
NRCI user’s guide updated 04.03.2008

Welcome to NRCI!
NRCI (Networked Resources for Collaborative Improvisation) is a suite of Pd tools designed to facilitate
laptop ensemble performance. The NRCI project has several goals:

1. to make Pd and laptop improvisation more approachable for beginners;
2. to facilitate and stimulate creativity for advanced users;
3. to facilitate experiments with live coding (the design of software during performance);
4. and to create a simple, useful, and exciting testbed for experiments with musical networks.

Feel free to hack, modify, and abuse this code as you see fit!

Getting started:
There are four steps to loading NRCI and getting it ready for performance (plus two optional steps that
may be helpful if you are using specialized audio hardware, or if you want to test to make sure that you
are “getting sound”.

Required:
1. make a copy of the “-workspace.pd” file
2. rename the copied file to something appropriate.
3. Launch the Pd-extended application (available from puredata.info/downloads).
4. Choose “Open” from the “File” menu to load your renamed workspace file.

Optional (for audio hardware):
5. If you are using an audio interface, you may need to choose “Preferences/Audio settings...”

from the Pd-extended menu, and then select your audio interface.
6. To test your audio input/output and MIDI connections, choose “Test Audio and MIDI” from the

”Media” menu.

Using the workspace:
There are two sections of the workspace:

1. The NRCI library: a series of small boxes, one instance of each type of object in the library
2. The network interface: a large box with net-main in the upper left-hand corner

Pd has two user interaction modes: “run” and “edit”. In “run” mode you can flip switches, push
buttons, drag faders, and otherwise “perform” a Pd patch. In “edit” mode you can create objects,
connect them to one another, and drag them around the screen. To switch back and forth between
“run” and “edit”, choose “Edit Mode” from the “Edit” menu, or type “command-e”.

The NRCI library:
The NRCI library is a set of modules that you can interconnect to create performance interfaces for
laptop musicmaking. This is the basic principle of Pd - interconnect objects to make music. NRCI tries to
make things easy by creating standardized types of objects which interconnect in standardized ways. As
you learn more about Pd, you can mingle “basic” Pd objects with NRCI objects as you see fit.

Many of the NRCI modules require “default values” - user-specified settings that you type into the
object after the module name. You can shift-click or right-click on a module and select “Open” to open
it up and see what kinds of default values it requires; all the modules have explanatory comments
about their inlets, outlets, and required default values. Examples of appropriate default values are
given in all the objects loaded into the workspace.

Note that you can delete any library objects from the workspace that you aren’t using; they’re just there
by default to remind you of what’s available.

There are two varieties of modules: “control” and “audio”. Control objects output occasional numbers;
audio objects output continuous streams of audio data. Typically we’ll design connections so that control
modules tell audio modules how to behave.

Pd patches “obey the law of gravity” - information flows from the top of the screen to the bottom. Inputs
to an object are at the top of the object box; outputs are at the bottom. Connect the output of one module
to the input of another module below. Note that audio connections are thick black lines, while control
connections are thin lines. Audio inputs can’t accept control outputs, and vice versa, so if Pd refuses to
let you make a connection, it’s probably because you are mixing audio and control. Don’t worry - you
can’t “break” the software - in the worst case you might get an unpleasant sound.

Control modules:
There are three types of control modules - ctime, cdata, and ui. ctime modules are rhythmic generators.
They tell cdata modules when to produce a new data value. All ctime modules have an on/off toggle
switch embedded; they will only produce rhythms when turned on.

cdata modules generate data values every time they receive a new timing event from a ctime module.
They don’t have on/off switches - they produce a new value whenever they receive a request for such a
value from one (or many) ctime modules.

ui modules generate data values based upon user input, either from the mouse, or from the keyboard.
Because they are rhythmically driven by the user, there’s no need (or possibility) to connect ctime
modules to ui modules.

Audio modules:
There are two types of audio modules - synth~ and sfx~. synth~ modules are sound generators. They
take control messages which are numbers between 0 and 100 - usually that message is interpreted as a
pitch, though sometimes it’s used in other ways (for instance, as an index location to a soundfile).
synth~ modules produce audio output. All synth~ modules have an on/off switch; some also have a
“bang” button, which can be pressed to load a soundfile into the module.

sfx~ modules are sound processors. They take an audio input (left inlet) and a control input (right inlet).
The control input should be numbers between 0 and 100; depending on the function of the module, that
number may be interpreted in a number of ways, including pitch, feedback percentage, gain amount,
etc. sfx~ modules also have on/bypass switches; when the module is switched off, it will still pass
through any input audio.

There are two “terminating” sfx~ modules - sfx-output~, and sfx-record~. sfx-output~ passes sound to the
audio interface for audition; it also feeds data to the networking code that reports audio status for each
connected performer. It provides an on/off switch and a number box which controls output volume in
dB. milo-sfx-record~ allows for audio to be saved to disk; click the “bang” button to specify the file name
and location, then switch the module on for recording.

Structuring your patch:
Start with one or more ctime modules.
Connect their outputs to one or more cdata modules.
Connect the cdata outputs to synth~ modules and to the right inlets of sfx~ modules.
Connect ui modules to synth~ modules, and to the right inlets of sfx~ modules.
Connect the outputs of synth~ modules to the left inlets of sfx~ modules.
The audio outputs of sfx~ modules can also be connected to the inputs of additional sfx~ modules.
You can branch these structures as often as you like; you can also feed two outputs to one input.
End your structure with one (or several) milo-sfx-output~ modules.

User interface:
In addition to clicking on the on/off toggles for ctime, synth, and sfx modules, you can also use the
keyboard for performance. Type the backquote key (top left of the keyboard - `) to toggle between the
different keyboard input modes. “Chat” mode sends your keystrokes to the chat module for
communication over the network. “Modules” mode sends your keystrokes to any modules for which
you have specified a default keystroke to toggle the on/off switches. And “Fretboard” mode sends
keystrokes to any instances of milo-ui-fretboard-pitches and milo-ui-fretboard-0100 - these modules output
control values based upon the keystrokes they receive, and can be used in place of ctime/cdata pairs.
“Off” mode is self-explanatory.

Setting up networking:
Make sure you are connected to the locally available wireless network.

Enter “edit mode” and change the “/username” string at the top left of the “net-main” object to your
username. You may need to save, close, and reopen your workspace in order for this change to take
effect.

Description of the network interface:
Click the toggles in net-request-handler to request pitch, amplitude, or rhythmic (duration and onset) data
from other ensemble members. Requested data comes out of the four rightmost outlets of the net-main
object; you can connect those outlets to any object that will accept control data (cdata, synth~, and sfx~
types).

Enter “chat mode” by toggling the backquote key to type chat messages (as described above under
“User interface”. Backspace deletes your entire chat message unsent; the return key sends your
message. Chat messages appear in the main Pd window.

ctime modules described:
ctime-gdecreaase: geometrically decreasing durations from a high threshold to a low threshold
ctime-gincreaase: geometrically increasing durations from a low threshold to a high threshold
ctime-ldecrease: linearly decreasing durations from a high threshold to a low threshold
ctime-lincrease: linearly increasing durations from a low threshold to a high threshold
ctime-periodic: periodic durations
ctime-random: random durations between a low and high threshold
ctime-randomperiodic: randomly chosen periodic duration which changes randomly
ctime-rlinearhi: random durations skewed towards longer durations (within given thresholds)
ctime-rlinearlo: random durations skewed towards shorter durations (within given thresholds)
ctime-rtriangle: random durations skewed towards average durations (within given thresholds)
ctime-sinusoid: sinusoidally oscillating duration

ctime-triangular: triangularly oscillating duration
ctime-tuplet: randomly chosen tuplet subdivisions of a periodic base duration

cdata modules described:
cdata-constant: outputs a constant value
cdata-cycle: outputs a repeating sequence of values, randomly changing values occasionally
cdata-heap: choose randomly between a small set of values, randomly changing them occasionally
cdata-random: outputs random values between a low and high threshold
cdata-rlinearhi: outputs random values along a linear distribution (biased towards high values)
cdata-rlinearlo: outputs random values along a linear distribution (biased towards low values)
cdata-rtriangle: outputs random values on a triangular distribution (biased towards center values)
cdata-sinusoid: outputs sinusoidally oscillating values
cdata-triangular: outputs triangularly oscillating values

ssynth~ modules described:
synth-flute~: noisy flute-like physical model
synth-fm~: fm synthesis
synth-grain~: granular synthesis
synth-osc~: sine oscillator
synth-playback~: sample playback (click “bang” button to choose a soundfile)
synth-pluck~: Karplus-Strong plucked-string physical model
synth-pulsenoise~: pulsed noise generator
synth-pulsetrain~: pulse-train generator (tends to be quieter than other ssynth~s)

sfx~ modules described:
sfx-ampenv~: amplitude envelope
sfx-bandpass~: bandpass filter
sfx-combfilter~: comb filter
sfx-distortion~: hyperbolic tangent waveshaping
sfx-feedback~: idiosyncratic feedback module and noise injector
sfx-ffm~: feedback FM applied to arbitrary input
sfx-fm~: FM applied to arbitrary input
sfx-gate~: switches between muting/passthrough which each data value received
sfx-highpass~: highpass filter
sfx-lowpass~: lowpass filter
sfx-output~: output module - should be the end of most signal chains!
sfx-randombpass~: bandpass filter with randomly varying filter steepness/resonance
sfx-randomcomb~: comb filter with randomly varying feedback
sfx-randomdelay~: echo with randomly varying feedback
sfx-record~: disk recorder (click circle to name soundfile, then turn on to record)
sfx-reverb~: reverberation
sfx-ringmod~: ring modulation
sfx-scrub~: delays a signal, then “sweeps” through it at faster/slower than normal rates

ui modules described:
ui-fretboard-pitches: each keyboard row maps to an octave of pitches; use shift to jump 4 octaves
ui-fretboard-0100: each colum of the keyboard maps to 2.5, 5, 7.5, and 10, shifting by ten to the right
ui-mouse: outputs x- and y-axis mouse positions from first two outlets; third outlet produces a “bang”

message on mouse click

