Search-Effectiveness Measures for Symbolic Music Queries in Very Large Databases

Craig Stuart Sapp craig@ccrma.stanford.edu

Yi-Wen Liu jacobliu@stanford.edu

Eleanor Selfridge-Field esfield@stanford.edu

ISMIR 2004

Universitat Pompeu Fabra Barcelona, Spain

12 October 2004

Musical Features

• We examined search characteristics of 14 musical features:

7 Pitch features (examples below)

7 Rhythm features: (3 duration & 4 metric)

- 4. beat level (2)
- 1. duration (37~74)
- **5**. metric level (10~14)
- 2. duration gross contour (3)
- **6**. metric gross contour (3)
- 3. duration refined contour (5)
- 7. metric refined contour (5)

• How do all these different features affect searching in a database?

Anchored vs. Unanchored Searches

Search Pattern: F A C

Two types of search methods, Examples:

Anchored Matches search only from the start of a database entries

Unanchored Matches search starting at any position in database entries

Example Feature Searches

	Feature	Query (in Themefinder)	Anchored Matches	Unanchored Matches
pitch name	pch	F A C	464	1,710
12-tone pitch	12p	5 9 0	464	1,710
musical interval	mi	+M3 +m3	1,924	6,882
12-tone interval	12i	+4 +3	1,925	6,894
scale degree	sd	1 3 5	2,009	7,024
pitch refined contour	prc	UU	4,677	17,712
pitch gross contour	pgc	UU	19,787	76,865
		Searchir	ng a database of 100.0	000 melodic incipits/themes

Match-Count Profiles for All Features

- TTS for rhythm twice as long than pitch TTS.
- TTS for gross metric descriptions 5 times as long as pitch TTS values.
- Rhythm feature curves more crooked.

 Phrase/meter effects?

Four Applications of Profiles:

- Entropy & Entropy Rate
- Joint Feature Analysis
- Match Count Predictions
- Synthetic Database Analysis

Entropy

• Entropy measures basic information content of a musical feature

•Example calculation:

12-tone interval distribution

➤ 3.4 bits/note is the minimum symbol storage size needed to store sequences of 12-tone intervals (Folksong data set).

Entropy Rate

- Entropy is a contextless (memoryless) measure.
- Real music features are related to surrounding musical context.
- Average entropy (entropy-rate) is more informative:

8

Entropy-Rate Estimation from TTS

- Entropy characterizes the minimum possible average TTS.
- Entropy-rate characterizes the actual average TTS.

• Entropy & Entropy Rate

- Joint Feature Analysis
- Match Count Predictions
- Synthetic Database Analysis

Joint Feature Analysis

Analyze
Pitch + Rhythm
as a combined feature

- How independent/dependent are pitch and rhythm features?
- What is the effect of searching pitch and rhythm features in parallel?

Combining Pitch and Rhythm Searches

Individual Entropies:

$$H(pgc) = 1.5325$$

$$H(rgc) = 1.4643$$

Joint Entropy:

$$H(pgc, rgc) = 2.9900$$

Mutual Information:

$$I(\mathbf{pgc}; \mathbf{rgc}) = H(\mathbf{pgc}) + H(\mathbf{rgc}) - H(\mathbf{pgc}, \mathbf{rgc}) = 0.0068$$

less than two orders of magnitude interaction

- Pitch and Rhythm are very independent features.

 (at least for pgc+rgc averaged over entire database)
- Therefore, combining independent search features should be effective.

Joint Feature Profiles

for pgc/rgc vs. twelve-tone interval searching

- 3*3 states work as well as 88 twelve-tone interval states.
- pgc and rgc are generic features less prone to query errors.

- Entropy & Entropy Rate
- Joint Feature Analysis
- Match Count Predictions Synthetic Database Analysis

Expectation Function

• Entropy Rate can be used to predict the number of matches:

$$E(n) = \frac{M}{R^n}$$
 database size $R = 2^H$ (H = measured entropy rate)

Expected match counts for an n-length query

- Example:
 - Consider a database of "best 3 out of 5" Heads/Tails coin flips:

- Likelyhood starting sequence is "H": 50%
- $E(1) = M/2^1 = M/2$
- Likelyhood starting sequence is "H T": 25%
- $E(2) = M/2^2 = M/4$
- Likelyhood starting sequence is "H H": 25%
- $E(2) = M/2^2 = M/4$

Match-Count Profile Constraint

- The match-count profile queries are constructed from database entries.
- Therefore at least one match is always expected.
- Steal this guaranteed match from M, and add as a constant to the expectation function:

• How to get rid of curvature caused by constant +1 term?

Search-Effectiveness Measures for Symbolic Music Queries in Very Large Databases

Craig Stuart Sapp Yi-Wen Liu Eleanor Selfridge-Field gacobliu@stanford.edu esfield@stanford.edu

ISMIR 2004

Universitat Pompeu Fabra Barcelona, Spain

12 October 2004

Summary

Interesting metrics for analyzing the effectiveness of search features:

- •Match-Count Profiles: Examines match characteristics of a musical feature for longer and longer queries.
- •Entropy Rate: Characterizes match count profiles well with a single number. Useful for predicting the expected average number of matches for a given length query.
- •**TTS:** The number of symbols in query necessary to generate a sufficiently small number of matches (average). TTU not as useful due to noise.

Proof for Derivative Plots

$$E(n) = rac{M-1}{R^n} + 1$$
 (expectation function for Match-Count Profiles)

$$E(n)-E(n+1)=rac{M-1}{R^n}-rac{M-1}{R^{n+1}}$$
 (subtract n and $n+1$ values of $E(n)$ to cancel $n+1$ term)

$$E(n) - E(n+1) = \frac{(R-1)(M-1)}{R R^n}$$
 (algebra manipulation) plotting on a log scale, so take the log of both sides:

$$\log_2[E(n) - E(n+1)] = \log_2\left[\frac{(R-1)(M-1)}{R}\right] - \log_2 R^n$$

Let:
$$y = \log_2[E(n) - E(n+1)]$$
 and $b = \log_2\left[\frac{(R-1)(M-1)}{R}\right]$ so the equation becomes: $y = b - \log_2 R^n$

$$y = b - \log_2 2^{Hn}$$
 since $R = 2^H$

Let: x=n

$$y = -Hx + b$$

which is a line with a slope proportional to the entropy (rate)

Derivative Plots for 12i features

Themefinder Collections					
Data set	Count	Web Interface themefinder.org			
Classical Folksong	10,718 8,473	themefinder.org			
Renaissance	18,946	latinmotet.themefinder.org			
US RISM A/II	55,490				
Polish	6,060				
Luxembourg	612	lux.themefinder.org			
total:	100,299				

•Plot measures how often a search produces too many matches for query sequences as long as the database entry.

Probability Distributions

- 3.4 bits/note is the lower symbol storage size limit needed to store sequences of 12-tone intervals (Folksong data set).
- Entropy can be used as a basic estimate for how many notes are necessary to find a unique/sufficient match in the database, but ...

Expectation Function

$$M$$
 = database size

$$E(n)$$
 = average expected match counts for an *n*-length query

$$R=2^{H}$$
 where H is the entropy rate of the feature being searched for (Entropy rate is assumed to be constant)

In general:
$$E(n)=rac{M}{R^n}$$

For example, consider sequences created with a uniform random distribution of three states (the next symbol in the sequence is equally likely to be any of the three states).

Then, the entropy of the sequence is:
$$H = \log_2 3$$
 which makes $R = 2^{\log_2 3} = 3$

and the formula for the expected match counts becomes:
$$E(n)=rac{M}{3^n}$$

then 1/3 of the database entries should be matched with a one-
$$E(1)=\frac{M}{3^1}=\frac{M}{3}$$
 and a length-two query should return 1/9 of the $E(2)=\frac{M}{3^2}=\frac{M}{9}$ length query on the average:

Chinese Folksongs dataset

Classical dataset

- •Adding rgc to pitch features usually reduces the search length by 2 notes.
- •Combining rgc and pgc reduces search length by 4 notes.