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Sound, Numbers, and the Fundamentals of Digital Audio 

1. Sound and Numbers 

Physics of Sound
  Acoustics - study of sound and is concerned with the generation, transmission, and 
reception of sound waves. The circumstances for the three phenomena are created when 
energy causes a disturbance in a medium. This disturbance makes an object vibrate which in 
turn will generate a back and forth motion of the air molecules surrounding the object. The 
disturbance creates regions of pressure above or below normal atmospheric pressure. 

Nodes and Anti-nodes – region of maximum displacement and region of minimum  
        displacement, respectively.

  
Sound propagation and transmission. 

Transducers – converts energy from one form to another (microphones and loudspeakers).

Vibration (periodic/ aperiodic) and Frequency

Hertz (Hz) -  number of vibration cycles that pass a given point each second. 

Wave components and properties – frequency, period, amplitude, wavelength, phase, sound 
velocity, diffraction, refraction, and reflection.

Sound Pressure Level
  Sound pressure displacement above and below the equilibrium atmospheric level is 
described by the amplitude and is measured with the sound pressure level (SPL). The unit is 
given by the decibel (dB). The decibel is defined as 10 times the logarithm of a power ratio:
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where P1 and P2 are values of acoustical or electrical power.
  In acoustic measurements, an intensity level (IL) can be measured in dB by setting the 
reference intensity to the threshold of hearing (10-12 W/m²) such that P2 =  10-12 W/m².

Threshold of Human Hearing – 0 - 120 SPL



Harmonics
  Sinusoid or sinewave – simplest form of periodic motion. Only has fundamental frequency.

All other periodic waveforms are complex because they contain a fundamental frequency and 
a series of frequencies at multiples of the fundamental.

Aperiodic complex waveforms.

Overtones and Timbre

Human frequency range – 20 Hz to 20 kHz

Fourier Theorem – complex periodic waveforms are composed by a harmonic series of 
sinewaves, such that they can be synthesized by adding sinewaves. Likewise, a complex 
periodic waveform can be decomposed into its sinusoidal components.

Digital Basics
  Acoustic and analog audio technology are concerned with the continuous values of 
mathematical functions, on the other hand, digital audio systems deal with discrete values 
meaning that waveforms can be represented as numbers. Digital systems utilize a base 2 or 
binary representation of numbers since it facilitates the arithmetic and logic operations.

Number systems 

Base 16 or 
Hexadecimal

Base 10 or 
Decimal

Base 8 or 
Octal

Base 2 or 
Binary

0 0 0 0000

1 1 1 0001

2 2 2 0010

3 3 3 0011

4 4 4 0100

5 5 5 0101

6 6 6 0110

7 7 7 0111

8 8 10 1000

9 9 11 1001

A 10 12 1010

B 11 13 1011

C 12 14 1100

D 13 15 1101

E 14 16 1110

F 15 17 1111



The Binary Number System
  Base 2 or binary number system are more efficient for digital computers and equipment 
since only two numerals are needed to satisfy the machine's principal electrical concern of a 
voltage being turned on or off. This system can be easily represented by using 0 and 1; these 
binary digits are called bits.  

  Converting decimals to binary numbers: 2n, where n = 0,1,2,...
Counting from right to left we find:

…,27, 26, 25, 24, 23, 22, 21, 20 

  For example, converting 5 to binary would be like so: 
There is no 5 in a power of 2 number, but we can add such that we only need a 1 and a 4. 
Thus, we need to say “yes” on the rightmost column so that we have a 1, “no” on the next 
number for a 0, and “yes” again for the third column. Our resulting binary in a 4-bit word would 
be equivalent to 0101.
  

24 23 21 20

0 1 0 1

 Hexadecimal conversion involves very much the same process, except for numbers above 
10 we have to use letters. Usually, hexadecimal numbers are made up of two 4-bit words or 
an 8-bit byte. For example, 0110 1110 = 6E = 6,14

Binary Codes
  Individual binary bits or numbers can be ordered into words with specific connotations 
attached, such that both the symbolic and numeric information can be easily encoded. Binary 
numbers are restricted such that an n-bit number can only encode 2n numbers.

  Negative numbers can be problematic because the sign must be encoded, with bits, as well. 
Signed-magnitude representation solves this issue by assigning a 1 in the left-most position 
and a 0 for a positive number, while the rest designate the value of the number. 

  Binary words – grouping of multiple 4-bit words to create a decimal digit:
a3 a2 a1 a0   b3 b2 b1 b0 ...  n3 n2 n1 n0 

Weighted Binary Codes
  Each bit is assigned a decimal value, called a weight. Each number represented by the 
binary weighted binary code is calculated from the sum of the weighted digits. For example, 
weights w3 w2 w1 w0 and bits a3 a2 a1 a0  would represent the decimal number 
N =  w3 x a3 + w2 x a2 + w1 x a1 + w0 x a0 

Unweighted Binary Codes
  Excess-3 code adds a 3 (0011) to each codeword such that each codeword has at least one 
1. While 2-out-of-5 code is defined so that exactly two out of the five bits are 1 for every valid 
word. This definition is used as a simple way to check for errors.
  Gray code, or reflected code system, only has one digit value change when counting from 
one state to the next.



Two's Complement
  Simple binary systems can present problems when the result is stored because the left-most 
bit is a carry from the addition process that can be lost if the bit system is not large enough.

  Forming a one's and two's complement in the binary system is easily done. Because the 
radix is 2, each bit of the binary number is subtracted from 1. Thus, a one's complement is 
formed by replacing 1s by 0s ad vice versa. The two's complement is formed by adding 1 to 
that number and observing any carry operations. 
  A positive two's complement number added to its negative value will always equal zero.

  When handling both positive and negative numbers, that represent a waveform for example, 
the most significant bit (MSB) is the sign bit. When it is 0, the number is positive, and when it 
is 1, the number is negative.

Boolean Algebra
  Boolean algebra is the method used to combine and manipulate binary signals. It provides 
the basis for decision making, condition testing, and performing logical operations. Using 
Boolean algebra, all logical decisions are performed with the two binary digits 1 and 0, a set 
of operators, and a number of laws and theorems. 

Boolean operators:
  The operators OR, AND, and XOR combine two binary digits to produce a single-digit result. 
NOT complements a binary digit. NAND and NOR are derived from the other operators. The 
operators can be used singly or in a combinational logic to perform any possible logical 
situation.

NOT - F= X complements any set of digits. If 0, the complement is 1 and vice versa.

AND - F=X⋅Y if X and Y are both 1, then the result is one; otherwise the result is 0.

OR - F=XY if either X or Y, or both are 1 then the result is 1; otherwise the result is 0.

XOR - F=X °Y if X and Y are different, the result is 1; otherwise 0, if X and Y are the same.

NAND - F=X⋅Y combination of AND and NOT.

NOR - F=XY combination of OR and NOT.

  Boolean operators can be combined to form meaningful expressions and lead to greater 
insight of the condition, or its simplification.  Logical expressions correspond directly to 
networks of logic gates, realizable in hardware or software.
  Truth tables, or table of combinations, can be used to illustrate all the possible combinations 
contained in an expression. The output is expressed in terms of the input variables.

  Complementation, commutation, association, and distribution laws commonly used hold true 
for Boolean algebra. The use of Boolean theorems and other reduction theorems can simplify 
complex logical expressions.



Analog Versus Digital
  Differences:  

1) continuous vs. discrete values and representation of signals.
2) Signal chain artifact addition: noise and distortion for analog and digital circuits.
3) Cost and immunity to external agents (temperature, age, etc) of both.



2. Fundamentals of Digital Audio

Discrete Time Sampling
  Digital systems use discrete numbers in order to do their operations. A continuous signal, 
such that of an analog waveform, must then be digitized by means of time sampling and 
quantization. In this manner, the infinitely variable signal is now represented as amplitude 
values in time. Discrete time sampling is thus the defining essential mechanism in digital 
audio systems.

  It must be noted that information does not get lost, in “between” the samples, during the 
digitalization process if the signal is properly conditioned. The input signal is conditioned by 
applying a lowpass filter in order to remove frequencies that are too high to be properly 
sampled. Also, the output will be continuous because of the interpolation function that is used 
to recreate the signal. In conclusion, a signal with a finite frequency response can be sampled 
without any loss of information and can be completely reconstructed from these samples.

The sampling Theorem
  The Shannon-Nyquist sampling theorem states that a continuous band-limited signal can be 
replaced by a discrete sequence of samples without loss of any information and describes 
how these samples are used to reconstruct the original continuous signal. The sampling 
frequency must be at least twice the highest signal frequency. For audio signals with 
frequencies ranging from 0 – S/2 Hz can be represented by sampling frequency, S samples 
per second. In general, the sampling frequency must then be at least twice the bandwidth of 
the sampled signal.

The Nyquist Frequency
  Audio signals in order to be sampled have to be lowpass filtered so that their bandwidth is 
within the Nyquist frequency of S/2. Usually, this filter is designed so that frequencies lying 
beyond the human frequency range are completely removed. Now the signal is ready to be 
sampled.
  The sampling frequency is defined as the number of samples per second. The sampling 
rate, the reciprocal of the sampling frequency, is the time between each sample. 

  For example, a waveform containing high frequencies will require a higher sampling 
frequency. A digital system's sampling frequency will determine the high frequency limit of the 
system and thus, its audio bandwidth.
  If for some reason a signal has not been filtered and has frequencies above the Nyquist 
frequency, the signal will cause aliasing distortion. 
  The output of the system must also have a lowpass filter in order to remove high frequencies 
created within the system and is also used in the reconstruction process.

  While higher sampling frequencies allow for a larger bandwidth of the input signal, we must 
note that higher sampling frequencies do not improve the fidelity of those signals within the 
bandlimited range.

  The lowpass filters employed during the sampling process do no have a sharp attenuation at 
the cutoff frequency. Instead, they have a guard band in which their cutoff frequency is 
located well below the Nyquist frequency in order to ensure proper frequency attenuation.



  Different sampling frequencies can be used, from 8 kHz to 192 kHz, depending on the 
application. However, the sampling frequency employed will require particular digital circuitry 
speeds, storage capacity, and medium transmission. For example, larger sampling 
frequencies require faster operating circuits and large amounts of data processing.

  
Aliasing
  Aliasing, or foldover, occurs when the input signal has frequency components above the 
Nyquist frequency. In this case, the signal is interpreted in a different way than than that of the 
original signal. An increase in audio frequency will result in a decrease of sample point per 
period. As a result, aliasing produces unwanted frequencies in our signal.  As the audio 
frequency increases, the alias frequencies will decrease. The relationship is as follows: 

Ff = ±NS ± F 
  
where S is the sampling frequency, F is the frequency above the Nyquist frequency, N is an 
integer, and Ff is the new frequency.
  In the frequency domain, alias frequencies are shown as frequencies that folded over from 
the spectral images of the signal. 

Quantization
  Quantization represents the values of the measured amplitude of a waveform at sample 
time. Quantization determines the resolution of the characterization. When an analog 
waveform is sampled into pulses; the amplitude of each pulse yields a number representing 
the analog value at that instant. The accuracy of this measurement is limited by the system's 
resolution. Finite word lengths limit quantization resolution and introduce measuring errors. 
This error can be considered akin to the noise floor of an analog system.
  An analog signal that is uniformly quantized will be mapped to a finite number of quanta of 
equal size. Because the infinite number of amplitude points present in an analog waveform 
have to be quantized by a finite number of quanta levels, an error will be introduced.
  High-quality representations require a large number of quantization levels or number of bits 
in the quantizing word.

Signal-to-error Ratio
  The word length of a binary system will determine the number of quantizing intervals 
available. An n-bit word will yield 2n quantization levels, meaning that the larger the number of 
bits the better the approximation. However, because of the finite number of amplitude levels in 
a binary word, an infinitely changing amplitude signal cannot be digitized without error.

  If a quantized interval lies outside of the analog value, either above or below, the error will be 
in the last significant bit of the quantization word. In other words, the binary number can not 
accommodate fractional values and thus, has to round up or down to the next available value.
  Quantization error is defined as the difference between the actual analog value at sample 
time and the selected quantization interval value. The amplitude value will be rounded off to 
the nearest interval. The worst case will be when the waveform lies exactly between two 
intervals, such that the error is limited to ±Q/2, where Q is a quantization interval (1 LSB). If a 
signal has large amplitude, the distortion will be proportionally small and likely masked. On 
the other hand, a small signal will have a large distortion and might be audible.



  The ratio of the maximum expressible signal amplitude to the maximum quantization error 
determines the signal-to-error (S/E) ratio of the system. It can be considered in some ways 
similar to signal-to-noise (S/N) ratio of analog systems. The S/E ratio can be expressed as:

S
E
dB = 6.02n  1.76

where n is the number of bits of the system.  Longer word lengths increase the data signal 
bandwidth required to convey the signal. However, the signal-to-quantization noise power 
ratio increases exponentially with data signal bandwidth. Quantization error will be perceived 
as white noise for high amplitude signals (it is “seen” as uncorrelated distortion components), 
and as distortion for lower amplitude signals.

Quantization Distortion
  Analysis of the quantization error of low-amplitude signals show that the spectrum is function 
of the input signal. The error will not be noise like since it is correlated.  The reconstructed 
output signal will contain the in-band components of the error. The quantization error being a 
function of the original signal, will then be classified as distortion.

  The magnitude of the error is independent of the input signal amplitude, but is dependent on 
the size of the quantization interval. Greater number of intervals will produce lower distortion. 
However, the number of intervals used to quantize the signal is also important. For example, 
a maximum peak-to-peak signal will utilize all quantization intervals. However, if lower signal 
levels are quantized, fewer quantization levels are used resulting in fewer intervals employed. 
This will be equivalent to using lower bit quantization settings.

  Quantization distortion may add components above the Nyquist frequency and cause 
aliasing, or add harmonics to the signal and “reconstruct” the signal into another waveform if 
the input signal is simple. Other effects of quantization error is granulation noise and beat 
tones.

Dither
  Dither is a small amount of uncorrelated noise that is introduced to the audio signal. It is 
added prior to sampling and aids in linearizing the quantization process by shifting the audio 
signal with respect of the quantization levels. In this case, the signal is uncorrelated by 
avoiding any periodicity in the quantization patterns in consecutive waveforms. Thus, any 
quantization errors are decorrelated from the signal by randomizing its effects to the point of 
elimination. However, this process will add noise to the output of the audio signal.

  While dither does not completely mask quantization errors, it allows the digital system to 
encode low amplitude signals (smaller than the LSB).

Types of Dither
  Dither signals are differentiated by their probability density function (pdf). Meaning that a 
random signal with a continuum of possible values will have a probability of values falling 
within a given interval. This probability defines the area under a function. For example, a 
dither signal might have equal probability of falling anywhere over an interval, or it might be 
more likely to fall in the middle of the interval. The interval may be 1 or 2 LSB's wide. 



Three dither signals are used in audio applications: Gaussian pdf, rectangular pdf, and 
triangular pdf.
  Dither signals can have a white spectrum, but it can also be modified so that the dither is 
weighted and the noise floor is reduced. Triangular pdf is preferred for most applications, but 
the other pdf's add less overall noise to the signal.

  

  


