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Fractional Sampling using the Asynchronous Shah
with application to

LINEAR PHASE FIR FILTER DESIGN

Abstract

We investigate the fundamental process of sampling using an impulse train, called the shah  function
[Bracewell], that is skewed in time by a constant offset relative to absolute time 0.  We observe that
when an originating analog signal is bandlimited, there is little difference between fractionally time-
shifting the corresponding sequence, and synchronously sampling the time-shifted analog signal.  We
use these results to explain a curious parallel in the theoretical analysis of Types II and IV linear
phase FIR (finite impulse response) filters that is manifest by an apparent 4π-periodicity in the
"generalized" [O&S] linear amplitude and phase.
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1.  The Continuous-Time View of Sampling
s(t)  is the absolute-time synchronous  shah  function; [O&S,pg.83,Equ.(3.6)] [Bracewell] 
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The asynchronous shah (asynchronous to time zero) is similarly written
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for  T  the sampling period, and for  0�≤�τ�<�T�.    Sampling using the asynchronous shah results in
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From the point of view of the continuous-time domain, this equation says that when we sample a
signal asynchronously to absolute-time 0, each replication in the frequency domain becomes

multiplied by a complex constant  e j�k �2π�τ/ T  that is dependent upon the replication number  k  and
the asynchrony  τ .    When  τ = 0  then the complex constant becomes equal to  1  for all  k  and we
have conventional synchronous sampling.  A particularly noteworthy case is when  τ = T/2 ,  for then
the complex constant alternates between  ±1  at every replication.  This leads to  4π/T  periodicity in
the frequency domain.
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2.  The Sequence-Domain View of Sampling
The interpretation of asynchronous sampling that we have from Equ.(1) is sufficient for many
purposes.  But we can write Equ.(1) equivalently as follows and then derive another interpretation
that is intuitively appealing.

( )
� ( ) ( ) ( )e

T
kX

T
eX τ−Ω−

∞−=

∞
τΩ kj

k

j
S

π

τ

π−Ω=Ω 2
21 2

T

With a change of variable, we momentarily mix the discrete and continuous-time representations;
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In the case that  X(Ω)  in Equ.(2) is bandlimited to the Nyquist frequency, then we may say
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the former is not periodic; the argument of the discrete-time linear phase term  e�
-j�ωτ/T  is 2π-

periodic in ω�.   X(e�j �ω) corresponds to the conventionally sampled discrete-time domain signal, and
is always 2π-periodic.1 [O&S,pg.87,Equ.(3.20)]  Now if we separate out the permanently 2π-
periodic part from Equ.(2A), we get the Fourier transform of a bandlimited sequence;
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1Note from Equ.(1) that  XS�τ
(Ω)  is 2π/ T-periodic only when  τ  is any multiple of  T �.    Then only in that

case does it follow that  ( ) ( ) TqeXX ωj
Sτ =τ=Ω ,; ω=Ω

T  
,  for  q  an integer. [O&S,pg.87,Equ.(3.18)]

This is true whether or not  X(Ω)  is bandlimited. 
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2.1  Interpretation
Comparing the continuous-time domain signal in Equ.(1) to that in Equ.(3), we see that the only
discrepancy is the absolute time location of the samples as determined by the shah.  The sample
values are the same in both equations.  But the sequence  x[n]  is derived from the synchronous
sampling in Equ.(3) as the sample values of the time-shifted continuous-time signal�;  

[ ] ( )Tnxnx τ−≡                                    (4)

Implicit is the convention that a "sequence" is always associated with synchronous sampling,
regardless of the actual time origin of the sample values.  From the point of view of the sequence
domain, the Fourier transform is 2π-periodic as indicated by Equ.(3)�.   In fact, the Fourier
transform of all sequences is 2 π-periodic by definition, regardless of the underlying and perhaps
unknown shah synchronicity.  This is in sharp contrast to the continuous-time transform Equ.(1)
that is not necessarily  2π/T-periodic.

We must remember to interpret the discrete-time phase as 2π-periodic; that is to say,  e�
-j�ωτ/�T  on

the left-hand side of Equ.(3) must be adjusted at every replication as indicated on the right-hand
side.2  

Because we can design a digital filter having a frequency response arbitrarily close
to  e �

-j �ωτ/T�,  then from Equ.(3) we may conclude that when the original analog
signal is bandlimited, there is little difference between fractionally time-shifting a
sequence, and synchronously sampling the corresponding time-shifted analog
signal.  

In other words, from the point of view of the sequence domain, both of the aforementioned
operations are identical.  It is therefore possible to design a digital filter for the purpose of delaying
any sequence by a fraction of a sample.  What actually becomes delayed, in the steady state, is the
bandlimited analog signal that uniquely corresponds to that sequence.3     

In the case that  X(Ω)  were not bandlimited, the discrete-time linear phase term  e�
-j �ωτ/T  on the

left-hand side of Equ.(3) becomes invalid because the phase term could not be so simply derived
from the right-hand side.  Time shifting and sampling are no longer interchangeable, and the
sequence  x[n]  now corresponds to some other bandlimited analog signal that can be determined by
frequency-domain aliasing of the original analog signal. 

2This 2π-periodic adjustment is the conventional specification of linear phase in DSP.  
3The fact that there is associated with any sequence a unique bandlimited continuous-time signal, is a
consequence of  Whittaker’s Theorem.
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3.  Linear Phase

As it turns out, we may use the framework of the asynchronous shah to explain a curious
4π–periodicity phenomenon that arises commonly in fundamental FIR filter design.  We begin with
a simple example and then generalize the results.

Example�1

H(z) = 1 + z�-1

This transfer function corresponds to a sequence;

h[n] = δ[n] + δ[n-1]

Thus we know a priori that its Fourier transform  

H(e�j�ω)�=�1 + e�
-j �ω            ; |ω| < π  

is a 2π-periodic function of frequency  ω�.   Each term of  H(e�j�ω)  is also 2π-

periodic due to the assumption of linearity.    H(e�j�ω)  can be written
equivalently as  

H(e�j ω)  =  2 cos(ω/2) e�
-j�ω/2            ; |ω| < 2π                   (4A)

An important point here is to recognize that the exponential term has been
expanded in the frequency domain by a factor of 2 as in Figure�1; i.e., the

argument of  e�
-j �ω/2  is 4π-periodic as is  cos(ω/2)�.    

ArgIV[e �–j �ω/2]/π
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Figure�1.  Phase of  e�–j�ω  expanded in ω by factor of  2. 
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Equ.(4A) is not exactly in the form of Equ.(3) because neither  cos(ω/2)  nor

the argument of  e �
-j�ω/2  are 2π-periodic.  That could be easily remedied by

taking the absolute value of the cosine term thus forcing 2π-periodicity into

the argument of the delay term.  Notwithstanding,  H(e�j�ω)  remains 2π-
periodic overall as required by Equ.(3), and by our interpretation of Equ.(3)
there exists a unique bandlimited analog signal that we may associate with

H(e�j�ω)�.   Hence, the corresponding bandlimited analog signal  h(t �–T/2)  that
becomes synchronously sampled to yield  h[n]  as in Equ.(4), is calculated
below and illustrated in Figure�2. 
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Figure�2.   h[n] results when synchronously sampled.  T=1.

6



From [O&S,pg.255,Equ.(5.135)] we have the expression for generalized linear phase in a discrete-
time signal or system;

H(e�j�ω) = A(e�j�ω) e�
-j�ωα + j�β                                              (5.135)

where  A(e�j �ω)  is real (including negative real),  α  is a unitless constant but can be considered a real
number of samples delayed, and the constant phase shift  β  has units of radians.4   Because

H(e�j�ω)  corresponds to a sequence, it is necessarily 2π-periodic.    A(e�j �ω) is  not  necessarily

2π–periodic, however.  The argument of  e�
-jωα  has the same periodicity as  A(e�j �ω)�,  and the

periodicity is  2π  when  α  is an integer.  In Equ.(4A) we saw that when α=1/2, then the periodicity
is 4π.  Because of these facts, we prefer a notation that reminds us that the periodicity is related to
α�;

H(e�j�ω) = A(e�j�ωα) e�
-j�ωα + j�β                         ; A(e�j�ωα) = A(e�j�ω)                     (5)

Sequence symmetry is a sufficient condition for generalized linear phase.  There are only two cases of
symmetry with regard to  h[n]  that are of interest; symmetric and anti-symmetric.    A  symmetric
sequence (FIR Type I,�II) takes time-symmetric samples about  αT  of continuous functions of the
form shown in Figure�3(a), while an anti-symmetric sequence (FIR Type III,�IV) takes time-
symmetric samples about  αT  of functions such as that depicted in Figure�3(b).  

                                he(t�-�αT)

(a)                          …
αT t 

…

  
                                 ho(t�-�αT)

(b)

                          

…
αT t 

…

Figure�3.  (a) Typical symmetric impulse response centered about αT.   β=0.
(b) Typical anti-symmetric impulse response centered about αT.   β=π/2.

4The choice of  β is not arbitrary under generalized linear phase.  If it were arbitrary, it would result in phase
distortion as opposed to "shift".
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Sequence symmetry is a sufficient condition for linear phase, but not a necessary condition.  Any
sequence having a frequency response that can be put into the general form of Equ.(5) will be
considered linear in phase.  When α=0, the Fourier transform of Figure�3(a) is pure real
(zero�phase,β=0)  whereas the transform of Figure�3(b) is pure imaginary
(constant�phase�shift,β=π/2).  Assuming that the continuous-time impulse responses in Figure�3 each
have a corresponding bandlimited frequency response,5 any value of  α  and any amount of shah
asynchrony  τ  will result in a linear phase sequence if we take an infinite number of samples above
the Nyquist rate . [O&S,ch.5.7.1]  The sequence symmetry condition only becomes necessary for
linear phase when we demand finite length impulse response; i.e., FIR design.  That necessity then
limits the available choices of  τ  given  α�.

As mentioned early on, the shah asynchrony cases  τ�=�0  and  τ�=�T/2  are noteworthy.  We further
distinguish these two cases because they represent the only cases of shah time-symmetry about
absolute time�0.   As sequence symmetry is of interest, so are these two cases of asynchrony.  But as
we already learned from Equ.(3) which is the point of view of the sequence domain, it makes no
difference whether we time-shift a sequence, or synchronously sample the corresponding time-shifted
bandlimited analog signal.  Hence without loss of generality, we choose  τ  to be zero because no
cases of sequence symmetry will be lost as a consequence.  

Nonetheless, we discover a strong bond between asynchronous sampling, Equ.(1) and Equ.(3), and
the generalized linear phase description, Equ.(5)�.   The relationship may be expressed,    
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where  αT  now assumes the earlier role of  τ �.    Equ.(6) is not necessarily 2π-periodic, while Equ.(7)
is; that is precisely the same relationship as Equ.(1) to Equ.(3)�.   Like  τ  in Equ.(1),  αT  in Equ.(6)

controls the periodicity of the generalized amplitude  A(e�j�ωα)�.    With  τ  set to 0, there remain only
two choices of  α  which produce sequence symmetry, hence linear phase;  α=0  and  α=1/2�.   The

5The explanation of this requirement for bandlimiting is just like the interpretation of Equ.(3)�.
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pure realness or imaginariness of  A(e�j�ωα) e�j�β  is then determined solely by the  h(t)  waveform
symmetry.  The desire for linear phase is that which demands sequence symmetry as well.  Hence, it
is more difficult to design fractional delay FIR filters for other values of delay,  α�.

When the sample values  h[n]  are then taken as in Equ.(4),

[ ] ( )Tnhnh =β=α≡ e 0,0:epyT; I

then we have what is called the Type�I  linear phase FIR filter. [O&S,pg.257]  Similarly, the three
other types of linear phase FIR filters that arise because of sequence symmetry can be found;
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The characteristics of both the sequence and its transform are summarized in Table�1 along with the
values of the other related parameters.  We see from the table that  α=1/2  will result in a 4π-periodic
generalized amplitude (and generalized linear phase).  The same also holds true when  α  equals any
odd multiple of  1/2�.

                 Table�1.    Symmetry and Synchronicity                     
–––––––––––––––––––––––––––––––––––––––––––––––––––
FIR Type     I                     II                     III                   IV       
 h[n]  sym. sym.           anti-sym.         anti-sym.

A(e�j�ωα)  Sym. Sym.          Anti-Sym.        Anti-Sym.
Periodicity  2π  4π   2π   4π
A(e�j�ωα)  Real Real Imag. Imag.
   α    0  1/2    0  1/2
   β    0       0   π/2  π/2
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Example�2

H(e�j�ω) = e�
-j �ω/2            ; |ω| < π                      (8)

The magnitude  |1|  and phase  -ω/2  of this frequency response are
2π–periodic by definition.  The corresponding bandlimited analog signal
he(t �-T/2)  that becomes synchronously sampled to yield  h[n]  as in Equ.(4),
is calculated below and shown in Figure�4. 

( ) ( )
�

( )

?
( ) ( ) �

?
( )( )

( )
?

[ ] ( ) ( )( )
( )

( )[ ].
n

n
TTnhnh

Tt
Tt

deeTthTth

TntTtheH

π=ω=α
−π

−π=−=

−π
−π=

ω
π

=−=α−

−δα−⇔

c

Ttjj
e

n

j

ωω−
π−

π

ω

;8215,S&O,
2
1

;
21

21sin
2

21
21sin

2
1

2 2

he(t�-1/2)

…
-4 -2 2 4

-0.2

0.2

0.4

0.6

0.8

1

t 
…

Figure�4.   h[n] results when synchronously sampled.  T=1.

10



From our discussion of linear phase, we see that  H(e�j�ω)  in Equ.(8) can be
expressed in the generalized form of Equ.(5) with  β=0�;

H(e�j�ω) = A(e�j�ω/2) e�
-j �ω/2            ; |ω| < 2π                           (9)

When written in this form, generalized amplitude and linear phase, we know

that  A(e �j �ω/2)  is 4π-periodic as is  -ω/2  the generalized linear phase, because

α=1/2  in Equ.(6)�.   This periodicity is illustrated in Figure�5.    H(e�j�ω)
remains 2π–periodic.
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        Figure�5.  Generalized amplitude (a) and phase (b) for Example�2 
                          are 4π–periodic. 

That  A(e�j �ω/2)  must alternate between ±1 with a period of  4π  can be
verified by shifting the generalized linear phase form Equ.(9) where no
assumption is made regarding the periodicity of its individual terms;

H(e�
j �ω)  =  A(e �

j�ω/2) e�
-j �ω/2  =  H(e�

j �(ω+2π))  =  A(e�
j �(ω+2π)/2) e�

-j �(ω+2π)/2  

where  e�
-j �(ω+2π)/2  =  -e�

-j �ω/2�.  
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4  Application:

LINEAR PHASE FIR FILTER DESIGN by IDFT
A Cookbook

The technique of  frequency-domain sampling and IDFT is useful when it is desired to make a filter
having arbitrary frequency response.  The result is a discrete impulse response that looks like
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(order M odd), or like this 
5 10 15 20 25 30
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(order M even).  At the

risk of leading one down a garden path, we present a method of solution based upon the concepts
presented earlier; generalized amplitude and linear phase.  We point out that while this may be an
intuitive approach in one sense, there is an easier approach, based on the familiar concept of
magnitude and phase, presented at the end of this section.  

We consider only the case that the desired frequency response  A(e�
jω)� is  pure real and even;6 i.e.,

FIR Types I and II.   We make the impulse response corresponding to  A(e�
jω)� causal via the delay

=τ M
2

where  M = desired filter order.  If we forget to incorporate the delay term, then we will always get an
impulse response that looks like the "M even" case but with an extra sample tacked on one end when
M is actually odd.  That extra sample destroys the time-domain symmetry and the linear phase.
(Implicit in this method is some underlying continuous-time sinc() that is being sampled in one of
two ways depending upon the order M.)
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Recall that when h[n] is finite length, the DFT is simply the DTFT evaluated in frequency by some
simple function of  k�.

[ ] ( ) | ( )eHkH ≡ kf
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Then we may approximate  h[n]  via the IDFT.  It is critical that the IFFT input buffer  H[k]  be
aligned with absolute frequency  0�.   Anticipating that, we write the IDTFT in the equivalent form:
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The second integral in (1) holds the left half of the first periodic-replication7 of   H(e�
jω)�.   

6 FIR filter Types III and IV produce phase distortion because of their constant π/2 phase shift.
7 We assume that  A(e�

j(ω−2π)) = A(e�
jω)�.   Hence the delay term in  τ  must be coerced into

periodicity via the subtraction of  2π�.
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Let the number of  frequency domain samples be equal to N = M+1, the IDFT length; the length of
our approximation to h[n].  As in the time domain, we also consider two methods of sampling in the
frequency domain, and we consider  M  even or odd under each method separately.  For linear phase
to occur, the frequency domain samples must also be symmetrical.  But in the discrete frequency
domain, the symmetry we are concerned with is circular; i.e., the resulting pattern of samples when
viewed along the unit circle, not along the ω-axis. [Rabiner/Gold,pg.113]
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DC-Aligned frequency domain sampling:
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Case 1, M even, N odd:  Type I  linear phase FIR.
From equation (1),
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Another useful representation results when we set  k-N=q�.   For then we get,
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ω�→�2π�q/N .    This formulation allows us to think in terms of the two-sided spectrum.  
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DC-Aligned frequency domain sampling:  (cont.)
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Case 2, M odd, N even:  Type II  linear phase FIR.
From equation (1),
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Note that  A[k-N] = A[k]�.    The zero is demanded by the desired symmetry of the impulse response.
[Oppenheim/Schafer,D-TSP,pg.265]

An alternate representation for the two-sided spectrum is obtained by setting  k-N=q�:
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ω�→�2π�q/N .    This formulation allows us to think in terms of the two-sided spectrum.  

14                                                               Mon Apr 30 2001



[ ]
�

( ) � ( )( ) ( ) ( )deeeAdeeeAnh ω
π

+ω
π

= 1
2
1

2
1 ωτπ−ω−π−ω

π

πωτω−ωπ 222

0

njjjnjjj

Non-DC-Aligned frequency domain sampling:
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Case 3, M even, N odd:  Type I  linear phase FIR.
From equation (1),
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Note that  A[k-N] = A[k]�.
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Another useful representation results when we set  k-N=q�.   For then we get,
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ω�→�2π�(q�+�1/2)/N .    This formulation allows us to think in terms of the two-sided spectrum.  

The evaluation of the IDTFT kernel  e�
jωn  at the specified frequencies demands that

[ ] [ ]nhenh ← j π
N
n
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Non-DC-Aligned frequency domain sampling:  (cont.)
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Case 4, M odd, N even:  Type II  linear phase FIR.
From equation (1),
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Note that  A[k-N] = A[k]�.
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An alternate representation for the two-sided spectrum is obtained by setting  k-N=q�:
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ω�→�2π�(q�+�1/2)/N .    This formulation allows us to think in terms of the two-sided spectrum.  

The evaluation of the IDTFT kernel  e�
jωn  at the specified frequencies demands that

[ ] [ ]nhenh ← j π
N
n
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4.1  An Easier Way
The foregoing cookbook was prepared from the point of view of generalized amplitude and linear
phase.  From our study Phase Response (on this site) we learn that it is in fact easier to solve the
problem using the point of view of magnitude and phase for all the cases.  Use  N = M+1  points and
the IDFT; not a power-of-2 type program.

Case 1) M is even.  Just sample the frequency domain using the magnitude and phase representation.
The phase is always periodic in 2π.  The baseband and first replication of phase are respectively
–ωM/2  and  –(ω�–�2π)M/2 �.    Hence their difference  Mπ  is a multiple of  2π  at the discontinuity.

Case 2) M is odd.  Again sample the frequency domain using the magnitude and phase
representation.  The phase difference  Mπ  is an odd multiple of  π  at the phase discontinuity.  That
accounts for the required sign inversion.  Remember that for linear phase and M odd, the sample at
z=–1  must be zero.

Case 3) M is even.  The main difference here is that the frequency samples miss DC.  The phase

term is  e�–jωM/2��=��e�–j2π(k+1/2)/N M/2��=��e�–jπ(k+1/2)M/N�.    Again, the phase difference at the phase
discontinuity is a multiple of  2π.  The problem with this method is that the IDFT buffer, which
requires absolute frequency alignment, is loaded with left shifted (by 1/2 bin) frequency domain
DTFT samples.  So after IDFT, we must compensate in the time domain via the modulation term

e�jπn/N�.

Case�4)  M is odd.  The frequency sample at  z=–1  is missed, so not of concern.  The phase
difference is an odd multiple of  π  at the phase discontinuity, which accounts for the required sign
inversion.  Time domain compensation is again required because of the frequency shift into the
IDFT buffer.

Closed-form solutions can be found in [McClellan,pp.251-252].
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