblance to Figure�1 to within a constant factor
which we ignored. [Vetterli,(4.4.10),ibid.]  Using fewer iterations, we constructed the
wavelet branch of the filter bank via the following substitution, as in [Vetterli,(3.2.52)],

( ) ( )zGzzG
∗−∗− 11

1 −= o                                        (4)

The leading sign reversal, with respect to [Vetterli,ibid.], is dictated by the sense of Figure�3.
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Figure�5.  The result of  Go
(4)(e�

jω) . G1(e�
jω 24

).

We presume that in some sense 
( ) [ ]ng ∞
1  converges to the wavelet; e.g., as in the sense of

[Vetterli,Sec.4.4.2] or [Vetterli,Sec.4.5.3].  The odd symmetry of the wavelet is in
accordance with its predicted Fourier transform as sketched in Figure�3.  

Figure�6 shows the DTFT of the wavelet in Figure�5.  Figure�6 conforms to the approximate
response expected for the fifth iteration [Vetterli,pg.240]. 
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Figure�6.  Frequency response of remote highpass branch of octave-band tree.

Implementation and the Virtual Pole
Given that each FIR filter has only 66 taps, the required computation is not excessive.2

Even so, it might be advantageous in some circumstance to implement each FIR as a
truncated IIR. [Wang]  The noncausal impulse response may be divided into its causal and
anticausal parts; each part being implemented separately by a causal circuit using an
appropriate delay.  Unlike the FIR implementation, finite word-length in the signal paths
consequently becomes an issue because the "anticausal" IIR filters have exponentially
growing, albeit truncated, impulse response.    

To implement the truncated noncausal impulse response go[n], we introduce the concept of
the  virtual pole  applied separately to the anticausal and causal part, each of length K=33�.   A
virtual pole is nothing more than a transfer of the form 
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Equ.(5) represents the non-delayed i �th exponential component of the causal part of the
noncausal response.  The delayed anticausal part would be represented by a conjugate-
reciprocal transfer of the form
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2Indeed, the author has put a 4096-tap filter into commercial production. [Dattorro] [Andreas]  On the
other hand, very small scale analysis can be achieved only at high sample rates when using 66 filter taps.
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which is theoretically stable but presents some practical considerations in a finite-precision
machine.  

The role of the numerator in both (5) and (6) is to truncate the impulse response after K
samples have passed.  It does so by cancelling the state of the recursive memory element.
Implementation in this manner forces the length of the complete noncausal filter to be 2K
which insures that there always exists a zero at π, thus encouraging convergence to a Meyer-
type scaling function and wavelet in an iterated filter bank.  

We employ Prony’s method [Marple], implemented using singular value decomposition
(SVD) [Numerical] [Laplace] (see Appendices for C programs) , to determine the pole
locations (the ai) of the sampled prototype IIR (go(t),Figure�1) from a support-truncated
version (go[n],Figure�2) which is compact in energy spread.  Prony’s method is essentially a
Laplace analysis over the entire z-plane.  The poles found are those of the infinite impulse
response.  As previously discussed, support truncation to 2K=66 samples introduces an error
in fidelity at about 100 dB below the total energy of the ideal prototype.  SVD is insensitive
to support-truncation error.

Table 1 lists only the positive-frequency IIR poles found from the right hand side of the
even-symmetric impulse response shown in Figure�2.  Only the right hand side of go[n] is
input to the Prony’s method analysis.  As SVD is highly sensitive to noise in individual
sequence samples, this particular application is perfectly suited to the SVD because of the
high 64-bit precision provided at the SVD algorithm input.

Table 1.  Poles of  go(t�).  Complex conjugates and conjugate reciprocals not listed.
–––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––––

Damping            Frequency                    Amplitude                   Phase             

               d   θ      AdB              φ
                [normalized radians]          [dB]       [rads]

0.8453486430642601   1.9816725942614788 -56.6452788169135600  2.1166355292310737

0.7335858735633031   1.8045568547009641 -26.6539233689077230 -2.5274509377016940

0.7211042720568758   1.5673204811852091 -16.7767035262900560  0.0161358357478311

0.4873572404090880   1.4977702191245537 -18.9146017435699920 -1.0571429978160689

0.1405612015576965   1.3147965577602470 -14.1388037100154930 -0.4834711319434999

0.7734455289939324   1.3330424477404466 -43.3808363913245220 -2.9113879721102003
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The data in Table�1 can be used to reconstruct the support-truncated signal as follows:
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where the ai are the poles, previously discussed in (5) and (6), appearing in Table�1 in their
polar form as damping (pole radius) and frequency (pole angle).  The Prony’s method
analysis additionally provides the complex gain associated with each pole, in the form

eA φj
i

i .    To construct go[n] from t[n] we must form
 

[ ] [ ] [ ]( ) [ ] [ ]( )nKtKntnKtKntng ∗∗
o −−+−+−−+−= 11                (8)

Implementation Accuracy
Regarding only the quantization errors in the individual coefficients of the sequence go[n],
the Prony’s method synthesis represented by the parameters in Table�1 is a faithful
reproduction to the support-truncated sampled prototype filter to within a mean-square error
of  –121.754146�dB.  The total error in fidelity, including the support truncation and
quantization, remains less than  –100�dB. 

Of course, the FIR implementation introduces no coefficient quantization error, so its total
error in fidelity is determined by support truncation.

Computational Intensity
Through the combination of complex conjugate pole pairs, each pair is implemented in
second order sections which require 6 multiplications due to the support truncation circuitry.
From Equ.(8) we count 12 pairs that require implementing.  Hence the computational
intensity in terms of multiplications is 6x12=72.  

Comparing this to the 66 multiplications required for the FIR implementation, we conclude
that it is cheaper to stick with the FIR implementation.

Conclusions
We sampled a continuous prototype synthesis filter go(t) using a shah function shifted by
one-half sample.  By forcing an even number of samples in the even-symmetric FIR  go[n],
we insured one necessary condition for convergence of the iterated filter bank.  That led to a
modification of the Meyer-construction which produced an antisymmetric wavelet.

We have determined that the most efficient implementation option is an FIR approach.
This came about because of the high energy-compaction of the impulse response that we
achieved via β(x) (Equ.(2)).  It stands to reason that further research may find other
polynomials that optimize the compaction. 
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