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Chapter 20: The Brass Wind Instruments

20.1 A Model of the Brass Player's Excitation Mechanism

  A brass instrument consists of a long and carefully shaped metal duct coupled to a flow-
control mechanism which converts  steady wind supply from the player's lungs into 
oscillations of the air columns contained within the duct. The flow of air from the player 
passes between his lips, which open and close rapidly in response to the acoustical variations 
within the mouthpiece and so admit a periodically varying flow of air into the mouthpiece. The 
air column is kept oscillating in its longitudinal vibratory motion because of these periodic 
puffs of air supplied via the lip-valve.

  The brass-player's lips perform a flow-control  function as they open and close under the 
influence of the acoustic (oscillatory) pressure variations that take place within the 
mouthpiece cup. This principle can be summarized in the following manner:

1. A pressure-operated reed-valve will collaborate with an air column to favor the 
maintenance of oscillation at frequencies closely matching one or another of the 
natural frequencies characteristic of the air column itself.

20.2 Multiple-Mode Cooperations: Regimes of Oscillation 

  Let's say that we have a tube in which mode 1 produces a  frequency of 110 Hz, mode 2 at 
196 Hz, and mode 3 and 4 with 294 Hz and 523 Hz respectively. If the brass-player's lips 
vibrate at 196 Hz, there will be a collaboration between this vibrating frequency and mode 2 of 
the column that admits repetitive puff trains whose flow recipe include harmonics partials al 
whole number ratios from 196 Hz. These additional components in the flow recipe arise form 
the non-linearity of the valve-control characteristic. These upper harmonic components do not 
contribute to the maintenance of oscillation and thus drain physical resources from the player 
and can disrupt the original air column oscillation. 
  We can say the following:

2. If the reed-valve is nonlinear (the flow varies in a non-proportional way with regard to 
the acoustic pressure controlling it), then oscillation is favored if the air column has one 
or more natural frequencies that correspond to one or more of the higher partials of the 
tone being produced.



  It must be recognized that when lip- or reed-valve and air columns are used, the 
independent existence of the various characteristic air-column modes is destroyed by the 
mutual influence that these modes have on one another via the nonlinearly shared flow 
through the reed-valve. The heterodyne frequencies generated at the valve by a pair of 
oscillatory components can stir up air-column oscillations that alter the lip or reed motion. The 
valve and the air column must therefore mutually adjust themselves to produce a definite 
multifrequency oscillatory state. This is called:

3. Regime of oscillation – state of collective motion of an air column in which a nonlinear 
excitation mechanism collaborates with a set of air-column modes to maintain a steady 
oscillation containing several harmonically related frequency components, each with its 
own definite amplitude.

20.3 Acoustical Measurements and Playing Experiments on Simple Air Columns

  For a duct having a strictly uniform cross-sectional area A, the wave impedance is the ratio 
of the pressure to the volume flow injected into the duct. Its value:

wave impedance= 1
A
Bd

  Where d is the density of air and B is its bulk modulus (measure of springiness of air when a 
small volume is compressed). If the cross-section of the duct varies somewhat in the region 
next to the input end, the wave impedance will have a value that is somewhat different from 
the one given here, and this value depends on the excitation frequency used in measuring it.

  The flow disturbance, for a piece of cylindrical tubing, produced by the source gives rise to a 
pressure wave that travels down th length of the pipe. This pressure wave loses amplitude as 
it goes because of viscous friction and the transfer of heat from the wave to the walls of the 
pipe. At the far end, where the pipe opens into the room, there is a strong discontinuity in 
wave impedance since the room is imagined as a second duct of enormously large cross-
sectional area that has a small wave impedance. The acoustic pressure pulse is almost totally 
reflected at this junction, with the reflected wave having its phase inversed. A high pressure 
pulse is reflected as a rarefaction. This reflected wave combines with the newly injected 
waves to produce a standing wave.

  The traveling waves in the duct reinforce one another, and they will produce a large pressure 
disturbance in the pipe. Meaning that is we excite the pipe at one of its characteristic 
frequencies, the corresponding vibrational shape builds up in the duct. At certain frequencies 
the returned pressure wave arrives out-of-phase with the excitation, producing a minimum air 
column response.

  For a duct of finite length, the response of it is defined by the input impedance. The measure 
of input impedance is larger or smaller than the duct's wave impedance, depending on the 
relationship of the excitation frequency to the natural frequencies of the duct.

  For a real brass instrument that has a flaring bell extension at its open end, it can be 
observed that the resonant peaks of the air column are shifted toward lower frequencies, in 



comparison to a straight cylindrical tube with no bell, as a result of the longer time to make a 
round trip. The peaks are less tall and after a certain frequency it can be observed that the 
peaks and dips have disappeared almost completely.

20.4 The Influence of the Mouthpiece on the Heights of Resonance Peaks

  An air column of different shapes have to meet the requirement in which their natural 
frequencies must be suitably related if they are to join the player's lip-valve to set up stable 
regimes of oscillation. The more resonances that are present to cooperate and the more 
accurately these are aligned, the easier it is to play these notes.

  For a tube with a flaring bell, we previously mentioned the fact that after a certain frequency 
the input impedance peaks almost completely disappeared. This is explained by the fact that 
high-frequency sound sent down toward the bell is transmitted almost completely into the 
room and very little of it returning to set up a standing wave with its resulting resonance peaks 
and dips.

  If we excite and measure the response of a duct consisting of a trumpet mouthpiece 
connected to an extremely long piece of tubing, we do not expect the wave impedance to 
remain constant, because of the variation of cross section found at the driving end of the 
composite duct.  Measurements of this sort using trumpet parts show that, at very low 
frequencies, the wave impedances starts out with a value equal to that of the pipe alone. It 
then rises to around 850 Hz to a value almost five times larger. Above this frequency the wave 
impedance steadily decreases, falling below the simple pipe value in the region above 3500 
Hz.

  This broad peaking of the wave impedance near 850 Hz corresponds with the fact that the 
mouthpiece has a first natural frequency at around 875 Hz (also called popping frequency). 
This resonant influence shows that the mouthpiece retains some sort of independence when 
it is put in a tube. The remaining mouthpiece resonances do not show up clearly in the wave 
impedance curve.

 *explain relationship between input impedance peaks and ease of playing for certain notes
(p.402-404)

20.5 Musically Useful Shapes: The Flaring and Conical Families of Brasses

  As a wave travels into the enlarging portion of any horn its pressure amplitude will decrease 
systematically, simply because the acoustic disturbance is being spread over an ever-wider 
front.  We can suspect that in a duct that starts out with a gradual taper and then flares out 
abruptly (as in the bell of a brass instrument) waves traveling toward the large end might well 
find themselves reflected at some point where the increasing flare causes an excessively 
rapid change in the wave impedance. This is a gentler version of the reflection that happens 
at the end of a tube opening into a room.

  It should be easy to understand that sounds propagate with different speeds as they travel 
through different parts of the horn: wherever the duct walls curve outward to produce the 



flaring shape of a trumpet, the speed is greater than the 345 m/s expected in open air; on the 
other hand, in any portions of the horn where the walls are straight-sided, cylindrical part of a 
trumpet, the velocity of sound is exactly the same as it is in free air.

  For a flaring horn, the first three characteristic shapes of the pressure distribution (fig. 20.8) 
resemble sinusoids that are progressively stretched-out in the parts nearest to the open end 
(due to the increased wave velocity in the region). These patterns lose their sinusoidal shape 
in the rapidly flaring part of the bell. The modes are similar in shape to those found in a 
cylindrical pipe whose length is chosen to give an equal frequency for this mode. Also, the 
successive modes have an odd number of humps in their vibrational shapes such that the nth 
mode has (2n-1) half humps. These half humps near the mouthpiece end look fairly 
sinusoidal, whereas the one nearest the bell has significantly different shape caused by the 
reflection behavior at this region.

  The shape of the flaring portion of a brass instrument can be found in the so-called Bessel-
horn family. The diameter D at any point is defined in terms of the distance y from the large 
open end:

D= B

 y yom

  where B and yo are chosen to give proper diameters at the small and large ends, and m is 
the “flare parameter” which dominates the acoustical behavior of the air column. A non-flared 
cylindrical pipe member of the Bessel-horn family has m = 0, whereas trumpet and trombone 
bells have m = 0.5 – 0.65, and a French horn with m = 0.7 – 0.79.

   The characteristic frequency for a Bessel horn closed at the small end, can be calculated in 
terms of its overall length L, the flare parameter m, and the speed of sound in air v. For the 
nth mode, the frequency fn is given by:

fn=[ v
4 L yo

][2n−1 2

mm1]

  For m = 1, the successive resonances become exact number multiples of the first mode 
frequency such that

f1= v
2L

 whereas for m = 0, the frequencies are in odd-numbered multiples of the first mode 
frequency,

f1= v
4L

  Intermediate values of m have resonances arranged in non-harmonic relationships, and thus 
they fail to set up useful regimes of oscillation.

  In the case of conical tubes, the speed of the pressure waves remains constant as the 
waves run toward the large end, rather than increasing as it does with the case of flaring 
horns.  For this reason, simple cones have a reflection at the open end (rather than at the 
acoustical region in the large part of the horn), and thus leak sound at lower frequencies than 



flaring tubes having the same bell diameter. This leakage deprives conical instruments of their 
upper resonances.

  The wave impedance at the small end of a conical duct rises rapidly from zero at low 
frequencies to a high-frequency value equal to that of a cylindrical pipe with the same 
diameter inlet. This rapid impedance variation at the small end combined with reflected wave 
behavior gives rise to resonance peak frequencies that are members of a complete harmonic 
series. These peak frequencies are smaller in amplitude that the ones present in flaring 
horns. To boost these frequencies a mouthpiece with a smaller taper than that of the main run 
of the air column.
  In addition to this mouthpiece requirement for conical tubes, a mid-section cylindrical or mildl 
tapered tubing is included along with a flaring bell in order to get the needed cooperative 
effects between resonance. The fluegel horn, the alto, and the baritone are examples of 
conical brass instruments.

  For flaring horns, the first resonance peak is not properly placed to join with other peaks in 
the pedal-note oscillation. On the other hand, a conical instrument has its first mode 
resonance peak very close to the desired pedal-note frequency, such that this note is easily 
produced. Because of this reason, the lower brass instruments tend to have conical shapes.
  

20.6 The Selection of Valve Slides to Give a Complete Scale

  It can be intuitively understood that in order for a brass instrument needs to fill in gaps so 
that a complete scale is achieved, it is necessary to lengthen the instrument just a little bit to 
get a set of notes set a semitone lower, and a little more for another semitone, and so on. 
This is actually done, however the addition of tubing into the middle of the horn makes the 
average taper less than before; thus we can say that the average flare parameter is reduced. 
The addition of a piece of tubing to a horn will make a bigger percentage change in the 
frequencies of its lower modes that it will for the higher ones.

  The frequency ratios between the various modes (which determine the effectiveness of any 
cooperations) are not drastically altered when reasonable amounts of tubing are inserted. 
The instrument works best with a particular set of proportions in which the addition of tubing 
extends the length of the instrument  by 40%.

20.7 Further Properties of the Mouthpiece

  We have seen the effect that the inclusion of the mouthpiece has on a flaring tube. Lets state 
some more mouthpiece features:

1. For a cylindrical pipe, the equivalent length Le of a mouthpiece at low frequencies is 
equal to the length of cylindrical tube whose volume matches the total volume of the 
mouthpiece, regardless of its shape.

2. At the mouthpiece popping frequency Fp , Le is the length of cylindrical tube (closed at 
one end) whose first-mode frequency equals Fp that is,  Le = v/4 Fp

3. To a very great extent, the total volume and the popping frequency determine the 
variation of Le by “anchoring” it at two points along the frequency scale. Subtle 
differences in the value of Le at other frequencies are caused by variations in the 
proportions of mouthpiece cup and back bore.



4. The overall trend of Le with frequency is a steady increase nearly to the top of the 
instrument's playing range. If two mouthpieces have the same volume, the one having 
lower popping frequency will show a greater total change in effective length as one 
goes up in frequency.

  20.8 The Internal and External Sound Spectra of a Trumpet

  


