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The problems are described which the practicing engineer encounters who unwittingly 
approaches the realization of IIR digital filters for the first time. It is assumed that 
suitable design programs arc available to calculate the coefficients, and it is desired 
only to implement the filter. Elegant solutions are provided for some of the most 
intimidating problems typically encountered, which are I) input scaling requirements, 
2) truncation noise propagation and recirculation, and 3) accurate low critical frequency 
filtering. It is shown that the direct form I noncanonic topology is the best for use in 
digital filtering , and while 16/32-bit DSP chips such as the TMS32010 or the ADSP-
21 00 can be used in many applications of high-fidelity digital audio , they will not meet 
the most demanding requirements. 

0 INTRODUCTION 

0.1 Ground Rules 
Let us assume at the outset that the theoretical design 

of digital filters in the z domain is a routine task. There 
are many books and papers written on this topic. Moorer 
[I] provides unity-gain , minimum-phase designs and 
is a superb reference for digital audio work. The low
pass bound on the transition region of 6 dB per octave 
per conjugate pole pair does not exist in Moorer's sec
ond-order parametric filter designs. We have tested and 
verified the C programs that he provides. As such, this 
paper will not deal with the derivation of floating-point 
filter coefficients . Rather , it is assumed that they are 
known and the only remaining task is to design the 
software (or hardware) that will implement the filters. 
It should be emphasized that the design of digital filters 
and the implementation of digital filters can be carried 
out as two di stinct tasks. Most design procedures pro
duce the coefficients for the direct form filter topologies. 
The coefficients for other topologies can usually be 
derived from these via suitable transformations . More 
specifically, a typical design program would produce 
one set of coefficients which are directly applicable to 
either of the two standard second-order sections (the 
direct forms, Figs. I and 2 , or their transposes, Fig. 
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3) which are described in the frequency domain by the 
transfer 

H(z) (l) 

For brevity in the text, we will often write equations 
like Eq. (I) as 

H(z) (2) 

where the subscripts F indicate that these coefficients 
are the floating- point values provided by some design 
procedure. Our implementations will generally operate 
with fixed-point coefficient values, and so this becomes 
one of the issues that bear discussion. 

We will always prefer minimum-phase designs (all 
zeros within the unit circle) because 1) the total phase 
excurs ion is always Jess than 360° for a second-order 
section; long phase ("propagation" or "transport") delays 
are unacceptable; 2) a ll coefficients are bounded as in 
Pascal's triangle if the filter design is unity gain . We 
prefer unity-gain designs because it will be less apparent 
when they are kicked in. 

We will purposely show our filter circuit topologies 
as having positive-signed coefficients at the multipliers 
(see Fig. I) because this leads to positive accumulations 
in the resulting software. We call this a positive to-
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pology. This topology is sometimes more convenient 
for the programmer; hence the negative denominator 
coefficients in Eq. (I). The implementer must be aware 
of the convention concerning the signs of the coefficients 
produced by some design procedure . If the filter blows 
up at the start, this is the first place to look. 

This work was conceived within the dimensions of 
the digital signal processing (DSP) architecture of the 
entire TMS320 series , but the concepts and problem 
solutions are universal and can be readily applied on 
other DSP processors. The primary feature of the 
TMS320 architecture (besides being nearly a full fea
tured microprocessor) is a fast-signed 16- by 16-bit 
multiplier having a 32-bit product which can be ac
cumulated to 32 bits. We call this a 16/32-bit archi
tecture. So our work will be applicable to any archi
tectun: having N-bit by N-bit multiplications with 
nominally 2N-bit products and 2N-bit {the same word
length) accumulations. This is typical of the current 
wave of DSP chips . The TMS32010 and 20 are peculiar 
in that there is no provision for an unsigned multiply. 
This at first seems to impair double-precision coefficient 
performance, but a very simple method to get around 
this limitation will be discussed. 

TMS32010 code is provided in Appendix I, which 
comes from a commercial parametric filtering appli
cation. It is provided mainly as proof of principle to 
the concepts presented herein. 

0.2 Audio 
In order for a digital filter to be usable for high

quality audio, it must not degrade system performance 
such that the system specifications are violated. This 
means that the effects of the filter must be transparent 
to the user except for the concomitant changes in fre
quency and phase response. Therefore such things as 
the signal-to-noise ratio (SNR) , the dynamic range, or 
the total harmonic distortion plus noise (THD + N) of 
the entire system should not be degraded. The digital 
filter itself, then, must have specifications that surpass 
those of the host system. 

We would like there to be some advantage to the use 
of a digital filter in comparison to the corresponding 
analog filter, so we mention one advantage which is 
not often cited: in analog filter implementations, tran-

X (n) a 0 

------,-----~xr-------~~ 

sient intermodulation distortion (TIMD) may be a 
problem. In corresponding digital filter implementations 
there is no physical analogy to the cause of TIMD 
(slew-rate limiting) 12], thus there can be no TIMD 
induced. 

ln audio work it is customary to find designs centered 
in the very low-frequency region. To a recording en
gineer there is a vast difference be tween a filter whose 
critical frequency is placed at 50 Hz and another placed 
at 60 Hz. Single-precision (16-bit) coefficient reali
zations are not satisfactory for the required control 
over low critical frequency. It is generally accepted 
now that 24-bit coefficients are adequate for high-quality 
digital audio work. 

0.3 Truncation Noise 
The first widely used digital filters conceived in 

hardware in the 1960s were intended for telecommu
nications applications such as the telephone touch-tone 
decoder. Leland B. Jackson , who is often called the 
"father of digital filters" for his pioneering work in the 
analyses of associated nonlinear phenomena , was em
ployed by Bell Telephone Laboratories when he and 
James F. Kaiser presented a hardware scheme [3] for 
the implementation of such a decoder. The outstanding 
topo logical idiosyncrasy of their circuit implementa
tions, from our present vantage point, was that all the 
signal paths, including the multiplier paths, were con
strained to have the same wordlength. Therefore their 
first analyses of roundoff noise warranted by the trun
cation process were based on a constraint that need no 
longer exist. DSP chips suitable for audio routinely 
supply double-wordlength products and accumulations. 
We must still be concerned, however, with the truncation 
at the output and its effect upon the digital circuit when 
fed back. 

In concept, if a digital filter accepts as input an integer, 
then an integer plus a fraction (a fixed-point number 
having a nonzero fractional part) is, in general, produced 
at the output. If the output were rounded off to the 
nearest integer and we consider only the effects of errors 
that occur at the output, then the output would be in 
error by at most '12 LSB (3 dB) in magnitude. This 
rounding (or truncation) process at the filter output is 
unlike the process that describes the quantization errors 

Y (n) 

Fig. I . Direct form I ; for audio usc . 
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inherent in analog-to-digital (AID) conversion. Still, 
it is most often modeled in the literature [4, p. 413] as 
a random process that produces an additive white noise 
source at the output node. In any case, the input signals 
to cascaded second-order digital filters have, in addition 
to the signal itself, a noise source from the preceding 
stage which gets filtered along with the signal. We will 
be concerned with just how these noise sources combine 
through a cascade . 

0.4 Filter Circuit Topology 
0.4.1 Second Order 

Since all of the required hardware to implement digital 
filters in real time bas now been integrated onto a single 
programmable chip, there is a tendency to think of a 
digital filter as an amorphous software implementation 
as opposed to a hard circuital implementation. (Indeed, 
the first digital filters were realized as models of con
tinuous systems on general-purpose computers in high
level languages for the purpose of analyzing statistical 
data in nonreal time.) From the viewpoint of a pro
grammer, a digital fi Iter appears at first to be the solution 
to a difference equation, and circuit topology seems 
not too important. This cannot be further from the truth 
because the choice of circuit topology is as intrinsic 
to a given software realization as it is to the corre
sponding discrete hardware realization. One needs only 
to convince oneself that soft instructions solving a dif
ference equation are, in fact, shuffling data about pre
determined paths inside some architecture made up of 
arithmetic elements, that is, hardware. The circuit to
pology chosen determines the number and the order of 
the computations, and vice versa. Why choose a to
pology which might require more computation or more 
storage? The answer has to do with numerical inac
curacy. Certain topologies react better than others to 
numerical errors. So for these reasons we often choose 
not to use the most straight forward solution to the 
filter difference equation in our software. This is where 
the study of circuit topology comes in. 

There are other considerations besides numerical in
accuracy which impact our choice of topology. One of 
the great disappointments in the past with conventional 
16/32-bit digital filter implementation was the finding 
that filter inputs needed to be scaled (attenuated). Seal-

ing was required in order that overflow be avoided at 
internal nodes in a given filter topology, even though 
the output node itself may never have been threatened 
with overflow. The unfortunate side effect of scaling 
is that the SNR of the input audio is irrevocably wors
ened by an amount proportional to the scale factor. 
The same problem arises in analog designs. But good 
analog filter implementation can accommodate this re
duction of input level because it can s tart off with as 
much as 120 dB SNR. For example, an analog signal 
with 90-dB SNR scaled by, say. 20 dB is ideally the 
same as an unsealed analog signal having 110-dB 
SNR. The analog filter can easily accommodate this 
SNR, and so analog scaling is generally not a problem. 
But the situation is different in digital . Us ing a 16-
bit signal converter, we start out with a noise floor 
due to quantization in the vicinity of -90 dB, the
oretically. With our 16/32-bit digital filter itself only 
having a 90-dB SNR , we really cannot ask it to rep
resent a scaled s ignal now having a 11 0-dB SNR. We 
would end up with an output s ignal having an SNR 
of at most 70 dB. 

A 24/48-bit architecture would ameliorate the scaling 
problem for 16-bit signals, in analogy to the 120-dB 
analog system mentioned. This is because using the 
feedback techniques presented herein, a 24/48-bit ar
chitecture digital filter can be made to operate with a 
138-dB SNR. Input scaling a 16-bit s ignal by less than 
48 dB would amount to a justification problem within 
the 24-bit wordlength, that is, no data loss. Even so, 
we are going to show how to sidestep the scaling problem 
altogether, regardless of the wordlength of the processor 
we are using, by clever choice of topology. For these 
reasons we venture to suggest that any 16/32-bit digital 
implementation employing input scaling is inadequate 
for high-fidelity digital audio . 

0.4.2 High Order 
Constructing higher order filters from second-order 

sections is done by cascading however many second
order filters are produced by a design procedure. A 
parallel realization would require what is called a partial 
fraction expansion, which transforms tbe given product 
of biquadratic transfers into sums of biquadratics. These 
procedures involve pole- zero pairing selection and the 

Y (n) 

Fig. 2. Direct form II, canonic; not for audio use. 
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scaling of the input signal into individual sections for 
optimal SNR performance and the prevention of output 
overflow from individual sections. Since it is not pos
sible, in general, to design high-order fi lters such that 
each second-order section is unity gain, input scaling 
is mandatory regardless of the section topology. If the 
pole-zero pairing is chosen for as many close-to-unity
gai n sections as possible , and if the section topology 
is chosen to be di rect form I for the reasons to be 
discussed shortly, then the scaling requirement can be 
minimized and limited to consideration of only the out
put node of each stage. (Jackson [ 5) gives closed-form 
scaling and pairing procedures.) 

The construction of higher order filters from cascades 
or parallels of second-order sections ("biquads") is the 
best approach because one soon discovers that the direct 
form implementation of high-order filters leads t.o geo
metric increases in the range of coefficient values , 
pole-zero sensitivity, and truncation noise recircula
tion. Based on the material presented in this paper, we 
will always want to choose the parallel and cascade 
forms I, as given by Jackson (5J. He notes that parallel 
realizations, while sometimes being less noisy than 
cascades, ha ve very high zero sensi ti vity to coefficient 
quantization, and so cascades are often preferable. (Note 
that some of Jackson 's analyses still account for trun
cation before accumulation.) Graphic equalizers are 
traditionally realized as parallel second-order stages, 
while parametric equalizers are cascade implementa
tions having individual second-order stages formi ng a 
complete filter. 

The only direct high-order topology which is known 
to elude both the scaling and the truncation noise re
circulation problem at once is the Gray - Market all
pole four-multiplier ladder [6) (Fig. 4e). For simplicity's 
sake, in this paper we will constrain al l our filters to 
be biquadratic, and we want their magnitude responses 
to be deviations from unity gain. Therefore we will be 
able to show how to skirt the scaling issue totally. If 
we speak of a cascade of second-order sections , it will 
usually not be in reference to the construction of a 
high-order filter. Each second-order stage will itself 
be a complete filter. 

Aside from this cursory discussion of higher order 
filters , all of the work in this paper will be limited to 
complete second-order digital filters, where all coef
ficient values are bounded in magnitude by 2 [Eq. (30)] . 
Later we will show examples of second-order filters 
having high gain and high Q factor. This comes about 
because of the proximity of the pole-zero pair in those 
designs. 

We will now reintroduce a classic topology which 
inherently eludes the input scaling requirement, hence 
picking up some free SNR. 

1 CIRCUIT TOPOLOGY: SCALING AND 
OVERFLOW 

We wi ll abruptly end our search for the best digital 
audio filter c ircuit topology with the most simple to-
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pology, the direct form I noncanonic implementation 
of the second-order digital filter. This circuit is shown 
in Fig. 1. The second-order difference equation which 
describes the output y(n) is given in Eq. (3) and is 
straightforward to derive from Fig. 1, 

y(n) = Ia;x(n - i) + Ib;y(n - i) (3) 

Had we implemented this second-order difference 
equation directly in software , Fig. l would represent 
the topological choice we had unwittingly made. The 
direct form II filter circuit topology shown in Fig. 2 is 
chosen, historically , in preference to direct form I in 
Fig. l because it has superior truncation noise per
formance when both are implemented with truncation 
prior to accumulation . Otherwise, the direct form l is 
better. The direct form II also has two less storage 
(delay) elements, which yields the minimum number 
of storage elements for the second-order topology. 
Hence the term canonic topology (for "minimal" to
pology) is often used synonymously. The equations 
that describe the second-order filter in Fig. 2 are 

w(n) x(n) + Ib;w(n - i) 
(4) 

y(n) Ia;w(n - i ) . 

These simultaneous equat ions can be simplified to 
Eq. (3 ). Implementing these equations in software rep
resents the choice of the canonic topology. The two 
other standard forms , which are the circuital transposes 
of the direct forms I and II , are shown in Fig. 3. There 
are many other topologies that embody the second
order section. The numerous topologies possess different 
characteristics with regard to the recirculation of trun
cation noise . These topologies can each be quantitatively 
characterized by SNRs of input signal to truncation 
noise power, and each topology is said to have a par
ticular intrinsic "noise gain." Agarwal and Burrus [7) 
published an excellent article on this topic , and the 
topic is collectively referred to as roundoff noise [8). 
In this paper we substitute the term truncation since it 
is this and not rounding which will be performed in 
our fi lter programs (for good reason). 

We choose direct form I because the truncation at 
the accumulator output is restricted to only the feedback 
paths; thus it will be easier to compensate . A casual 
scrutiny of this familiar topology reveals that there is 
only one accumulator, hence for truncatio n postaccu
mulation , one noise source. We choose the direct form 
I also because of its unique overflow properties. Notice 
in Fig. I that all the internal paths of this second-order 
section converge at this one accumulator. Further, the 
output of this mecca is attached directly to the output 
of the filter itself. Therefore by designing the fi lter for 
unity gain from input to output , we can ensure that the 
filter output y( n) will not overflow under most real 
operating conditions . Duri ng the course of the calcu
lations, that is, at intermediate steps in the accumulat ion 
of the final output, the accumulator is likely to overflow 
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many times. 1 ackson showed back in 1968 [3) that 
because 2's complement arithmetic is a modulo math , 
as long as the final result falls into the numerical range 
of the accumulator (the first modulo), intermediate ac
cumulations may be allowed to overflow any number 
of times (traverse other moduli) without causing an 
erroneous accumulation . This means that the effective 
wordlength of the accumulator in the direct form I is 
much greater than its actual wordlength. 

We have, therefore , infinite headroom at the internal 
nodes using the direct form I topology because all the 
internal nodes feed the one accumulator. The internal 
nodes which feed multipliers are not capable of overflow 
(by design) , so there is no need to scale the input signal; 
hence no potential loss in the signal' s SNR. Another 

x (n) 

(a) 

(b) 

way to look at thi s is that we have an infinite headroom 
accumulator. 

To take full advantage of modulo arithmetic we will 
never want the accumulator to autonomously operate 
in the saturation mode . If overflow is detected at the 
final output, then saturation must be performed there , 
but only under program control. 

These advantages cannot be capitalized on using the 
canonic topology and, for that matter, in most other 
topologies because they have at least two accumulators. 
The overflowed output of one of them will invariably 
feed back from an internal node into a multiplier input, 
which can only operate on fixed word lengths (Fig. 4). 
In order to prevent this from happening, we would 
somehow need to ensure that the transfer from the input 

Y (n) 

Y (n) 

Fig. 3. (a) Direct form II transpose; for audio use . (b) Direct form I transpose; not for audio use . 
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to each of the sensitive internal nodes did not exceed 
unity, thus precluding accumulator overflow. [Notice 
that the transpose of the direct form II (canonic) to
pology shown in Fig. 3(a) is equally suitable for our 

(a) 

(b) 

(c) 

(d) 

(e) 

purposes and possesses all the desired characteristics, 
but we will only work with the direct form I in this 
paper.] Scaling the input with respect to the internal 
nodes is, therefore, mandatory for the canonic topology. 

All-Pole 

All-Pole 

Fig. 4 . Some second-order topologies . (a) Direct form I ; has one accumulator. (b) Two-multiplier lattice; k1 - k 1k2 = b 1, 

k2 -= b2 . (c) Rader- Gold "coupled" or "normal" form in one guise. (d) Agarwal-Burrus . (e) Gray-Markel four-multiplier 
ladder. 
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So, we do not want to use it. Lower noi se topologies 
such as the Agarwal-Burrus topology [7], [9) (which 
is a variation of the Rader-Gold topology) suffer from 
the same problem and thus require scaling. 

1.1 Modulo Math 
Two's complement addition can be thought of in 

rings or moduli. The circumference of the ring is dictated 
by the greatest magnitude representable by a given 
wordlength. As an example , consider the sum of two 
positive numbers that exceeds the available wordlength , 
which is represented pictorially in Fig. 5. The two 
positive numbers can each be represented at a location 
within the first ring. For the sum, we can visualize the 
result as having gone into the second ring, like the 
minute hand of a clock after one hour has elapsed. If 
a third number is now added which is negative and of 
the proper magnitude , then the clock hand will come 
back somewhere into the first ring and the result will 
be correct, even though the intermediate result was in 
error. 

1.2 Unity Gain 
By the term unity gain filter we mean a filter that is 

designed as a deviation from unity. Several unity gain 
filters are shown in Fig . 6. Although we implied in the 
preceding discussion that designing for unity gain will 
ensure no output overflow, there are three qualifications 
to this reasoning which compel us to perform overflow 
detection at the output on a per-sample basis and to 
saturate the output on detection of overflow there. 

EXAMPLE: 
DESIRED MODULO 

RESULT RESULT 
32512 32512 
+ 256 + 256 
32768 -'3"27'6e (2nd Modulo) 
- 769 - 768 
32000 32000 (1st Modulo) 

1.2.1 Boost Filters 
Unity gain design implies that we cannot design boost 

filters. We will dispel this idea now. To design a boost 
filter (having a gain that exceeds unity) is fine as long 
as input signals falling in the frequency region of the 
boost are such that they do not exceed unity after 
boosting. If the request for a boost is because of a 
paucity of energy in the corresponding frequency region, 
then the threat of overdrive is small. So just as with 
analog filters, it is up to the user who requests a boost 
to ensure that the inputs are not overdri ven. If this 
cannot be done conveniently, then the filter could be 
redesigned by dropping the absolute level of the transfer 
function. This would be equivalent to scaling the input 
by some desired amount. The point here is that there 
need he no inherent flaw in the filter implementation 
itself which demands the use of scaling at all times. 

1.2.2 Obtuse Signals and the Lp Norm 
It can be shown that there exist nonsinusoidal well

behaved input signals which will drive a unity gain 
filter output past unity. For example, the time-reversed 
impulse response of a filter, when used as input to that 
same filter, will drive the output past unity. (The in
terested reader is referred to the topic of " Matched 
filters" [ 1 0].) So designing a filter for a unity gain 
transfer function does not ensure the absence of overflow 
at the output for all input signals. 

Input scaling criteria have been developed to prevent 
overflow at any node of a given topology, although the 

1st 
Modulo 

0 

Jackson's Rule: Any number of additions 
and/or subtractions may occur. lnterme· 
diate results and operands may fall into 
any modulo. As long as the final result is 
made to fall into the first modulo by design. 
it will be representable in two's complement 
at the chosen wordlength, and a valid re· 
suit. 

Fig. 5. Two's complement is a modulo arithmetic. The first modulo (ring) for 16 bits is shown. The arrows help visualize 
the traversal from the first into the second modulo and then back again. 
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sensitive nodes are only at multiplier inputs, as pre
viously discussed. One of these criteria generates scale 
factors referred to as Lp norms, which are derived in 
the frequency domain in the following way: 

(5) 

where F(w) is the transfer from the input to the sensitive 
node and w5 corresponds to the sample rate in radians 
per second. A particular value of p is first chosen and 
the expression is evaluated for every sensitive node. 
LP is then assigned as the inverse of the maximum II FIP 
with respect to all the nodes, and is then used as a 
scalar to the input of the filter section in question. The 
values of p usually adopted are I, 2, or infinity. The 
case p = 1 ensures that the mean of the magnitude over 
frequency at the sensitive node will not exceed that of 
the input, while the case p = 2 ensures that the average 
power over frequency at the sensitive node will not 
exceed that of the input. When p = oo, this norm is the 
most conservative of the Lp norms because in this case 
IIFIIP becomes simply the maximum of IF(w)l with 
respect to frequency. Intuitively, we can understand 
why this is conservative because the assumption is being 
made that all the filter input energy resides at a single 
frequency [5]. This choice of p (infinity) is convenient, 
however, for test purposes. 

Not being the most severe scaling criterion, the LP 
norm will not guard against the time-reversed impulse 
response as input. In practice, though, such obtuse 
signals which can potentially overdrive filter outputs 
are infrequent [5], [7]. Because we use the direct form 
I, it is necessary to think about scaling the input with 
respect to only the output node. Therefore, while not 
precluding output overflow, the unity gain design cri
terion is usually sufficient corresponding to a p value 

11 
• of infinity in the frequency regions of precisely unity 

.J P ... gail)t The responsibility to ensure that boost filters are 
not overdriven is, again, left up to the user [35, p. 
1008]. (Recording engineers typically work at approx
imately 8-24 dB below saturation to give themselves 
adequate clipping headroom.) 

1.2.3 Overflow Prevention and Practice 
Overflow detection must be performed at each output 

stage in a cascade on every sample output, and upon 
detection, saturation of the affected output (appropri
ately positive or negative) must take place. Regardless 
of the precautions taken to prevent output overflow, 
detection is mandatory under absolutely any and all 
conditions in a real-time operating environment. lf 
output saturation is not performed , the filter output 
will be a hard nonlinearity, due to 2's complement 
wraparound, which is never audibly pleasant. If not 
performed on a per-sample basis, then upon recovery 
from the overflow condition, the filter can enter into 
weakly nonlinear modes which only show up as subtle 
but constant deviations from nominal THD + N mea
surements performed on the filter output for an input 
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sinusoid. A theoretical explanation of these overflow 
oscillations is not given here, but can be found in the 
standard literature. We stress that saturation is imple
mented only for the final output of each stage, as pic
torially represented in Fig. 7 (ignore the truncator Q 
box for now), and not during intermediate calculations. 

The proper way to detect output overflow is discussed 
in Appendix 2. 

1.3 Summary 
By designing unity gain filters using direct form I 

structures, we can skirt the input scaling issue altogether 
by allowing intermediate accumulator overflow. The 
choice of the direct form I topology does not exclude 
us from considerations of the effects of recirculating 
output truncation noise, however, so we will have to 
deal with this noise problem in a different manner than 
by judicious choice of topology. For a good survey of 
standard topologies see [ 12]. 

2 TRUNCATION NOISE AND ITS PROPAGATION 

The currently available DSP processors, such as the 
ADSP-2100 and TMS32010, routinely provide double 
wordlength products and accumulations. This is a tre
mendous advantage to the DSP algorithm designer be
cause it obviates the need to consider truncation noise 
effects at any node other than the output node in the 
direct form I digital filter structure. 

Accepting the fact that the direct form I is by no 
means the most quiet topology, we must now deal with 
truncation noise generated at its output. We must con
sider the effect that this noise has on filter operation 
when unavoidably fed back into that filter. First-time 
designers of digital filters tend to ignore this aspect of 
the implementation because it is considered a second
order effect. If the application is one that involves fi
delity of reproduction or accurate frequency synthesis 
[23], then this aspect should not be ignored. On the 
other hand, if the primary interest is an implementation 
ending up in a low-end sound effects processor, then 
this topic need not be of concern. 

Fig. 8 explicitly shows the direct form I topology 
having the nonlinear truncation operator ( Q for quan
tizer) at its output. Fig. 7 shows how the truncator and 
the saturator are used in the same circuit. We omit the 
saturator in the remaining figures for clarity. 

2.1 Low Signal Level Aberrations 
The most apparent manifestation of the effect that 

output truncation has on the output signal of a second
order digital filter occurs when low-level signals are 
input. An anomaly emerges as a discrepancy between 
the transfer function of the filter for the full-level (unity 
amplitude) input as compared with the transfer function 
for an attenuated input signal. For ideal linear filters, 
the transfer function is supposed to be independent of 
the input signal level. Let us say that a sinusoid at an 
amplitude approximately 30 dB below unity is input 
to a 16-bit digital filter having a modest gain and low 
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Fig. 6. Unity gain design. 

a. 
x~(~n~~--~-------{X~--------~ 

e (n) 

b2 
X~---------------

Fig. 7. Truncator Q and saturator. 

e (n) 

x (n) 

Fig. 8. Direct form I having truncator. 
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critical frequency. Then independent of the resolution 
of the coefficients, the output sinusoid will exhibit, to 
the eye, a variety of amplitude aberrations when viewed 
on an oscilloscope. These are a direct consequence of 
the nonlinearity introduced by truncating the accu
mulator output. 

This effect is not hard to reproduce in the laboratory. 
The easiest one to see is called the jump phenomenon. 
This aberration was named by Kristiansson in 1973 
during his study of it [ 13 J. The phenomenon appears 
as abrupt shifts in the amplitude or de level of a digitally 
filtered sinusoid. 

The truncation operation is unavoidable because the 
inputs to the multipliers must be 16 bits while the ac
cumulator accepts and produces 32-bit results. Also, 
the outside world is most likely 16 bits, so that regardless 
of the accumulation wordlength, the filter output must 
pass on 16-bit signal data. Unfortunately the amplitude 
of the transfer function at any one point along the curve 
is not a constant but is rather some function of time as 
caused by this nonlinearity. Needless to say, as the 
engineers of these digital filters, this performance falls 
short of our expectations. 

The aberrations are even more pronounced at low 
input frequencies, less than 100 Hz, where one does 
not have to go as far down as -30 dB to start seeing 
these effects. They can be seen at input levels of 0 dB. 
If a common pen plotter is used to characterize a digital 
filter over frequency , then small ripples will be seen 
in the plot that are not the same among multiple plots 
of the same transfer. Further, in the case of 0-dB mid
frequency signals , even if the amplitude aberrations 
are not apparent on an oscilloscope or a pen plotter, 
then a THD + N analyzer p icks up the problem by 
calculating a figure upward of 10 dB worse than nom
inal. Indeed, the gentlest filters will cause at least a 
I 0-dB degradation in THD + N. If the amplitude ab
errations are so bad as to be visible, then the degradation 
to THD + N will be much more than 10 dB. 

There are at least two workable solutions to this 
problem, but Jet us first perform a simple analysis of 
the truncation error in an attempt to put a handle on 
it. Once this is done , the solutions will be straightfor
ward. 

2.2 Truncation Error Math 
Referring to Fig. 8, we have designated the 32-bit 

quantity y(n) as the fixed-point output of the digital 
filter while y(n) is the truncated output. We would like 
to derive a frequency domain expression for the trun
cated (actual) output signal y(n) in terms of the input 
and truncation error signals . To do this we may define 
the ideal output y (n) as a 16-bit integer y(n ) plus a 
signed fractional part, the truncation error signal e(n) , 

y(n) ~ y(n) + e(n) . (6) 

The input signal, genera lly a 16-bit integer, is called 
x(n ), allowing us to write 
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y(n) = !a;x(n - i) + !b;)>(n - i) . (7) 

This is the equation that would be used in a program 
to perform the filtering function. The 32-bit output 
y(n) is then truncated by taking the integer part and 
storing it as y(n). We can gain more insight into Eq. 
(7) by first using Eq. (6) to rewrite it as 

y(n) = !a;x(n - i) + [~b;y(n - i) 

- !b;e(n - i)] . (8) 

Since we know the source of the error signal e(n), 
it is not truly a random variable, neither is it uncorrelated 
to the output signal. Indeed , the error signal is deter
ministic because for the same input signal and coefficient 
set; it can be replicated exactly. Therefore we may 
justifiably assume that it has a frequency domain rep
resentation. 

Then, using Eqs. (6) in (7) in the frequency domain, 

Yc ) X( ) 'la;z-; 1 
z = z I - ~b;z -i - E(z) I - !b;z- i . (9) 

This important Eq. (9) states that the truncated-output 
spectrum of the classical direct form I digital filter 
topology is equal to the ideal filter transfer t imes the 
input spectrum plus some "error function," multiplying 
the truncation error spectrum E(z). The truncation error 
spectrum is amplified by the poles of the filter transfer 
function whether the filter boosts or cuts, and is therefore 
highly correlated with the resonances of the filter. This 
is bad news because the gain introduced by the poles 
can be as large as 90 dB for some practical cases. It is 
interesting to note that E(z) is not affected by the feed
forward paths in thi s circuit. This is one of the reasons 
we chose this topology since this is an advantage. 

Eq. (9) will serve as our reference. Any improvements 
made to minimize the effects of truncation error will 
be gauged to the last term in Eq. (9) since this is what 
we are left with if we do nothing about the truncation 
error problem. 

2.3 Truncation Error Feedback Math 
The first solution to impact the truncation error spec

trum was suggested to us by a Philips Corporation doc
ument f 14], which describes the DSP involved in the 
design of their oversampling D/ A converters which 
have found wide use in Compact Disc players . Fig. 9 
shows the first-order error feedback scheme. Here y(n) 
is again the 16-bit truncated (integer) value which goes 
to the outside world, while y(n) is the 32-bit nontrun
cated output signal. The error signal e(n) is a signed 
quantity formulated as implicit by Eq. (6), 

e(n) = y(n) - y (n) . (10) 

We like to define the error in this sense because it is 
sometimes a facile method from the programmer's point 
of view, where positive-signed inputs to the accumulator 
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will result later. This means that the error signal is 
formed by subtracting the 16 bits that form the integer 
part of the 32-bit accumulator output, from the accu
mulator itself. This assigns the signed fractional value 
to the error signal whose magnitude can, thus, never 
exceed 1. 

In all our error feedback schemes we will never use 
rounding to form y(n) simply because it uses more 
program steps and gains us little advantage. Recall that 
statistically, the difference between rounding and 
truncation is a 1/z LSB de offset in the time average of 
the error signal. Hence the output signal spectrum also 
experiences a small de offset when truncation is used. 
Rounding is used when the absolute de value of a quan
tity is of concern; de is of little concern in the audio 
signal. 

Notice in Fig. 9 that the error signal e(n) is delayed 
and then fed back to the accumulator. We show a mul
tiplier K = ± 1, ± 2, ± 4 one value (to be determined) 
multiplying the delayed error signal. In order to avoid 
the use of the hardware multiplier, K is constrained to 
a nonzero trivial binary integer. Although we will de
termine the optimal value forK given this constraint, 
later we will relax this constraint at the expense of 
more intensity. The 16-bit input to the filter structure 
is x(n). We wish once again to find a frequency domain 
equation that expresses the truncated output signal in 
terms of the input and truncation error signals. As be
fore, 

y(n) 'la;x(n - i) + 'lb5(n - i) 

+ Ke(n - I) . (11) 

This is the equation we would use in our program. 
Notice the new term in Eq. (11) as compared with Eq. 
(7). y(n) is formed within the machine by truncating 
y(n), while e(n- 1) is formed using Eq. (10). 

ao 
~x~(n~l--,-----~X~------~~ 

Using Eq. (6) in Eq. (11) we get 

y(n) = Ia1x(n - i) + ['lb;y(n - i) 

- Ib1e(n - i)] + Ke(n - l) (12) 

and in the frequency domain, using Eq. (6) on the left
hand side of Eq. (11), 

Ia1z-i 1 - Kz- 1 

X(z) 1 - Ib
1
z i - E(z) 1 - lb;z-i 

(13) 

Eq. ( 13) has the same form as Eq. (9), except that 
the error function, the last term in Eq. (13), has been 
modified slightly due to the new error feedback path. 
What we wish to know at this point is whether the 
modification to the error function has diminished the 
impact of the truncation error E(z) at all. We have 
already seen how the poles of the filter amplify the 
truncation error, as shown by Eq . (9). Does the intro
duction of a zero in the numerator of this new error 
function make it smaller in some way? The optimum 
choice of a zero location would be somewhere right 
upon the unit circle in the z plane because this would 
bring the magnitude of the error function down to ab
solute zero at some audio frequency. The error function 
now has a zero at z = K. But since K is constrained to 
be a nonzero binary integer, then the only two choices 
lay upon the real axis at z = ± 1. A zero at z = 1 
corresponds to 0 Hz, whereas z = -1 would correspond 
to a zero at the Nyquist. The choice at first appears to 
be arbitrary from a theoretical point of view. The ac
quisition of a zero in the error function will certainly 
diminish its impact in either the very low or the very 
high frequency region. We choose a positive-valued K 
( = 1) for empirical reasons discussed below. 

K 

y(n) 

Fig. 9 . First-order error feedback. 
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Fig. 10 shows sketches of the various error situations 
assuming K = 1. The horizontal line in Fig. lO(a) 
represents the magnitude of E(z), here assumed to be 
white. Fig. lO(b) shows the error function of Eq. (9) 
multiplying E(z), where E(z) is amplified by the poles 
of some arbitrary second-order filter. Fig. lO(c) shows 
the new I - z- 1 term by itself, from the error function 
ofEq. (13). Notice that there is a boost above unity in 
the high-frequency region in this graph. This graph 
shows that the new zero term will attenuate E(z) at 
some frequencies, but will boost it at others. The at
tenuation at de is complete. Fig. lO(d) shows the result 
of putting the zero into the numerator of the error func
tion of Eq. (9), which results in the error function of 
Eq. (13) multiplying E(z). 

We believe that the situation shown in Fig. lO(d) is 
an improvement over that in Fig. lO(b), but it is not 
obvious why. Fig. 10 might persuade us that since the 
zero in the numerator acts to boost high-frequency 
truncation noise, we should not use this "error feedback" 
technique. But we have yet to contradict the classical 
assumption which states that the truncation noise spec
trum E(z) is white. A contradiction would have bearing 
on our decision. Our observations in the laboratory tell 
us that much of the energy in E(z) lies in the low
frequency region. O'Donnell [15] independently ob
served a nonwhite truncation error spectrum on other 
second-order topologies and filter types years earlier. 
So the graph of the truncation error E(z) might be more 
realistically portrayed in Fig. IO(a) as a low-pass signal. 
Knowing this, we choose to place the zero introduced 
by the first-order error feedback scheme at 0 Hz, which 
is the choice nearest to the frequency region where 
most of the truncation noise is found in practice. 

There is a far more practical reason to choose to put 

IE (z ) I 

L-------------------~~f 

(a) 

NYGUIST 

(c) 

the error function zero at de, that is, if we know ahead 
of time that the boost of E(z) by the poles of our filter 
predominates in the low-frequency region. Had we de
signed a filter whose critical frequency were nearer 
Nyquist than de, we may well have decided to try 
K = -1 for an error function zero at Nyquist, our 
knowledge of E(z) notwithstanding. 

2.3.1 First-Order Error Feedback Summary 
The degree of amplification of E (z) by the poles of 

the filter function is now mitigated by the introduction 
of a new term in the numerator of the error function 
of Eq. (9), as shown in Eq . (13). It has been found 
that this trivial feedback scheme really helps to linearize 
an inherently nonlinear digital circuit. The amplitude 
aberrations that were seen in low-level filtered signals 
not having the benefit of error feedback, actually dis
appeared when the feedback was introduced, to the 
extent that the impact on a reference THO + N mea
surement was negligible. (The reference THO + N 
measurement was made bypassing the digital filters 
altogether.) Further, the scheme only requires three 
additional one-cycle TMS32010 instructions per stage, 
making it computationally attractive. 

2.4 Second- and Higher Order Error Feedback 
Fig. 11 shows a more powerful error feedback 

scheme, this time using two trivial multipliers for sec
ond-order feedback. Using reasoning similar to that 
above, the optimal K coefficient set places zeros on 
the unit circle in the error function closest to the an
ticipated frequency region of high noise boost by the 
filter poles [ 16]. These zeros do not adversely affect 
the filter transfer function in any way. Table 1 sum
marizes the viable choices of trivial multipliers and 

IE ( z) II " Erro r Fun c t ion " I 

L-------------------~~f 

(b) 

IE (zl ll1 -z-1II"Er ror Funct10n" l 

(d) 

Fig. 10. Presumedly white truncation noise (a) is passed through a digital filter having an error function as in (b) and an 
error feedback network having the transfer (c), resulting in truncation error spectrum shaping (d). 
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their associated frequency regions, normalized to 2'TT. 
While not unequivocally optimal, these error feedback 

schemes are economical, and their power should not 
be underestimated. Truncation noise recirculation is 
worst for filters of high Q or extreme critical frequency. 
As it turns out in audio filter design, you get the double 
whammy for extreme critical frequencies because poles 
need to be quite close to the unit circle to counteract 
the proximity effects of the mirrored (conjugate) pole. 
This is the reason why these feedback techniques are 
effective. They reduce the truncation noise in the filters 
that need it the most. 

Still more elaborate feedback circuits have been de
vised such that the error function spectral amplitude 
is pushed predominantly into the high-frequency region 
[17} while squelching the lower frequency noise toward 
zero over any desired bandwidth. Of course, these 
schemes proportionately boost, by many times, the 
power of the high-frequency noise, but it is assumed 
that some other mechanism will be designed to filter 
that noise out. 

These error feedback schemes have become collec
tively known in the literature as error spectrum shaping 
(ESS) [11}, [18}, [19}. All these DSP techniques ac
complish the same goal: they selectively shape the 
truncation error E(z). ESS techniques were developed 
with an eye toward trivial error feedback coefficients, 
but there is no necessity for this constraint if we are 
willing to pay the price. We now explore another ESS 
scheme which is optimal over the entire band, but just 
a bit more intensive than the error feedback schemes 
discussed so far. 

2.5 Truncation Error Cancellation 
We constrained the error feedback coefficients in our 

derivations above to be integers. We relax this constraint 

ao 
__ x~ln~~--.-----~X~--------~ 
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here. In Higgins and Munson [20) it is shown that the 
truncation error cancellation scheme, which follows, 
can be considered to be the optimal ESS filter, but with 
no constraints imposed on the feedback coefficients. 
Further, using a classical linear statistical analysis they 
show that the 16/32-bit truncation error cancellation 
scheme is equivalent in noise performance to a double
precision (32/64-bit) realization and outperforms linear 
state space (state variable) topologies. It is only when 
we go to a 24-bit processor employing truncation error 
cancellation that performance exceeds the double-pre
cision realization. 

We point out two advantages of the following scheme 
over a standard double-precision implementation: 1) 
only the signal feedback paths require double-precision 
bit widths, and 2) the multiplier inputs are always of 
the signed variety. 

2.5.1 Wordlength Considerations 
This new error "cancellation" scheme was presented 

in a thesis by Rothaar [21 J, where wordlength of coef
ficients and signal paths were of great concern. The 
criterion in that thesis was that no degradation past the 
16-bit noise floor of the input signal would be tolerated 
over the entire audio band for all filter settings . It was 

Table 1. Error feedback zeros. 

K1 K2 Region 8 
----------------
+2 -1 0 Twice 
- 2 -I -rr Twice 

0 +I 0 and n 
+ I - 1 -rr/3 ONce 
- 1 -1 2-rr/3 ONce 
+I 0 0 Once 
-I 0 -rr Once 

0 
_, 

% C/JL.E 

K2 

Fig . 11 . Second-o rder error feedback. 
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shown that to achieve that performance from a standard 
second-order section without error cancellation required 
at least a 34/54-bit (multiplier/accumulator) architec
ture. This means 34-bit signal paths. (54 bits was the 
limitation on the simulator.) It was illustrated how filters 
having low critical frequencies place the most demands 
on the second-order topology. A wordlength of 24 bits 
was ultimately settled on for the coefficients; 16 bits 
was not enough. The signal data paths followed suit, 
resulting in a 24/48-bit system with error cancella
tion. 

Rothaar's 24/48-bit system using error cancellation 
is ideal for the most demanding high-fidelity audio dig
ital filtering applications since the 24-bit internal signal 
paths guarantee that the filters themselves operate with 
about a 138 dB SNR. It is advantageous to have the 
interstage signal paths exceed the 16-bit input word
length because in this manner each stage's output
truncation noise propagating through a cascade can be 
kept well below the signal noise floor, since only the 
last filter in the chain need truncate its output at the 
16-bit level. Assuming that truncation noise would ac
cumulate through a cascade of N error-canceling second
order stages according to the absolute worst-case clas
sical assumption of correlated noise sources [I 0 log 
(N2d)], this still means that hundreds of filters could 
be cascaded before the DSP designer would even need 
to consider its effects on a 16-bit signal. On the other 
hand, and in the best case of the classical assumption 
concerning uncorrelated truncation noise propagation 
[ 10 log (N<T2)] the passing of 16-bit signal data between 
stages results in an immediate buildup above the -90-
dB signal noise floor, approximately 3 dB after one 
stage, 6 dB after two, 9 dB after four, 12 dB after 
eight, and so on. (The best case, that is, uncorrelated 
noise sources, is usually the classical assumption taken, 
and although the least conservative of the classical 
analyses, it is the one most proven in practice. The 
worst case would double the decibels in the preceding 
list. For more on classical noise analysis, see [22, chaps. 
3, 7], [5, chap. llj [4, chaps . 9, 8].) 

2.5.2 Signal Justification 
If we agree that the coefficients need be 24 bits wide 

for sufficient control over low critical frequency filters, 
then given a 24/48-bit system, the question arises as 
to where one places the 16-bit input signal within the 
24-bit register. We have infinite accumulator headroom 
as discussed earlier, so we need not worry about ov
erflow. Since it is those bits to the right of the binary 
point that determine noise performance, we want to 
position the input signal with full left justification be
cause the binary point follows the LSB of the 16-bit 
(QO) input signal and we want as many fractional places 
as possible. We might think of this left justification as 
a scaling upward , by 48 dB, of the 16-bit input signal 
with no Joss to the original quantization SNR of 90 
dB. Now if the input signal absolutely must be scaled 
downward , as in a high-order filter design , there is 
some room. Regardless of the justification, we would 
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always want to pass the 16-bit integer plus 8-bit-frac
tional output signal to the next stage in a cascade for 
the reasons discussed above. 

There is a trend in DSP chip design that provides for 
headroom bits in the accumulator, that is, the accu
mulator bit width exceeds the product register width. 
The section of this paper on scaling and overflow has 
shown this feature to be superfluous for IIR digital 
filtering applications. 

We now show that the technique of truncation error 
cancellation will keep the noise level of each individual 
16/32-bit second-order stage at the 16-bit boundary. 
The only significant noise introduced by each second
order stage itself will come when the one truncation is 
performed at its output. 

2.6 Truncation Error Cancellation Math 
Referring again to Fig. II , we wish to write a fre

quency domain equation for the truncated output in 
terms of the input and truncation error signals. This 
time we will not place any constraints upon the error 
feedback coefficients K;. 

y(n) = Ia;x(n - i) + Ib;y(n - i) + IK;e(n -i) . 
(14) 

This is the equation that we program. The multipli
cations involving the fractional quantity e(n - i) are 
performed using no scaling because it is well represented 
numerically, having no leading zeros. The decimal point 
in the error accumulation is higher up in the accumulator, 
though, and it must be shifted to the right before com
bining it with the signal accumulation. 

Using Eq. (6), 

y(n) = la;x(n i) + [lb;y(n - i) 

- Ib;e(n - i)] + lK;e(n - i) . (15) 

If we set the K; equal to the b; , then they cancel each 
other and Eq. (15) becomes 

y(n) = Ia;x(n - i) + lb;y(n - i), K; = b;. 

(16) 

The 16-bit error feedback paths in Fig. II now go 
to 32-bit widths after the multiplications because they 
are no longer trivial. In the frequency domain, using 
Eq. (6) in Eq. (16), 

- E(z) . (17) 

Comparing Eq. ( 17) to Eqs. (13) and (9), this is the 
best situation for the truncation noise that we have yet 
encountered since the error function is essentially gone 
as there is no amplification of E(z) due to the poles of 
the filter. Eq. (17) says that the truncated output spec
trum is equal to the ideal filter function of the input 
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spectrum plus the (negative) truncation error spectrum. 
The error function is decoupled from the filter transfer 
function. 

This is indeed the best we can ever do with respect 
to truncation noise performance. It just does not get 
any better than this , no matter what circuit topology 
is used. Since the ideal output y(n) is a fixed-point 
number having a nonzero fractional part, when we 
convert the double-precision output of the accumulator 
y(n) to its 16-bit single-precision truncated value y(n), 

the truncation error spectrum unavoidably remains. But 
this is all that remains. The truncation error does not 
feed back. If we can accommodate the added compu
tation time due to the two new feedback paths in Fig. 
11, then this result is fabulous because we have a way 
to implement extremely quiet filters. We mention that 
this technique would be indispensable for high-purity 
digital oscillator applications [ 23]. 

Notice that the requirements for perfect error can
cellation in Eq. (15) are I) the signal feedback coef
ficients must equal the error feedback coefficients; 
nothing is said concerning the precision of those coef
ficients; and 2) no rounding may be performed in the 
formulation of the error accumulation . 

2.7 Truncation Noise Spectrum E(z) 

If E(z) would add only 3 dB to the filter noise floor 
when y(n) is formed , then why should we be so con
cerned with it? The reason is because these second
order filters will most likely end up living in a cascade. 
(Higher order filters are often formed this way.) One 
interesting application is that of cascading a number 
of unity gain second-order filters to configure what is 
called a parametric equalizer in which each second
order filter exerts influence over a disparate part of the 
audio band. Typical configurations will see four cas
caded second-order stages that could add a total of 9 
dB [10 Jog (No-2)] of truncation noise to the -90-dB 
filter noise floor. We need in that case to consider the 
use of a larger wordlength processor ( > 16 bits) at a 
premium. 

The assumption that the truncation error spectrum 
E(z) is white is, more often than not, false. We reiterate 
that the preponderant error spectrum energy was em
pirically found to be concentrated in the low-frequency 
region. It has been said that the output truncation noise 
could be much like that of analog-to-digital quantization 
noise. This might be erroneously rationalized following 
the garden path: The output y(n) of our second-order 
filter could be made ideal by using error cancellation , 
as shown by Eq. (16). If the input to an ideal filter is 
a (sampled) sinusoid, then because it is a linear system, 
the output must also be a pure sinusoid. Although the 
input sinusoid x(n) was described using all integer val
ues, the ideal y(n) must be described by the filter using 
fixed -point (not necessarily integer) values. A truncation 
to an integer is required to form y(n) from y(n), which 
should be very much like the quantization performed 
by an A/D converter in a successive approximation 
when it gets down to the LSB estimate. 
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2.7.1 The Barnes Criterion 
Barnes et al. [24] make the argument that quantization 

noise and multiplier roundoff noise are very different 
phenomena. Although he limits his scope to the output 
of an isolated multiplier followed by a quantizer, we 
should be able to extrapolate his results to the present 
case which sees two multipliers input to an accumulator 
where the quantizing operation follows the summation; 
see Fig. 12. (In the standard direct form 1 structure we 
have seen that the truncation error E (z) is impacted 
only by the two feedback paths, the b;. This is one 
reason why we chose that structure.) We will make no 
attempt here to perform a statistical analysis that would 
support this intuitive leap. 

Barnes points out that while the conditions under 
which quantization noise can be considered spectrally 
white are quite mild, the corresponding conditions for 
multiplier roundoff noise are comparatively much more 
restrictive and highly dependent on the multiplier 
coefficient value. Specifically, he states that roundoff 
(or truncation) error will be white, uniformly distrib
uted, and uncorrelated with the signal, in general, only 
if the standard deviation of the input signal is greater 
than approximately one half the full amplitude (unity) 
signal level. 

Narrow-band and low-level signals each violate the 
criterion. In contrast, if the dynamic range of a wide
band signal exceeds only a few quanta, then its quan
tization noise can be accurately modeled as white in 
keeping with the traditional analysis. But it was dem
onstrated in [25), which dealt only with the topic of 
quantization noise, that even for full-level (unity gain) 
sinusoids, the ratio of sample rate to sine frequency 
can easily be adjusted to produce a range of quantization 
error characterization from purely harmonic to white 
spectra, the point being that the spectrum of quantization 
noise is highly signal dependent. Therefore we have 
an argument that quantization noise is not always white. 

We hope to have supported the hypothesis, by these 
arguments , that the character of the truncation noise 
E(z) is not generally white, but is highly dependent 
on both the input signal and the values of the feedback 
coefficients. It stands to reason , then, that in the par
ticular case of a cascade of N second-order stages , 
where the feedback coefficients are made to be disparate, 
we might reasonably expect that the truncation noise 
would amass according to the usual classical assumption 
[that is , the least conservative assumption, I 0 log (No-2

) ] 

of uncorrelated noise sources, because the contribution 
to the total error spectrum energy from each stage is 
likewise disparately splattered about the audio band. 

So, let us see how our 16/32-bit truncation error 
feedback system fares in a little experiment. 

2.8 Physical Measurement Example 

In the implementation that follows we use 32-bit 
double-prec ision coefficients, as opposed to adequate 
24-bit, only because it is convenient to do so. As it 
stands with the TMS32010, we are restricted to a 16/ 
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32-bit system with error cancellation. So we are forced 
to perform the coefficient multiplications using double
precision arithmetic , which might be tricky due to the 
lack of an unsigned multiplication in the instruction 

15 x (n) 

(a) 

bl 
X 

~ 
(b) 

15 y{n-1) 

(c) 

Fig. 12 . (a) Barnes's equivalent formulation. (b) Logical 
extension. (c) Intuitive leap. 
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set. But an elegant method of double-precision mul
tiplication will be illustrated when residual coding of 
the filter coefficients is discussed. 

We would now like to substantiate the preceding 
work with actual measurements. Noise plus distortion 
was measured using a Tektronix 5000 series audio ana
lyzer and oscillator. The AID/A conversion process 
was provided by a Sony PCM 701 . Table 2 shows the 
THO + N measurements for three digital fi lter test 
setups . Each setup transfer is sketched in Fig. 13. The 
first and third setups are cascades of four second-order 
parametrics, while the second setup consists of a single 
second-order section implementing a 60-Hz notch filter 
having an incredibly high Q of 1200 and a gain of -60 
dB . Both cascade setups arbitrarily sequenced the sec
ond-order stages from lowest to highest critical fre
quency. All these filters are minimum-phase unity gain 
designs [ ll, use truncation error cancellation and double 
precision (32-bit) coefficients via residual coding, as 
presented later in this paper. Only the error cancellation 
coefficients are s ingle precision, which could be a li
ability. The TMS320 code actually used is given in 
Appendix l. 

The reference THO + N levels were measured with 
the digital filters completely out of the measurement 
path, that is, bypassed. Since there is no signal pro
cessing going on during these reference measurements, 
we can attribute all the noise above the theoretical - 90-
dB noise floor of a 16-bit system to quantization noise 
introduced by the AID/A conversion process. Any noise 
later introduced above the reference level is most likely 
then due to either the truncation process or amplification 
of the quantization noise floor by boost stages. Since 
each THO + N measurement of a sinusoidal input en
compasses the full audio bandwidth , the measurement 
is repeated with various input frequencies only to pro
vide diverse situations. 

2.8.1 Cut Filter Measurement 
For test setups 1 and 2 , the cut filter cases, the THO 

+ N level recorded in Table 2 was arrived at by sub
tracting the actual level of attenuation of the uni ty am
plitude input sinusoid from the (negative) instrument 

Table 2 . Digital filter no ise plus distortion measurements. 

Sinusoid input 
frequency (Hz) _ __ .. . 

50 
100 
500 

1000 
5000 

10 000 
15 000 

Q 
Noise reference A 

level (dB) f o 
(Filters bypassed) 

- 80.0 
- 81.2 
- 82.7 
-83.0 
-82.8 
-82.5 
- 82.6 

THO+ N (dB) 
·-----

20 Q = 1200 Q 20 
- 18 dB A = - 60 dB A + 18dB 
50, 500, 5000, 15 000 Hz / c = 60Hz / c 50, 500, 5000, 15 000 Hz 

(Test setup 1)* (Test setup 2)* (Test setup 3)* 
- --- - --- ---

- 82.2 - 81.8 -79.5 
- 80.8 - 81.6 - 73.0 
- 82.8 -82.0 - 78.5 
- 82.7 - 82.3 -78.0 
- 82.0 - 82.2 - 79.0 
- 82.3 - 82.0 - 77.0 
- 83.0 - 82.1 - 80.0 

F sActual = 44 470.45 Hz. " Unity" ~ 0 dB . All setups use error cancellation. 
* Test setup 1-four ..:ascadcd presence filters having negative gain; Test setup 2- notch fi lter; Test setup 3- four 

cascaded presence filters having posit ive gain. 
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reading. This legitimate compensation serves to make 
the measurements independent of the particular filter 
transfer under test. We do this because we are interested 
in the S/(THD + N) at the filter output from unity to 
the noise floor. We presume that the noise floor is the 
variable here. 

Looking at Table 2, we see that the attenuating cas
cade and the notch are doing quite well. They are in
troducing little noise above the reference levels in this 
particular system. This is shown by Table 2, which 
compares the noise measurements for test setups I and 

dB 

0 

-18 

50 500 

dB 

-3 

5000 

Q=1200 

-60 

40 60 90 

dB 

18 

0 

50 500 5000 

DIGITAL FILTERS FOR HIGH·t-IUt:LII Y AUUIU 

2 with the reference noise levels. If the reference levels 
were closer to -90 dB, we might run into a problem 
here with this 16/32-bit filtering scheme. Remember 
that regardless of whether the filters under test boost 
or cut, they still add truncation noise. Some of the 
truncation noise may be getting filtered out by suc
ceeding stages in the cascade. 

We note in passing that this - 60-dB notch filter is 
stable and that it would be difficult to implement in 
analog due to the required component tolerances. The 
poles of this filter lie precariously close to the unit 

Q=20 

15000 [Hz ] 

a 0 ~ 0.996450761790 
a 1= - 1.992821454486 
a2 = 0 .996443656208 
bi = 1.992821454486 
b2= -0.992894417998 
Fs = 44.0559 kHz [1) 

[Hz ] 

f 

f 

Q=20 

15000 [Hz] f 

Fig. 13. Filter test setups I , 2, 3. 
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circle, as this is an extreme-case design [1], [26]. The 
noise gain of this topology , not using the truncation 
error cancellation network, would be 85 dB, the gain 
of the poles, making this filter unusable (THO + N = 
- 5 dB) without error cancellation. (See Eqs . (30) for 
b1 = 1.99282 1454486 and b2 = -0.992894417998 at 
a sample rare of 44.0559 kHz [ 1] .) As it stands, we 
are seeing a THO + N that is less than I dB beyond 
the system noise reference. This filter has been described 
as "surgical," seeing that its bandwidth (at - 57 dB) 
is only 0.05 Hz at the null, while the (- 3-dB) bandwidth 
at the skirts is 50 Hz. All the critical parameters of 
this filter were verified to within the resolution of the 
measurement apparatus. Resolution in frequency= 0.01 
Hz, resolutio n in level= 0.1 dB. 

2.8.2 Boost Filter Measurement 
In the case of test setup 3, the amplifying cascade, 

the input signal level was adjusted downward below 
unity until the output signal level reached unity. The 
data in Table 2 indicate that test setup 3 is not doing 
too well . We' re seeing increases of up to 8.2 dB above 
reference. But it must be remembered that the boosting 
is above unity and any noise falling beneath each re
spective parametric will be amplified. Even if there 
were no truncation noise, the system noise floor might 
be boosted, thus interfering with our de sired measure
ment of the increase in truncation noise. If we calculate 
the worst-case total boost of white noise across the 
audio band by all four parametrics, it is about 7 .6 dB . 
Since all four boost filters have the same Q fac tor (al
ready quite high at 20), the majority of the noise .boost 
comes from the higher critical frequency filters because 
they span more bandwidth . We might say that it must 
be the quantization noise floor that is getting boosted, 
but the THO + N is varying so much with input fre
quency that we are forced to conclude that it must be 
truncation noise that is getting boosted. This is unfor
tunate because it means that we need to squelch the 
truncation noise further. The only way this can be ac
compl ished with the topology we have chosen is to use 
a 24-bit processor, but we still need the truncation 
error DSP. 

2.9 Going Further 
Had we not used truncation error cancellation in the 

experiment , all the THO + N readings would have 
been horrific. The experimenter can easily verify that 
the filter transfers we chose are actually quite difficult 
designs to implement. We were more concerned about 
whether we needed to use a 24-bit processor than 
whether we needed truncation error cancellation. A bit 
of experience tells us that we j ust cannot get along 
without some form o f error feedback, and so that was 
taken for granted. 

Probably the best way to measure the noise produced 
by a particular digital filter is to implement it using a 
DSP chip, and then monitor the output with a noise 
measurement device. Computer simulations are some
times cheaper and there are programs available . One 
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such program is DINAP 11: A Dig ital Filter Analysis 
Program [27] from Purdue Universi ty. This program 
performs noise analyses of user-specified topologies 
in the time or frequency domain. 

2.9.1 Midsummary 

Thus far we have been able to alleviate any input
level scaling requirements through a discerning choice 
of filter topology, and the truncation noise problem 
has been grasped. We examined digital signal processing 
techniques known as error spectrum shaping (ESS), 
which encompass both truncation error feedback and 
cancellation. The primary purpose of ESS is to lower 
the operational noise floor within each filter that we 
implement. We decided that it would be best to use a 
24-bit processor and some DSP in the form of ESS to 
improve truncation noise performance for the most de
manding applications. If we have such a processor at 
our disposal, then 24-bit coefficients are necessary and 
adequate for sufficient control over low critical fre
quency filters. In this case we can skip the next section 
on residual coding. 

If we are using a 16-bit processor, then we will need 
to find a way to gain precise control over the placement 
of poles and zeros in the low-frequency region . Once 
found, then we will have tackled the three major ob
stacles standing in the way of high-quality digital fil
tering. In the section that follows we will show how 
to encode double-precision coefficients on any DSP 
chip that does not have the ability to perform unsigned 
multiplications. 

3 RESIDUAL CODING OF COEFFICIENTS FOR 
EXTREME CRITICAL FREQUENCY DESIGNS 

This method of coefficient encoding is intended pri
marily for the TMS32010 , TMS32020 , or any DSP 
chip where unsigned multiplications are problematic. 
The reason for its contrivance is to elegantly perform 
double-precision multipli cations . Specifically , we 
would like to use filter coefficients having 24-bit word
lengths, but our multiplier only accepts signed data 
having wordlengths of 16 bits. It will be convenient 
to use 32-bit wordlength coefficients, so we will do 
so. 

3.1 Residual Coding in a Nutshell 
Consider the purely numerical problem stated as fol

lows: 

y = ax 

where a is a double-precision and x a single-precision 
binary integer. If we express a as having a high-order 
part aH and a low-order part aL at the bit level , then 
we can say 

y = aHx(with suitable shift) + aLx 

[signed] = [signed][signedj + [unsigned][signed] 

The second multiplication requires an unsigned input, 
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so we cannot use a multiplier that only performs signed 
arithmetic. We could force the MSB of aL to be zero 
by shifting it 1 bit to the right before input to the signed 
multiplier, but we lose precision, albeit l bit. Instead, 
we redefine aL to make it signed: 

Now aL is no longer set to the low-order bits of a 
double-precision binary integer; it is a signed quantity. 
In the detailed explanation that follows, keep in mind 
that the complexity of the implementation is no better 
or worse than that of a conventional double-precision 
implementation using unsigned arithmetic . 

3.2 The Details 
Let us name the generic single-precision coefficient 

C;. This is the fixed-point decimal representation of the 
ideal floating-point coefficient, which we have seen in 
our filter topology. The ideal floating-point filter coef
ficient cF; is calculated by a filter design routine. We 
define the signed difference between the ideal and the 
single-precision coefficient as ec; and dub it the residual 
coefficient. 

We formulate c ; in fixed-point decimal using the fol
lowing: 

C; = 
round( Cf;2 qc) 

2qc (18) 

where the round function means round to the nearest 
integer. We use the round function here because it will 
later bound the residual coefficient to :!:: 0.512qc which 
will be advantageous when we encode it. The quantity 
qc is the number of binary places following the binary 
point in the coding of the single-precision coefficient 
C;. 

To "code" a coefficient means to find a 2's comple
ment representation of the fixed-point decimal number. 
To code c;, 

binary code(c;) = c;2qc = round(cF;2qc) . (19) 

The resulting encoded integer, often expressed in 
hexadecimal , is used directly in assembly code, rep
resenting a 16-bit fixed-point binary number having qc 
binary places after the binary point. Therefore the sign 
and integer part must be representable in [ 16 - q c ] 
binary places. If qc were 12, then we would say that 
C; is a Q12 coded number(= [4.12]); a QI2 number, 
for short. 

The residual coefficient is formulated in fixed-point 
decimal as 

ec; = cF; - c; . (20) 

The residual coefficient is encoded using an additional 
scale factor that is equal to 2qc, because it is too small 
to be represented adequately in a 16-bit fixed-point 
format. Of couse, the filter program must account for 
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the scaled residual coefficient in the calculations. Due 
to the rounding procedure, after scaling, the residual 
coefficient will have a decimal magnitude no greater 
than 0.5, 

binary code(ec;) = round(2qc (ec;2qe)) . (21) 

[Numerically, it has been found that it is better not to 
simplify Eq. (21) by substituting previous equations 
and then canceling like terms.] 

The residual coefficient has qe binary places following 
the binary point, and qe is not necessarily equal to qc. 
A good choice for qe might be 15. In that case we 
would say that ec; is coded as a Q 15 number, meaning 
that there are 15 binary places following the binary 
point, one sign bit, but no integer bits [ 1.15] . For stable 
second-order filter sections having unity gain and min
imum phase , a good choice for qc would be 14 (that 
is, Q14 = [2.14], having one integer bit) since the 
magnitude of the coefficients is bounded by 2. Due to 
idiosyncrasies of the TMS32010, we will set qc equal 
to 12 in order to save four program steps per filter 
stage, and qe to 14 for maximum headroom in the 
separate residual coefficient accumulation. 

This notational method of working with fixed-point 
binary numbers in terms of Q follows those conventions 
set forth in the TMS32010 user guide [28]. The Q no
tation follows the same rules as exponents in a by-hand 
multiplication. For example, if the multiplier were a 
16-bit Ql2 number and the multiplicand were a 16-bit 
Q14 number, then the product would be a 32-bit Q26 
number, that is , the sum of the two Q factors. (Note 
the redundant sign bit in the product of any fractional 
multiplication.) 

3.3 Filter Calculations Using the Residual 
Coefficients 

Now that we have encoded the double-precision 
coefficients, we are ready to perform the digital filtering 
itself. We tally five double-precision coefficients for 
the standard second-order section plus two s ingle-pre
cision coefficients for the truncation error cancellation 
network. This is equivalent to 12 single-precision 
coefficient multiplications in terms of computation time. 
The price we have paid for these hi-fi filters is an amount 
of computation that exceeds that for the basic second
order section by a factor of roughly 12/5 . (In compar
ison , for a 24/48-bit architecture the expense factor 
would only be 7/5 because all the coefficients would 
be in single precision which, of itself, entails even less 
housekeeping.) 

To justify the use of single-precision coefficients in 
the error cancellation network, refer to Fig. 14 . There, 

y(n) = [!a;x(n - i) + !.ea;x(n - i)J 

+[!.b;y(n - i) + !.eb;.Y(n - i)] 

+ !b;e(n - i) (22) 
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where for the sake of less nomenclature, we call the 
double-precis ion coefficient the same as the floating
point coefficient since 

j,,N,:ff' ' ' (',,: Y 
C;, +~s)~ Cp; 

,:;f-~ ,;JC 
(double precision on the left, floating point on the right). 

Eq. (22) is the one that is actual ly implemented in 
the code in Appendix 1. 

Using Eq . (6), we can rewrite Eq. (22) as 

y(n) = ~a;x(n - i) + ~ea;x(n - i) 

+ l~b;y(n - i) - 'J.b;e(n - i)] 

+ [~eb;y(n - i) - 'J.eb;e(n - i)] 

(23) 

Using Eq . (20) and simplifying, we get 

y(n) = 'J.ap;x(n - i) + ~bF;y(n - i) 

- ~eb;e(n - i) . (24) 

If we compare Eq. (24), which is the single-precision 
case of truncation error cancellation, with Eq. (16), 
aside from the use of double-precision coefficients in 
Eq . (24) , the only difference is the (last) error term in 
Eq. (24). This excess error term arises because we 
chose not to use double-precision (that is, the same) 
coefficients in the error cancellation network. Ideally, 
we would like to use double-precision error cancellation 
coefficients. Keep in mind that perfect truncation error 

x (nl 

cancellation, as in Eq. (15) , is not dependent on the 
precision of the error feedback coefficients. The signal 
feedback coefficients must be equal to the error feedback 
coefficients. In that case, the error feedback becomes 
error "cancellation." 

If we look at Eq. (24) in the freque'lcy domain, using 
Eq. (6) to derive an expression for Y(z), then we get 
an excess error term at the truncated output that looks 
like this: 

(25) 

lf the eb; are small, then the numerator of this error 
function should approximately cancel the denominator , 
which comprises the filter poles . The use of single
precision coefficients in the error cancellation network 
is probably sufficient in most cases except those de
manding high precis ion, which encompass filters of 
high Q factor or (extreme) critical frequency close to 
de or Nyquist. Recalling that the eb; are bounded in 
magnitude by (O.S)z-qc, then the eb; will be smallest 
when the b; have the greatest possible precision (that 
is, the highest resolution). So we now have a theoretical 
reason to prefer the greater precision Q 14 representation 
of the s ingle-precision part b; of the double-precision 
coefficient bp; rather than the Q 12 representation that 
is used in our TMS code at the present time. 

3.4 Residual Coefficient Implementation 
When we get down to writing the actual program 

code for Eq. (22) , since the res idual coefficients are 
encoded using a scale factor, they must be accumulated 
separate ly. The error cancellation term must also be 
accumulated separately, but for a different reason . It 

Fig. 14. Truncation error cancellation and residual coefficient coding~ee TMS code in Appendix I for implementation of 
path alignment. 
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is because the error signal e(n) is not QO as are the 
input and truncated output signals; it is Q12 , the same 
Q value as the single-precision coefficients. The most 
efficient order of calculations is to first group all the 
residual coefficients, then perform the truncation error 
cancellation, and finally the single-precision coeffi
cients. 

Both the error cancellation and the residual accu
mulation must provide for worst-case headroom in the 
accumulator. Overflow is not acceptable at these stages 
in the calculations because they are nonlinear. In the 
case of the residual accumulation , since the input and 
output signals are QO and the magnitude of each of the 
five residual coefficients never exceeds 0. 5, a potential 
overflow factor of 2. 5 requires that there be two head
room bits. Thus the residual coefficients need to be in 
Q14 formal (qe = 14). After the residual coefficient 
scale factor 2qt· is accounted for, the accumulator ends 
in Q26 format. 

In the case of the error cancellation, the Q 12 error 
signal has a maximum magnitude of 1.0, whereas the 
Q 12 feedback coefficients are bounded in magnitude 
by 2.0 and 1.0 , respectively. Therefore a potential ov
erflow factor of 3.0 again requires two headroom bits. 
But the accumulator will be in Q24 at the end of the 
error cancellation accumulation. This means we can 
toss up to five of the MSBs; in the code we discard 
four for the sake of convenience. 

When these two separate accumulations are combined 
with the accumulation of the single-precision coeffi
cients, we may then take advantage of the infinite ac
cumulator headroom and disregard intermediate ov
erflow, as discussed earlier. 

Refer to the TMS320 code in Appendix I for an 
explicit presentation of all the princ iples discussed in 
this paper. 

3.5 Going Further Still 
The purpose of residual coefficient coding is to make 

the actual frequency response more closely resemble 
the shape of the theoretical frequency response , while 
one purpose of truncation error feedback is to make 
the actual frequency response less dependent on absolute 
input signal level. The most straightforward way to 
predict the effects of coefficient quantization on transfer 
function is to use the desi red precision coefficients in 
the theoretical computation of the transfer. This tech
nique is a valid first-order approximation of the truth 
and will show the trends of shift in frequency response 
due to the drift of the pole-zero locations. While coef
ficient resolution primarily affects the shape of the filter 
transfer and stability, its impact on noise performance 
and other signal quantization effects is second order. 
Coefficient quantization alone does not make the digital 
filter a nonlinear system. The best method to predict 
all quantization effects on frequency response is to 
take the Fourier transform of the actual impulse response 
of the filter under study. Programs to do this are avai l
able; one such program is included in a filter design 
package from Signix Corp. [ 15], which can calculate 
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the FFT of up to 8192 points (version 1.5). Very low 
critical frequency filters may need more points to capture 
the complete impulse response. 

4 FORCED OVERFLOW OSCILLATIONS 

In the first three sections we have covered the most 
important topics concerning the implementation of 
digital filters. The current topic concerns the nonlinear 
behavior of second-order digital filters once output ov
erflow with saturation has occurred and the input re
mains nonzero. While it is important that the practicing 
engineer be made aware of this potential problem, this 
topic is not essential to the understanding of the other 
material. This phenomenon, it must be stressed, is 
characteristic of many digital filter topologies and is 
not peculiar to our particular implementation. All the 
error feedback techniques we have shown have been 
reported to minimize this problem which we are about 
to discuss [29]. The simplest means of circumvent ing 
forced overflow oscillations is to ensure somehow that 
the filter output will not exceed unity. 

4.1 Statement of the Problem 
Recall that our direct form I structure is immune to 

overflow problems at internal nodes as long as the 
output is constrained to be less than unity. When the 
saturating output tries to exceed unity, all bets are 
off -linear analyses no longer apply and the filter output 
can be observed, under the proper circumstances, to 
" lock up" in a mode of oscillation which follows the 
input frequency but not its amplitude or phase. At the 
instant th is lock-up response occurs, the output phase 
can be observed to jump suddenly to a new value, which 
is frequency dependent but difficult to predict. The 
input signal is present during this form of instability, 
which is the reason for the term forced overflow os
cillation . The oscillation will cease when the input 
signal is taken away (brought to zero). Unfortunately 
our venerable error feedback techniques cannot help 
us because the output is no longer representable at the 
allotted bit width, causing the truncation errors to be 
themselves in numerical error. 

If the input signal is merely reduced in amplitude, 
then the filter will return to its linear behavior after the 
input amplitude has dropped to a level that can be con
siderably lower than the level that elicited the response. 
(This return to linear behavior will happen, assuming 
that output overflow detection is performed on a per
sample bas is , as previously discussed.) Conceptually, 
there is an input level hysteresis-loop function that 
describes this lock-up mode of the filter. The amount 
of hysteresis is primarily dependent on the pole posi
tions. 

A rule of thumb for sinusoidal input signals is this: 
if the input frequency is below the pole frequency , 
then there will be no forced overflow oscillation hys
teresis , that is, the oscillations will stop as soon as the 
input stops overdriving the filter. But when the reverse 
is true, when the pole frequency is lower than the input 
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frequency, there will be hysteresis. We will, shortly, 
be more precise in our definition of exactly when the 
problem occurs, but this rule of thumb is good for 
filters having poles at less than half Nyquist. 

The topic of forced overflow oscillations should not 
be confused with the more widely researched topics of 
overflow oscillations and limit cycles. These are the 
only two types of low-level autonomous oscilla
tions possible in digital filters. We briefly present them 
here. 

4.1. 1 Overflow Oscillations 
Autonomous overflow oscillations will occur if output 

saturation is not implemented upon the detection of 
overflow there. (Remember we do not saturate inter
mediate results.) This type of instability is self-sus
taining once activated, and is due to the wraparound 
(modulo) characteristics of 2's complement arithmetic. 
Output saturation eliminates the problem for second
order filters , and so we can dispense with it entirely 
[30]. It would be nice if saturation solved the forced 
overflow oscillation problem, but it does not. The fun
damental difference between this and forced overflow 
oscillation is that these oscillations will sustain under 
zero and nonzero input conditions, while forced ov
erflow oscillations only occur under nonzero (large
signal) input conditions. 

4.1.2 Limit Cycles 
Limit cycles , on the other hand, are a problem due 

to the inherent nonlinear nature of digital filters pro
voked by numerical inaccuracies in the signal paths. 
Limit-cycle oscillations can be sustained under the 
condition of zero input and are dependent on initial 
conditions. Activation of limit cycles does not require 
an overflow mechanism; this is the primary conceptual 
difference. Nonzero inputs usually break them up, once 
activated. The cause of these oscillations can be under
stood intuitively if we realize that even when digital 
filters are operating in their "linear mode," they are 
still nonlinear devices to a second degree because of 
the quantization of the internal signals and the truncation 
errors. "Digital" filters, by definition, operate on signals 
that are discrete in both time and amplitude. Therefore 
no matter what number of bits are being used in the 
signal path , there will always be the possibility of limit
cycle oscillations in the standard direct forms. The 
amplitude of these oscillations can be quite large, al
though typically small and annoying, and the problem 

15 L &b~fl mpnd'IJ 'PflBSfUi to !l!meatisn is 

~~w~ lRdss&-,----<::kaH~ [3 i] has sks"'&Jhat--limiL-" ) ~~~ 
eseillati•Jus= are i~ossible ifl first erder eigital nltEM'S
'' l:ea truncation is usgF.This limit E:J) t!lc fli9'1!leom has 
usually been solved in the past by increasing the number 
of bits in the signal paths, which reduces the amplitude 
of the oscillations to "acceptable levels." 

In the error cancellation and feedback schemes we 
have presented , we diminished the impact of the trun
cation errors by constraining them to appear only at 
the output node. We accomplished this by canceling 
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or minimizing the truncation errors which fed back 
into the circuit, and by retaining full precision multi
plications. Hence the internal signal paths appear much 
wider than they actually are because we succeeded in 
preventing a buildup of truncation noise along those 
paths. The net effect is the same as it would be had we 
actually increased the signal bit width. The amplitude 
of any potential limit cycle is greatly minimized com
pared to that using no form of error cancellation. Thus 
using cancellation/feedback (ESS) techniques, we 
succeed in linearizing the digital filter to a much higher 
degree than do conventional implementations . Indeed, 
Higgins and Munson [ 16] showed that these ESS 
schemes quickly approach statistical equivalence to 
double-precision implementations, which in itself 
guarantees significantly improved limit-cycle suppres
sion. Going one step further, Chang [31] showed that 
for specific values of the error feedback coefficients, 
limit cycles could be eliminated completely. Those 
values include the case of truncation error cancellation 
discussed. 

In summary , using ESS techniques, one is able to 
suppress limit cycles to well below the 16-bit level. 
We will not examine limit cycles further here because 
thorough treatments can be found in most standard DSP 
texts. 

4.2 Region of Forced Overflow Oscillation 
Fig . 15 shows the second-order digital filter section 

under study here. Only the feedback paths are shown 
because the feedforward paths do not contribute to this 
problem. The saturation arithmetic shown at the output 
of the accumulator is in keeping with the assumptions 
we have made thus far. Fig. 7 shows our implementation 
of the truncator and saturator operators as found in the 
code in Appendix I. We believe that their ordering is 
not critical ; this figure is only included here for ref
erence. The truncator is not critical in this analysis 
and so it is omitted in Fig. 15. 

Fig . 16, taken from [32]. shows a typical forced 
overflow oscillation at the output when a sinusoid ov
erdrives the circuit. We talked about the observation 
that the forced overflow oscillation seems to be worse 
when the input frequency is above the pole frequency, 
that is, it is harder to recover from it. Let us hypothesize 
a possible explanation for this by guessing that recovery 
time is somehow related to the impul se response of the 
filter. Let us loosely define "recovery time" as the time 
it takes for the circuit to stop oscillat ing once the input 
signal has been removed. 

If we talk about an input sinusoid whose amplitude 
is just slightly above unity, then it is really just the 
peaks of that sinusoid which overdrive the unity gain 
filter. Then let us guess that the input amplitude hys
teresis phenomenon has to do with the fact that a high
frequency input sinusoid has peaks which occur at a 
rate that is too fas t for the overflowed filter to recover 
from. Because the filter does not have adequate time 
to recover from this nonlinear mode, it is necessary to 
bring the input amplitude far enough below unity so 
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that the corresponding amplitude of the filter's impulse 
response becomes attenuated. This in turn reduces the 
time required before the internal computations (con
volutions) are once again representable at the allocated 
bit widths. Conversely, when the input sinusoid has a 
frequency that is below the pole frequency and its am
plitude is just above unity, then the overflowed filter 
has plenty of time to recover and it is not necessary to 
bring the input amplitude back down much below unity. 

Although this explanation may be oversimplified, 
having used the linear impulse response in the expla
nation of a nonlinear phenomenon, Claasen and Kris
tiansson [33], [34, p. 515] proved in 1975 that a nec
essary and sufficient condition for the existence offorced 
overflow oscillations is 

for some n = 0 --+ oo (26) 

where b2 is the second-degree feedback coefficient and 
h(n) is the impulse response of the ideal linear second-

order digital filter. 
Using the residue theorem, the impulse response of 

the filter shown in Fig. 15 can be derived from its 
transfer 

H(z) 

(27) 

as 

pn+l _ (p*)n+l 
h(n) = ··-.·- (28) 

P - p 

where p = rei8 is the pole and p* is the conjugate pole 
of this second-order system. (Note that consideration 
of zeros in the numerator of Eq. (27) would only change 

b~ 

Fig. 15. Saturator, forced overflow analysis. 
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Fig . 16. Typical forced overflow response for sinusoidal input.(© 1983 IEEE [32].) 
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the absolute magnitude of the consequent impulse re
sponse, but not its shape.) 

We can rewrite Eq . (28) in its polar form as 

h(n) = ,n S.in (~ + I)_!! 
sm e (29) 

where r is the pole radius in the z plane and e is the 
pole angle in the upper half-plane. The pole radius r 
must be within the unit circle for stability, as is well 
known. 

For 6 very close to 0 or 1T, 

/ h(n)/ = (n + l)rn , e near de or Nyquist 

Relating the poles within Eq. (27) to the actual filter 
coefficients, it is straightforward to show that for the 
positive topology 

b, 2r cos e 

(30) 

The filter stability expressed in terms of the filter 
coefficients b 1 and b2 is illustrated by the stability tri
angle in Fig . 17. All coefficients within the triangle 
produce stable filters. 

Now it is easy to see that there may easily be forced 
overflow oscillations for poles near de or the Nyquist 
since there , by substituting Eq. (30) and the approxi
mation to h(n) into the c riterion, Eq. (26), 

i (n + l)rn+2 1 > 1 , 

for some n = 0 ~ oo e near 0 or 1T 

b.t 

it is not hard to find an n for which it is true. 
Fig. 17, taken from [32], [34], shows the coefficient 

regions shaded within the stability triangle for which 
the second-order digital filter is likely to have a forced 
overflow problem. The trend of the problem area is for 
values of b2 close to - I, which implies that the problem 
is more severe for filters whose poles are close to the 
unit circle. The trend as it pertains to b 1 shows problems 
for filters whose poles lie near de or Nyquist. Notice 
that the problem areas are symmetric with respect to 
the b2 axis, and that there appear nulls for particular 
values of b 1 for which no forced overflow oscillations 
are possible. 

Fig. 17 suggests possible recovery schemes that in
volve the modification of the coefficients to bring them 
into safe regions. This solution implies that the filter 
transfers could be changed momentarily to solve the 
problem when it occurs. This may not be attractive in 
some circumstances. It may be more des irable to scale 
input amplitude. A nonlinear approach such as that 
described by Claasen and Kristiansson in [29] may be 
more effective. The technique they describe employs 
a feedback circuit that only comes into play when ov
erflow occurs. Assuming there is some headroom in 
the accumulator, they feed back the difference between 
the saturated output and the actual value of the over
flowed signal. Under normal circumstances of linear 
operation, this difference is zero, so nothing gets fed 
back. 

4.3 Forced Overflow Summary 
Our goal is to make the DSP engineer aware of this 

problem. Interestingly enough, there are only a handful 
of research papers on this subject, and after all is said 
and done , the solution typica lly offered is to simply 
reduce the input amplitude; this is now the best solution 

-2 0 2 
--+---------~--------~--------~r---------+-~~ 

-I 

Fig. 17 . Stability triangle for positive topology. Shaded region shows where forced overflow oscillations can occur.(© 1982, 
IEEE [32], [34).) 
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[35]. But whose responsibility is it to do so , the filter 
architect's or the end-user's? 

5 CONCLUSIONS 

One thing that has become eminently clear during 
the course of this research is that, in terms of noise 
performance, we could have extremely high fidelity 
(transparent) digital filtering if we used 24-bit s ignal 
paths. For the most demanding applications, the 16/ 
32-bit processors just will not do , unfortunately. 24-
bit signal paths will not , however, obviate the use of 
truncation error cancellation. 32/64-bit processing 
would be needed to perform brute-force digital filtering 
us ing no truncation error cancellation. But note that 
24/48-bit processing with truncation error cancellation 
will outperform the 32164-bit system and can be up to 
8 bits (48 dB ) better because the 32/64-bit system can 
only hold the noise down to the 16-bit boundary. We 
have also learned that 24-bit coefficients have sufficient 
accuracy for most audio frequency filtering require
ments . From this perspective, a 24/48-bit version of 
the TMS320 series of DSP chips would be ideal. 

Too often the lesson has been learned that the num
ber and orders of the filters des igned are de te rmined 
not by the d esired transfer characteristics , but by the 
sheer processing power of the implementation. For 
this reason, commercial fi Iter design packages should 
be amended so that the principal cons traint is the 
fi Iter order rather than band tolerances. The program 
would then yield the best possible design for the given 
fi Ite r order. 

The primary contribution of the topics we have 
covered is to dispel some popular myths, particularly 
those concerning input scaling, internal overflow, 
and the assumptions of "white" noise ("random") error 
sources. We have found that our truncation noise re
duction techniques also serve to eliminate autonomous 
limit-cycle oscillations , while output saturation e n
sures freedom from autonomous overflow oscillations . 
Having hurdled these barriers, we have near ly reached 
the ideal in digital filtering. There is a lways room 
fo r more work , and we suggest that the most elegant 
solution to forced overflow oscillation is still unclear. 
The solution may surface in the area of chaotic system 
theory. 

6 TENETS OF DSP FILTER IMPLEMENTATION 

l) Overflow is no t always a bad thing. 
2) Truncation no ise can be controlled at the expense 

of computational inte nsity. The degree of intensity de
termines the amount of control. 

3) Signed multipliers are useful for double-precis ion 
calculations without loss of accuracy or effi ciency. 

4) Floating-point mathematics alone in a DSP chip 
does not solve the truncation noise problem (36], (37) . 
Nume rical resolution determines noise performance. 
Resolution is determined by the mantissa bit width. 
Truncation of the mantissa to less than the required 2N 
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bits prior to accumulation increases truncation noise 
recirculation. 

5) Dynamic range is not the same as signal-to-noise 
ratio (SNR). Dynamic range is the ratio of the largest 
to the smallest perceptible signal level. Since s ignals 
well below the noise floor are perceptible by humans, 
the dynamic range specification often exceeds SNR. It 
is often made commensurate with the 6-dB-per-bit PCM 
criterion, but even this can be exceeded by proper dith
ering (38]. Dynamic range, then , is determined by the 
digital signal processing. SNR is the ratio of the largest 
signal representable to the noise floor with no signal 
present. In digital systems it is probably more mean
ingful to have a term for that ratio when signal is present: 
th is we call THD + N . Included in it are harmonic 
di stortion, the noise floor, and all other artifacts intro
duced by the digiti7.ation of the signal itself. 

6) Coefficients of second-order sections may be lin
early interpolated for smooth transitions to target filters 
without intermediate instabilities. The same is not 
guaranteed for direct higher order filters (except lad
ders). The interpolated coefficients must be encoded 
in double precision for smooth transit ions. 

7) The propagation delays of digital filters are no 
worse , in general, than for the corresponding analog 
imple mentations. 

8) DSP chips should have the capability of shifting 
the entire accumulator in place and at once in either 
direction to facilitate the alignment of the intermediate 
accumulations in the realization of the techniques pre
sented herein. The program-controlled realignment of 
the product register into the accumulator is also useful. 
(TMS32020 and TMS320C25 have these capabilities.) 
DSP c hips must be designed to handle the access of 
long delay lines of any modulo and with nonequispaced 
taps. DSP chips need to be able to detect overflow out 
of several of the high-order accumulator bits below the 
MSB , not just from the MSB. 
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APPENDIX 1 
TMS320 CODE 

A tested real-time TMS32010 source code follows. 
This code runs at 25.60576 MHz, ± 0.01 %, on a 
TMS320CI0-25 for a 50.4-kHz maximum sample rate. 
There are two filters maximum, executable per sample 
having double-precision coefficients, single-precision 
truncation error cancellation, and overflow detection 
and saturation. This leaves a headroom of 15 instruction 
cycles out of a maximum of 127 to perform noncritical 
functions in a fragmented outer executive loop. 

** * * *. ** •• ** *1111 ** * *. * ** •• ** 111 .fl. 'II Ill f/1 It Ill ltfl It'll It'll *II" A It • A • ot""*""*" II.* 

••••••••••••••••••• filterinq **********•************"* 
FILTER 

BIOZ FILT!.Jt * JOND - 1987 

IN XNL,2 

IN INDB:X,J * GET COE!"FICIZKT 
LAC INDEX . FOR OUTER LOOP 
AND HSPC4 
SACJ.o INDEX 
LAR ARO,INDEX 
IN * ' 2 

OUT YNR, 2 * 14 I NSTR. 

*********** LEFT CHANNEL *************•••• 
• PERFORM RESIDUAL COKFFICIENT CA.loCUI.oATIONS 

ZAC 
LT 
MPY 
LTA 
MPY 

XNM2L 
£A2L 
XNMlL 
EAlL 

LTA XNL 
MPY EAOL 
LTA YNM2L 
MPY E:B2L 
I.TA YNMlL 
Ml'Y EBlL 

QO 
• 0 1 4 

APA.C * 26 INSTR. 
* WANT HEADROOM IN ACCUMULATOR 

SACH RESID • DIVIDE BY 2**12 - > tu:SID I S Q10 
* END RESIDUAL COEFFICIENT CALCULATIONS 

IIRL 

ZAC 
LT 
MPY 
LTC 
MPY 
AI'AC 
SACH 

LAC 
LT 
MPY 
LTC 
MPY 
LTD 
MPY 
LTA 
MPY 
LTA 
MPY 
APAC 

!.ONH2L 
B2L 
EOFNL 
BlL 

TE.MP, 4 

TEMP 
XNM2L 
A2L 
XNMlL 
AlL 
XNL 
AOL 
YNM2L 
B2L 
Y'NH.lL 
BlL 

.,., * PERFORM ER.ROR FEE:DBACP.: CAI.CUI.ATIONS 
* STORED SUCH THAT IS NEGATIVE Q12 

Q12 
* REALLY' EONMlL 
" P REGISTER RESULT IS 024 

* INTERMEDIATE ERROR TERM Ql2 

NOW DO SINGLE PRECISION COEFFlCIENTS 
• Ql2 * 35 INSTR. 
• QO 
• Ql2 

* 4 6 t NSTR . 

• *"' FOP.MULATE NEW TRUNCATION !:AAOR AND OUTPUT SAMPLE 
ADO RES ID, 2 * Q12 
SACH YNL, 4 * YNL QO, ACCUMULATO~ Ql2 
SACH OVERFL * STORE MSBs OF ACCUMULATOR 
STJB YNL, 12 
SACL EOFNL * 012 * 5 1 INSTR. 

•••*•*•• •••••• CHEC,:; FOR OUTPUT OVERFLOW ******** * '**"'***** 
LAC OVE;R.FL, 1 * SIGN EXTENS ION HERE. 
SACH TEMP , 4 * 5 MSB.s OF Ql2 ACC N09f I SOLATED . 
SACH SIGN * BEST BET AS TO OUTPUT SIGN. 
ZALS 
XOR 
BZ 
LAC 
XOR 
SACL 

TEMP 
SIGN 
HRL 
S I GN 
C EILol N 
YNL 

• NO S I GN EXTENSION HERE . 
"" ARE MSB8 DIFF ERENT? 
* RESULT I S 0 If' ALL SAME . 

* MAGI C NUMBER => -32?6 7 (NOT 8) 
* 61 INSTR . 1 SATURATE 
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Ull:iiiAL I-ILI t.K~ I-UK Hll:iH·I-IUt.Lil Y AUUIU 

*********** RIGHT C~I. (in cascade with LEFT ) **********'******* 
* PERJ'ORM RESIDUAL COEFI!"ICIENT CALCULATIONS 

uc 
LT YNM2L • QO 
MP< EA2R • Ql 4 
LTA YNMlL 
MPY EAl R 
LTA YNL 
MPY EAOR 
LTA YNM2R 
MPY EII2R 
LTA YNR * REALLY' Y"NM1R 
MP< EBlR 
APAC * 7 3 INSTR. 

* 9fANT HEADROOM IN ACCUMULATOR 
SACH RESID • DIVIDE BY 2 **12 -> RESID I S QlO 

* END RESIDUAL COEFFICIENT CALCULATIONS 

ZAC 
LT EONM2R 
MP< B2R 
LTD I!:OFNR 
MPY BlR 
APAC 
SACH T!:MP, <C 

LAC TEMP 
LT YNM2L 
MPY A2R 
LTD Y'NMlL 
MPY AlR 
LTD YNL 
MPY AOR 
~TA ....,.., .. 
MPY B2R 
LTC YNR 
MPY BlR 
lU'AC 

PERFORM ERROR FEEDBAC K CALCULA.TI ONS 
* STOUO SUCH THAT IS NEGATIVE Ql2 
• Ql2 

* REALLY' EONMlR 
P REGISTER RESULT lS 024 

* INTERJ.mDIATE ERROR TERM Q1 2 

NOW DO SINGLf; PRECISION COEFFICIENTS 
'* 012 * 82 I NSTR . 
• QO 
• Q12 

* REALLY YNM1R 

* 93 I NSTR. 

F ORMULATE NEW TRUNCATION ERROR AND OUTPUT SAMPLE 
ADD 
SACH 
SACH 
SUB 
SACL 

RESID, 2 * 0 12 
'fNP., 4 * YNR 00, A CCUMULA-TOR 012 
OVE.Rl'R * STORE MSBa OF ACCUMULATOR 
nffl., 1 2 
EOI'NR * Q12 * 98 INSTIL 

*'****'******* *• CXECit FOR OUTPUT OVBULOK •******"'** *•'***** 
LA.C OVERFR, 1 * SIGN BX~SION Hl!U\B . 
SACH TEMP, 4 • 5 MSBa OF 012 ACC N09f ISOLATED. 
SACH SIGN * BEST BET AS TO OUTPUT S IGN . 
ZALS TEMP * NO SIGN I!:XTENS ION HERE. 
XOR SIGN " AlU!:i HSBa Dln"'l!:RENT? 
BZ IIR * RESULT IS 0 IF ALL SAME. 
LAC SIGN 
XOR. CBILI N * MAGIC NUMBER=> ·32767 ( NOT 8) . 
SACL WR • l OS INSTR., SA'l'URATE 

'**'********•***"'*"•••• UNIVERSAL Rl!:TURN •••••••••••*•******** 
IIR 

1\ET * 110 INSTR. + 2 (call) •> 15 LE.l''l' / 127 
* !'OR OUTJ!:.J\ LOOP 

.......... .... * ******* ****** . ....... ··- , • • • •••••••••••• • • •••••• 
• AT 25. 6MHz./ 4 / .50. 4 Kll% - > 127 I NSTR. MAX 

APPENDIX 2 
HOW TO DETECT OUTPUT OVERFLOW 

We store the QO output y(n) from a 32-bit accumulator 
which is in Q 12 format. The accumulator is Q 12 because 
we chose to perform the single-precision (Q 12) coef
ficient accumulation last. (See the TMS320 code in 
Appendix I, right before "CHECK FOR OUTPUT 
OVERFLOW.") Since y(n) is a 16-bit QO number, we 
are left with 4 bits of visible headroom in the accu
mulator above the sign bit of Y(n). If no output overflow 
has occurred, then these "headroom" bits should each 
be a copy of the sign bit of y(n ). This suggests a simple 
way to detect output overflow, then. If any of the 5 
MSBs in the accumulator differ from the others at the 
time that y(n) is stored, then output overflow must 
have occurred . Since we really do not have a clue as 
to the extent of the overflow, our best guess is that the 
proper sign of the output should be the same as the 
MSB of the accumulator. Using that information, we 
should saturate the output under program control. The 
4 headroom bits will allow us to detect output overflow 
up to 24 dB past unity. 

The TMS320 code to perform output overflow de
tection/saturation is shown in the program. Notice that 
the use of the XOR operating with the magic number 
CEILIN ( = 32766) on the sign of the Ql2 accumulator 
obviates the need for conditional branching to saturate 
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at the proper polarity. This detection/saturation routine 
takes 10 TMS320 instruction cycles per filter stage. 
This is a significant portion of the code and is almost 
as long as the basic IIR filter calculation itself. Un
fortunately this code is inextricable for high-quality 

PAPERS 

audio work. The ADSP-2100, in contrast, has 8 hard 
overflow bits annexing its 32-bit accumulator. It has 
a single instruction monitoring the sameness of the 9 
MSBs. We should expect quite a code reduction using 
it. 
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LETTERS TO THE EDITOR 
COMMENTS ON "THE IMPLEMENTATION OF 
RECURSIVE DIGITAL FILTERS OF HIGH
FIDELITY AUDIO"* 

I feel comme nt is required on the above paper by 
Jon Dattorro. 1 In particular I would like to clari fy the 
relationship between Mr. Dattorro' s work as presented 
and the digita l filter technology actually implemented 
in Le xicon 's OPUS digital audio production system . 
The biographic summary states that "Mr. Dattorro was 
with Lexicon Inc. until 1987, where he was the princ ipal 
engineer for the Model 2400, their premier time-com
pression device. His responsibilities also included the 
digital filter design for OPUS, their recently announced 
digi tal audio workstation." This is some what mislead
ing. Although the bulk of the work presented in th is 
paper was compiled by the author as part of the early 
stages of OPUS system development at Lexicon (and 
published without Lexicon's review or approval) , this 
work is in no way related to the actual digital equali
zation imple me ntation as introduced for OPUS at the 
con ventions o f the Society for Motion Picture and 
Television Engineers and the Audio Engineering Society 
this past fall. 

Insofar as th is is a potential source of confusion to 
present and prospective OPUS users we request that 
this clarification be published at your earliest possible 
convenience. 

Author's Reply2 

LOUIS R. EAGLE 

Digital Signal Processing 
Lexicon, Inc . 
Waltham, MA 02 154 , USA 

The above paper1 does not purport to be a des ign 
review of the Lexicon OPUS digital parametric equal
ization filters. Although the equalization subsyste m 
for OPUS was my responsibility until 1987, l never 
indicated that the paper represented that which was 
offered to the customers. The system, OPUS, is only 

* Manuscript received 1989 March 6. 
1 J. Oattorro , J . Audio Eng. Soc .. vol. 36, pp. 85 1-878 

I 19RR Nov.) . 

mentioned in the biography because my des ign e xpe
rience is relevant to the paper' s topic . I also designed 
the original OPUS mainframe backplane and I shared 
the console filter-str ip facade and e lectronics design. 
I imagine that much has changed during the interim, 
between my completion of the task in 1987 and the 
introduction of the equal ization subsystem this past 
November at the 85th Convention of the Audio Engi
neering Society. Indeed , Mr. Eagle was not a Lexicon 
employee or consultant prior to my departure . Mr. Eagle 
has declined to share any technical information since 
I joined ENSONIQ, so I have no knowledge of the 
extent to which my work was used . 

I would like to note several errors which appeared 
in the above paper. 

1) On page 858 , in the last paragraph in Sec. 1.2.2, 
line I I should have read : "gain or loss. The ... " 

2) Table l , page 863 , shou ld ha ve read as follows: 

Table I . Error feedback zeros. 

K1 Kz Region (I 

+ 2 -I 0 Twice 
- 2 -I 1T Twice 

0 + I 0 and 1T 
+I -I 1TI3 Once 
-I -I 21T/3 Once 
+I 0 0 Once 
-I 0 1r Once 

0 - I 1r12 Once 

3) In Sec . 2.5.1, page 864, line 26 should have started 
with (N2a 2). 

4) The first equation at the top left of page 870 should 
have read 

C ; + binary code (ec ;)l (2qcz qe) = Cf; . 

5) An asterisk should have appeared in the caption 
for Fig. 14 preceding 'See TMS .. .' 

6) In Sec. 4. 1.2 , on page 872 , li nes 21 through 24 
in the left-hand column , " worse ns when . . . limit
cycle problem," should have been deleted . 

7) On page 874 the approximation to the h (n ) equation 
should take the absolute value on the left-hand side. 

] ON 0 ATTORRO 

ENSONIQ Corporation 
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surements and could lead to erroneous results. Expe
rience with practical horns has shown that these 
reflections are not only common in most designs , but 
can be very strong. A second point, which may be of 
importance, is the effect of the cutoff phenomenon as
sociated with many horn shapes. At frequencies near 
cutoff, gross phase dispersion effects occur, leading 
to group delays which, in many designs, can be more 
than a few milliseconds. This dispersion may signifi
cantly affect measurements taken using time windows 
of very short duration, as is necessary for the elimination 
of mouth reflections. 

Some examples of our measurements along with the
oretical predictions using a one-parameter, finite ex
ponential element model based on Webster's horn 
equation are shown in Figs. 1 and 2. These results form 
part of a technical report which is near completion , an 
abridged fo rm of which will be s ubmitted shortly for 
possible publica tion. 

KEITH HOLLAND 

FRANK FAHY 

PHILIP N EWELL 

Institute of Sound and Vibration Research 
The University 

Southampton S09 5NH, UK 

COMMENTS ON "THE IMPLEMENTATION 
OF RECURSIVE DIGITAL FILTERS FOR 
HIGH-FIDELITY AUDI0"11 

ln the above paper12 Dattorro discussed in Sees. 2.5 
and 2.6 a digital filtering scheme he calls " truncation 
error cancellation." I think the scheme has been ex
plained and interpreted incorrectly, and I will offer my 

11 Manuscript received 1989 February 6. 
12 J . Dattorro, J. Audio Eng. Soc., vol. 36, pp. 85 1-878 

(1988 Nov.) . 

x(n) 

explanation and interpretation and show where the paper 
is not complete. 

The author puts forth two conditions on the struc ture 
in Fig. 11 for implementing truncation error cancel
lation. The first is that the error feedback coefficients 
K 1 and K 2 are equal to b1 and b2 , respectively. The 
second condition is given in Sec. 2.6, where the author 
states that the error accumulation must be shifted right 
(in the case of Fig. 11, shifted right 16 bits) before 
adding to the signa! accumulation. Under these two 
conditions, the filter can be redrawn as shown in Fig. 
11 I, 

This filter has a 32-bit feedback delay path and a 48-
bit accumulator for the feedback multiplication results. 
This gives the filter a wide dynamic range internally. 
The filter has two truncation points in it and thus has 
two error signals to consider. The first, e 1, is produced 
by truncating the 48-bit accumulation to 32 bits before 
the accumulation enters the feedback path. The second , 
e2 , is produced by truncating the filter o utput to 16 
bits. Using the author's convention , the fi lter transfer 
function is 

This equation is different from Eq. (17) in the paper 
because the truncation from 48 bits to 32 bits was ig 
nored. It should have been taken into consideration in 
Sec. 2.6. Paragraph 2, sentence 2, states that the error 
feedback math of Fig. I I " must be shifted to the right 
before combining it with the signal accumulation. " 
Explicitly, the 32-bit accumulator results from the error 
feedback accumulations must be shifted right 16 bits. 
But this truncates the 16 least significant bits. Thi s 
must be considered as another error source. 

~(n) 

Fig. 11 I. 



This implementation being considered is most simply 
described as a filter that uses double-precision arithmetic 
in the feedback portion. The term "truncation error 
cancellation" is not proper. Truncation error is always 
present when using finite word length arithmetic in a 
recursive filter. The truncation error has simply been 
reduced by using a longer word length in the recursive 
section of the filter. 

Author's Reply13 

PAUL E. NEYRINCK 

San Francisco, CA 94118, USA 

Mr. Neyrinck has pointed out an additional truncation 
error source in the truncation error cancellation circuit, 
which was first brought to my attention by Tom Hegg 
of Lexicon, and later by Richard Cabot of Audio Pre
cision. I consider that error source to have impact only 
to a second degree on that circuit's performance, and 
so I chose to ignore any discussion of it, hoping to 
simplify the mathematics for the reader. Mr. Neyrinck's 
astute observation, however, has made me regret that 
omission. It is important to note that this second-degree 
source of truncation error is nonexistent in the truncation 
error feedback topologies discussed in Sees. 2. 3 and 
2.4. This is because the error feedback coefficients 
were trivial multipliers there. 

As for my interpretation of the truncation error can
cellation circuit, which I believe is correct, it is im-

13 Manuscript received 1989 September 21. 
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portant to understand that truncation error cancellation 
is a special case of error spectrum shaping (ESS), which 
is truly a truncation error feedback technique and not 
a means of increasing purely numeric precision. The 
benefits of ESS are established in the frequency domain 
as a means of reducing truncation noise buildup. Trun
cation error cancellation may well be viewed as a double
precision implementation. In Sec. 2.5.0, a subtle dis
tinction between truncation error cancellation and 
standard double precision was expressed in terms of 
the double-precision realization: 1) the signal feedfor
ward paths remain in single precision, and 2) the mul
tiplier inputs are never unsigned. I acknowledged the 
fact that other engineers had found the noise perform
ance of the truncation error cancellation circuit to be 
equivalent to that of a standard double-precision im
plementation. 

The two conditions under which the truncation error 
cancellation will be perfect were set forth in the last 
paragraph of Sec. 2.6: I) the signal feedback coefficients 
b 1 and b2 must be precisely equal to the error feedback 
coefficients K1 and K2, respectively, and 2) no rounding 
(truncation) may be performed in the formulation of 
the error accumulation. 

If the error accumulation must be shifted right before 
combining it with the signal accumulation (Sec. 2. 6, 
paragraph 2), and if significant digits are lost as a result, 
then the second criterion is clearly violated. 

The material in Sec. 2. 6 stands by itself as it is. The 
analysis that follows would, hypothetically, be added 
as Sec. 2.6.1, where we would go to this second level 
of depth into the truncation error assessment. Fig. II" 

Fig. II". Second-order truncation error cancellation showing all truncation errors. 
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here shows the truncation error situation in every detail 
for a 1o/32-bit processor having a 16-by-16-bit multiplier 
with 32-bit products and accumulations. Referring to 
the figure, 

y(n) = ,Y(n) + e(n) (2) 

as before. We define a new variable, E, which is simply 
the accumulation of the truncation errors, 

(3) 

In the text, Eq. (14) uses the accumulation E directly. 
A new truncation error source e<2J(n) results when the 
truncation error accumulation E is shifted right (trun
cated) before it is combined with the signal accumu
lation, 

E(n) = E(n) + e(2)(n) (4) 

where ie<2l(n)l << le(n)l, and where the 2 raised in 
parentheses connotes the second-degree error. This sec
ond-degree truncation actually occurs in the TMS320 10 
program in Appendix I of the paper on the lines that 
read 

SACH TEMP.4 * INTERMEDIATE ERROR TERM Ql2 

The equation which in reality becomes implemented 
in the program is then 

y(n) = La;x(n - i) + 2':b;Y(n - i) + E(n) . 

(5) 

Contrast this with Eq. (14) in the text. Only the last 
term is different because we are adding a truncated 
version of the truncation error accumulation. It is im
portant to realize that both the first and second terms 
in Eq. (5) here and in Eq. (14) in the text retain full 
numerical precision because none of the operands need 
to be truncated prior to multiplication. (Indeed, y (n - i) 
is already truncated and accounted for.) What is the 
effect of the truncation of E, the truncated truncation 
error accumulation, the double truncation? 

In the frequency domain, 

Ycz) 
La;z-i 

X(z)·----
- Lh;Z-i 

(6) 

E(z) -
£(2l(z) 

which agrees with Mr. Neyrinck's Eq. (I), except for 
the nomenclature . Contrast Eq. (6) here with Eq. (17) 

in the text; Eq. (6) has an additional (third) term. Eq. 
(6) says that the truncated output spectrum is comprised 
of the ideal filter transfer minus the nonamplified output 
truncation minus the truncated truncation error accu
mulation £(2)(z). £<2l(z) is much smaller in magnitude 
than E(z) but is amplified by the poles of the system. 

Assuming a 16-bit signal and a -90-dB signal noise 
floor, then in a 16-bit system £<2l(z) is ideally 16 bits 
lower in magnitude than E(z). (This would be possible 
using a processor such as the TMS320C25 , where the 
products can be shifted left out of the multiplier prior 
to accumulation.) This means that, depending on the 
implementation, the noise power associated with £<2l(z) 
can be 186 dB below unity. In a 24-bit system the noise 
power associated with £<2l(z) is at least 24 bits lower 
in magnitude than that of E(z) , and so 234 dB below 
unity. The bottom line is that this second-degree source 
of truncation error will only be problematic if the am
plification of it by the system poles raises it above the 
signal noise floor. For this to happen, the amplification 
would need to be excessive; certainly , the use of a 24-
bit processor makes this much less of a likelihood. 

JON 0ATTORRO 

ENSONJQ Corporation 
Malvern, PA 19355, USA 

COMMENTS ON "THE IMPLEMENTATION 
OF RECURSIVE DIGITAL FILTERS FOR 
HIGH-FIDELITY AUDI0"14 

In the above paper12 Appendix 1 needs to be amended 
as follows: 

Addendum to Appendix 1 
The first nine instructions in the TMS320 code are 

for 1/0 and must be changed or deleted to suit your 
purposes. 

Note that the operands associated with the LTD in
structions must be allocated storage in ascending order 
so that the program functions properly. For example, 

XNL: EQU 7 
XNMIL: EQU 8 
XNM2L: EQU 9 
etc. 

JON DATTORRO 

ENSONJQ Corporation 
Malvern, PA /9355, USA 

12 J. Dattorro, J. Audio Eng. Soc., vol. 36, pp. 851-878 
(1988 Nov.). 

14 Manuscript received 1989 October 16. 


