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Outline
• Modelling Rhythm Cognition.

• Onset-detection.

• Beat-tracking & Tempo-derivation.


• Autocorrelation.

• Beat Spectral approaches.

• Histogram models.


• Meter determination.

• Applications, Exercises
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Segmentation

(Frames, Onsets, 

Beats, Bars, Chord 
Changes, etc)

Feature 
Extraction


(Time-based, 
spectral energy, 

MFCC, etc)

Analysis / 
Decision 
Making


(Classification, 
Clustering, etc)

Basic system overview



– Why?

– Tempo and Beat are strong discriminators in 

judgements of music similarity, and even genre 
(Tzanetakis & Cooke 2002, Dixon et. al 2004).


– Understanding the beat facilitates understanding 
the importance other musical elements: 

– Relative importance of tonal features.

– Diatonic or chromatic character of a piece.

– Complexity of a piece.


– Applications: musicology & ethnomusicology, 
automatic DJing, query by example, composition 
tools.

Beat-finding and Tempo Derivation



• Singing examples of Dutch folk songs from 
the "Onder de Groene Linde" collection 
(Meertens Institute). 


• Uses continuous wavelet transform of 
rhythmic signals (Smith 1996, Smith & Honing 2008) to 
derive tactus:


• Example 1:

• Example 2: ...Original + Accompaniment.

Example: Foot-tapping to singing

+ Accompaniment.Original...
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Modelling Rhythm
– “...the systematic patterning of sound in terms of 

timing, accent, and grouping.” (Patel 2008 p.96)


– (Not always periodic patterns) 

– Accent sources include: dynamics, melody, 
harmony, articulation, timbre, onset asynchrony 
etc. 

– Consists of hierarchical and figural (proximal) 
temporal structures.

6



Measuring Beat
• Inter-Onset Intervals (IOI)

• Inter-Beat Interval (IBI)

• Tempo: frequency of the beat (BPM) = 1/IBI
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Theory and Perception of 

Musical Time
• Multiple simultaneous levels of musical time


– Tactus: the foot-tapping rate.

– Tempo: estimated from tactus, typically median 

IBI.

– Meter: Periodic perceived accentuation of beats. 

– Tatum: Shortest interval between events.


• Rubato - change in tempo during 
performance to emphasise structure.
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Rhythmic Strata
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– Musical rhythm can be considered as 
composed of a hierarchy of temporal levels 
or strata (Yeston 1976, Lerdahl & Jackendoff 1983, 
Clarke 1987, Jones & Boltz 1989).

From 
Jones & 
Boltz ‘89



Metrical Structure
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■ Meter is expressed as a hierarchical grouping in time. e.g 
Subdivision of 4/4 (4 beats to the bar):

Martin 1972, 
Longuet-Higgins & 
Lee 1982, Honing 
2002



Meter
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(Courtesy Olivia Ladinig) 

• Meter is expressed in Western music as 
time-signatures (4/4, 3/4 etc).

Subdivision of 4/4 (4 beats to the bar):



Meter
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■ Subdivision of 3/4 (3 beats to the bar):



Meter

13

■ Subdivision of 6/8:



Hierarchical Grouping: Meter

– Meters are argued to arise from the 
interaction between temporal levels (Yeston 
1976).

– Therefore a meter implies two frequencies: the 

pulse rate and the measure (“bar”) rate.

– The tactus is considered as the most salient 

hierarchical level, consistent with the notated 
meter, or the foot tapping rate (Desain & Honing 
1994).
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Mental schemas for Meter
– Metrical Profiles (Palmer & Krumhansl 1990)


– Pre-established mental frameworks (“schemas”) 
for musical meter are used during listening.
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From Palmer & 
Krumhansl (1990). 
Mean goodness-of-fit 
ratings for musicians 
(solid line) and 
nonmusicians (dashed 
line).



Syncopation
• “...some kind of conflict between [phenomenal] 

accents and meter” (Temperely 2001, p.239).
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From Temperley D., “ The Cognition of Basic Musical Structures” MIT Press, 2001, p.241
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Syncopation

!
– Listener judgements of 

musical complexity are 
correlated with degree of 
syncopation (i.e. note 
location within the beat) 
(Shmulevich & Povel 2000, 
Smith & Honing 2006).


– Compared judgements 
against formal model of 
syncopation (Longuet-
Higgins & Lee 1984).



Active Rhythm Perception
– Viewed as a resonance between top down and 

bottom-up processes (see e.g Desain & Honing 2001):
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Onset-detection vs. Beat-detection
• Traditionally beat detection relied on 

accurate onset detection.

– i.e from MIDI data for Score Following 

(Dannenberg 1991, Cont 2009).

!

• This can be difficult for MIR from polyphonic 
audio recordings.

– A higher freq. Onset Detection Function from 

the entire audio signal can be used for beat 
tracking without all onsets being detected (Schloss 
1985, Goto & Muraoka 1994, Scheirer 1998).
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The Onset Detection Function
• Represents:


– Ideal: Each note that contributes to the beat.

– Practice: Combined envelopes of all notes.


• Tends to emphasise:

– strong transients (i.e. impulsive sounds)

– loud notes

– bass notes

– wide-band spectrum events (e.g. snare drums).

20
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Dixon’s Envelope Onset Detection



Example Onset 
Detection

• Pre-processing

• Filtering

• Down-sampling

• Difference function
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Common ODF methods
– e.g (Bello et. al 2005, Dixon 2007, Peeters 2007)

• Optional pre-rectification filtering.

• Envelope mixture from rectification/energy.

• Smoothing of envelope (LP filter).

• Down-sampling for data reduction.

• d(log E)/dt highlights perceived impulses.

• Weighting higher frequencies captures wide-

band events.

• Spectral difference between STFT frames.
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Existing Beat tracking Models
– Parsing metrical grammars (Longuet-Higgins and Lee 

1982).

– Forward projection of likelihood (Desain 1992).

– Autocorrelation (Desain & Vos 1990, Brown 1993, Eck 

2006).

– Oscillator bank entrainment (Toiviainen 1998, Large 

& Kolen 1994, Ohya 1994, Miller, Scarborough & Jones 1989).

– Frequency of Onset Function: (Scheirer 1998, Klapuri 

et al. 2006, Peeters 2007, Davies & Plumbley 2007).

– Dynamic time warping of beat interval (Dixon 

2001, Ellis 2007).

– Multiresolution Approaches (Todd 1994, Todd, 

O’Boyle & Lee 1999, Smith & Honing 2008).
24



Approaches to beat tracking considered

• Autocorrelation 

– Finding Periodicity in the ODF.


• Beat Spectrum approaches:

– Spectrum of the ODF.

– Multi-resolution representation of ODF.


• Dynamic Programming approaches.

– Efficient selection of correct beat interval.

25



Autocorrelation of ODF
• AC peaks ⇒ time lags 

where signal is most 
similar to itself.


• Captures periodicities of 
ODF.


• Does not capture rubato 
well.


• OK for metronomic 
music, not for those with 
variation in tempo.
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Windowed RMS and its 
Autocorrelation (for drum loop)
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Max peak = 2-bar loop

1/4 note

1st peak = 1/8 note



• Filterbanks of tuned 
resonators (i.e. “rhythmic 
reverb”) of the ODF.


• Resonator whose resonant 
F matches rate of ODF 
modulation will phase-
lock.


• Resonator outputs of 
common freq summed 
across subbands:

Beat spectrum methods (Scheirer 1998)

28human listeners. Further, empirical studies of the use of vari-

ous filterbanks with this algorithm have demonstrated that

the algorithm is not particularly sensitive to the particular

bands or implementations used; it is expected that psychoa-

coustic investigation into rhythmic perception of amplitude-

modulated noise signals created with the various vocoder

filterbanks would confirm that the same is true of human

rhythmic perception.

The filterbank implementation in the algorithm has six

bands; each band has sharp cutoffs and covers roughly a

one-octave range. The lowest band is a low-pass filter with

cutoff at 200 Hz; the next four bands are bandpass, with

cutoffs at 200 and 400 Hz, 400 and 800 Hz, 800 and 1600

Hz, and 1600 and 3200 Hz. The highest band is high pass,

with cutoff frequency at 3200 Hz. Each filter is implemented

using a sixth-order elliptic filter, with 3 dB of ripple in the

passband and 40 dB of rejection in the stopband. Figure 4

shows the magnitude responses of these filters.

The envelope is extracted from each band of the filtered

signal through a rectify-and-smooth method. The rectified

filterbank outputs are convolved with a 200-ms half-Hanning

�raised cosine⇥ window. This window has a discontinuity at
time t⇥0, then slopes smoothly away to 0 at 200 ms. It has
a low-pass characteristic, with a cutoff frequency at about 10

Hz �‘‘frequency’’ in this case referring to envelope spectra,
not waveform spectra⇥, where it has a �15 dB response, and
6-dB/octave smooth rolloff thereafter.

The window’s discontinuity in time means that it has

nonlinear phase response; it passes slow envelope frequen-

cies with much more delay than rapid ones. High frequen-

cies, above 20 Hz, are passed with approximately zero delay;

0 Hz is delayed about 59 ms and 7 Hz advanced about 14

ms. Thus there is a maximum blur of about 73 ms between

these envelope frequencies.

This window performs energy integration in a way simi-

lar to that in the auditory system, emphasizing the most re-

cent inputs but masking rapid modulation; Todd �1992⇥ ex-
amines the use of temporal integration filters which are

directly constructed from known psychoacoustic properties.

After this smoothing, the envelope can be decimated for fur-

ther analysis; the next stages of processing operate on the

decimated band envelopes sampled at 200 Hz. There is little

energy left in the envelope spectra at this frequency, but it

aids the phase-estimation process �see below⇥ to maintain a
certain precision of oversampled envelope resolution.

After calculating the envelope, the first-order difference

function is calculated and half-wave rectified; this rectified

difference signal will be examined for periodic modulation.

The derivative-of-envelope function performs a type of onset

filtering process �see, for example, Smith’s work on

difference-of-Gaussian functions for onset segmentations

Smith, 1994⇥ but the explicit segmentation, thresholding, or
peak-peaking of the differenced envelope is not attempted.

The subsequent modulation detectors in the algorithm are

sensitive, similar to the sensitivity of autocorrelation, to

‘‘imperfections’’ in an onset track. The half-wave rectified

envelope difference avoids this pitfall by having broader �in
time⇥ response to perceptual attacks in the input signal. This
process might be considered similar to detecting onset points

in the signal bands, and then broadening them via low-pass

filtering.

FIG. 3. Schematic view of the processing algorithm. See text for details.

FIG. 4. Magnitude response of the frequency filterbank used in the system,

plotted in two pieces for clarity. The upper plot shows the first, third, and

fifth bands; the lower, the second, fourth, and sixth. Each filter is a sixth-

order elliptic filter, with 3 dB of passband ripple and 40 dB of stopband

rejection.
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Beat Tracking by Peeters (2007)
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Peeters 2007

• Filtered, rectified spectral energy envelope 

– Onset detection function.


• Combined Fourier & autocorrelation analysis

– DFT of ODF, ACF of ODF

– ACF result mapped into Fourier domain.

– DFT * Freq(ACF) - disambiguates periodicities.

– Octave errors occur in two different domains.
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• Viterbi decoding of joint estimates of meter 
and tempo.

Peeters 2007

31
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• Goal to generate beat times that match 
onsets and have near constant IBI.

!
!

• F(Δt, τ) = - log(actual IBI/ideal IBI)2.

• Ideal IBI from tempo estimation from 

weighted autocorrelation.

• Recursively calculates max C*(t) starting from 

t=0-2τ, finding times of max(F + C*(τ)).

• Chooses final max C*(t) from last interval, 

backtraces the saved times.

Dynamic Programming (Ellis 2007)
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formulation and realization, at the cost of a more limited
scope of application.

The rest of this paper is organized as follows: in
Section 2, we introduce the key idea of formulating beat
tracking as the optimization of a recursively-calculable
cost function. Section 3 describes our implementation,
including details of how we derived our onset strength
function from the music audio waveform. Section 4
describes the results of applying this system to
MIREX-06 beat tracking evaluation data, for which
human tapping data was available, and in Section 5 we
discuss various aspects of this system, including issues of
varying tempo, and deciding whether or not any beat is
present.

2. The dynamic programming formulation of
beat tracking

Let us start by assuming that we have a constant target
tempo which is given in advance. The goal of a beat
tracker is to generate a sequence of beat times that
correspond both to perceived onsets in the audio signal
at the same time as constituting a regular, rhythmic
pattern in themselves. We can define a single objective
function that combines both of these goals:

C ftigð Þ ¼
XN

i¼1

OðtiÞ þ a
XN

i¼2

Fðti % ti%1; tpÞ; ð1Þ

where {ti} is the sequence of N beat instants found by the
tracker, O(t) is an ‘‘onset strength envelope’’ derived
from the audio, which is large at times that would make
good choices for beats based on the local acoustic
properties, a is a weighting to balance the importance
of the two terms, and F(Dt, tp) is a function that
measures the consistency between an inter-beat interval
Dt and the ideal beat spacing tp defined by the target
tempo. For instance, we use a simple squared-error
function applied to the log-ratio of actual and ideal time
spacing, i.e.

FðDt; tÞ ¼ % log
Dt
t

! "2

; ð2Þ

which takes a maximum value of 0 when Dt¼ t, becomes
increasingly negative for larger deviations, and is sym-
metric on a log-time axis so that F(kt, t)¼F(t/k, t). In
what follows, we assume that time has been quantized on
some suitable grid; our system used a 4 ms time step (i.e.
250 Hz sampling rate).

The key property of the objective function is that the
best-scoring time sequence can be assembled recursively,
i.e. to calculate the best possible score C*(t) of all

sequences that end at time t, we define the recursive
relation:

C&ðtÞ ¼ OðtÞ þ max
t¼0...t

aFðt% t; tpÞ þ C&ðtÞ
# $

: ð3Þ

This equation is based on the observation that the best
score for time t is the local onset strength, plus the best
score to the preceding beat time t that maximizes the sum
of that best score and the transition cost from that time.
While calculating C*, we also record the actual preceding
beat time that gave the best score:

P&ðtÞ ¼ arg max
t¼0...t

aFðt% t; tpÞ þ C&ðtÞ
# $

: ð4Þ

In practice it is necessary only to search a limited range
of t since the rapidly-growing penalty term F will make it
unlikely that the best predecessor time lies far from
t7 tp; we search t¼ t7 2tp . . . t7 tp/2.

To find the set of beat times that optimize the
objective function for a given onset envelope, we start
by calculating C* and P* for every time starting from
zero. Once this is complete, we look for the largest value
of C* (which will typically be within tp of the end of the
time range); this forms the final beat instant tN – where
N, the total number of beats, is still unknown at this
point. We then ‘‘backtrace’’ via P*, finding the preceding
beat time tN71¼P*(tN), and progressively working
backwards until we reach the beginning of the signal;
this gives us the entire optimal beat sequence {ti}*.
Thanks to dynamic programming, we have effectively
searched the entire exponentially-sized set of all possible
time sequences in a linear-time operation. This was
possible because, if a best-scoring beat sequence includes
a time ti, the beat instants chosen after ti will not
influence the choice (or score contribution) of beat times
prior to ti, so the entire best-scoring sequence up to time ti
can be calculated and fixed at time ti without having to
consider any future events. By contrast, a cost function
where events subsequent to ti could influence the cost
contribution of earlier events would not be amenable to
this optimization.

To underline its simplicity, Figure 1 shows the com-
plete working Matlab code for core dynamic program-
ming search, taking an onset strength envelope and
target tempo period as input, and finding the set of
optimal beat times. The two loops (forward calculation
and backtrace) consist of only ten lines of code.

3. The beat tracking system

The dynamic programming search for the globally-
optimal beat sequence is the heart and the main novel
contribution of our system; in this section, we present the

52 Daniel P. W. Ellis



Beat Histograms
– Summarises rhythmic behaviour 

of a piece for similarity measures, 
classification etc.


– Pampalk, Dixon & Widmer (2003)

– Uses summation of comb 

filters of Scheirer, not just 
argmax, for comparison.


– Tempo histogram is weighted 
using a preference model (van 
Noorden & Moelants 1999).


– PCA used to reduce 2000 ➪ 
60 dimensions for matching.
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period⌃ of T and ⌦; there is only reinforcement every T/ 
periods, and by a similar logic as the above,

lim
n��

yn ⇤
⇥1��⌃A

1��T/ ,

and since ⇥�⇥⇥1 if the filter is to be stable, and T/ ⇧1,

1��T/ ⇧1�� .

So a filter with delay matching ⇥or evenly dividing⌃ the pe-
riod of a pulse train will have larger ⇥more energetic⌃ output
than a filter with mismatched delay.

We can see that this is true for any periodic signal by

doing the analysis in the frequency domain. The comb filter

with delay T and gain � has magnitude response

⇥H⇥e j⌥⌃⇥⇤� 1��

1��e� j⌥T�,
which has local maxima wherever �e� j⌥T gets close to 1,

i.e., at the Tth roots of unity, which can be expressed as

e� j2⌅n/T, 0⇤n⇥T .

Using Fourier’s theorem we know that these frequency-

domain points are exactly those at which a periodic signal of

period T has energy. Thus the comb filter with delay T will

respond more strongly to a signal with period T than any

other, since the response peaks in the filter line up with the

frequency distribution of energy in the signal.

For each envelope channel of the frequency filterbank, a

filterbank of comb filters is implemented, in which the delays

vary by channel and cover the range of possible pulse fre-

quencies to track. The output of these resonator filterbanks is

summed across frequency subbands. By examining the en-

ergy output from each resonance channel of the summed

resonator filterbanks, the strongest periodic component of the

signal may be determined. The frequency of the resonator

with the maximum energy output is selected as the tempo of

the signal.

The � parameter for each comb filter is set differently,
so that each filter has equivalent half-energy time. That is, a

comb filter of period T has an exponential curve shaping its

impulse response. This curve reaches half-energy output at

the time t when �T/t⇤0.5. Thus � is set separately for each
resonator, at �⇤0.5t/T. A half-energy time of 1500–2000 ms
seems to give results most like human perception.

Figure 6 shows the summed filterbank output for a 2-Hz

pulse train and for a polyphonic music example. The hori-

zontal axis is labeled with ‘‘metronome marking’’ in beats

per minute; this is a direct mapping of the delay of the cor-

responding comb filter. That is, for the 2-Hz power envelope

signal, a feedback delay of 100 samples corresponds to a

500-ms resonance period, or a tempo of 120 bpm.

In the pulse train plot in Fig. 6, a clear, large peak occurs

at 120 bpm, and additional smaller peaks at tempi which bear

a simple harmonic relationship ⇥3::2 or 4::5, for example⌃ to
the main peak. In the music plot, there are two peaks, which

correspond to the tempi of the quarter note and half note in

this piece. If the width of the upper plot were extended, a

similar peak at 60 bpm would be visible.

C. Phase determination

It is relatively simple to extract the phase of the signal

once its tempo is known, by examining the output of the

resonators directly, or even better, by examining the internal

state of the delays of these filters. The implementations of

the comb filters for the resonator filterbank have lattices of

delay-and-hold stages. The vector w of delays can be inter-

preted at a particular point in time as the ‘‘predicted output’’

of that resonator; that is, the next n samples of envelope

output which the filter would generate in response to zero

input.

The sum of the delay vectors over the frequency chan-

nels for the resonators corresponding to the tempo deter-

mined in the frequency extraction process are examined. The

peak of this prediction vector is the estimate of when the

next beat will arrive in the input, and the ratio ⌥⇤2⌅(tn
�t)/T , where tn is the time of the next predicted beat, t the

current time, and T the period of the resonator, is the phase ⌥
of the tempo being tracked. The phase and period may thus

be used to estimate beat times as far into the future as de-

sired.

The implementation of the model performs the phase

analysis every 25 ms and integrates evidence between frames

in order to predict beats. Since re-estimation occurs multiple

times between beats, the results from each phase analysis can

be used to confirm the current prediction and adjust it as

FIG. 6. Tempo estimates, after tracking 5 s of a 2-Hz click track ⇥top⌃ and
of a polyphonic music example ⇥bottom⌃. The x-axes are labeled in beats per
minute, that is, 120 MM⇤2 Hz. The polyphonic music shows more overall
energy, but the tempo is still seen clearly as peaks in the curve.
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Beat Histograms (Tzanetakis and Cook, 2002)

– Similar approach 
using 
Autocorrelation.


– Add the amplitudes 
of the top 3 AC 
peaks to histogram 
at each frame.


– Beat histograms are 
reducible to single 
features including 
sum and peak/mean.
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Fig. 3. Beat histogram examples.

correspond to the tonic or dominant chord. This peak
will be higher for songs that do not have many harmonic
changes.

• UP0: Period of the maximum peak of the unfolded his-
togram. This corresponds to the octave range of the dom-
inant musical pitch of the song.

• FP0: Period of the maximum peak of the folded his-
togram. This corresponds to the main pitch class of the
song.

• IPO1: Pitch interval between the two most prominent
peaks of the folded histogram. This corresponds to the
main tonal interval relation. For pieces with simple
harmonic structure this feature will have value 1 or 1
corresponding to fifth or fourth interval (tonic-dominant).

• SUM The overall sum of the histogram. This is feature is
a measure of the strength of the pitch detection.

E. Whole File and Real-Time Features

In this work, both the rhythmic and pitch content feature
set are computed over the whole file. This approach poses no
problem if the file is relatively homogeneous but is not appro-
priate if the file contains regions of different musical texture.
Automatic segmentation algorithms [27], [28] can be used to
segment the file into regions and apply classification to each
region separately. If real-time performance is desired, only the
timbral texture feature set can be used. It might possible to com-

pute the rhythmic and pitch features in real-time using only
short-time information but we have not explored this possibility.

IV. EVALUATION

In order to evaluate the proposed feature sets, standard sta-
tistical pattern recognition classifiers were trained using real-
world data collected from a variety of different sources.

A. Classification
For classification purposes, a number of standard statistical

pattern recognition (SPR) classifiers were used. The basic idea
behind SPR is to estimate the probability density function (pdf)
for the feature vectors of each class. In supervised learning a la-
beled training set is used to estimate the pdf for each class. In
the simple Gaussian (GS) classifier, each pdf is assumed to be
a multidimensional Gaussian distribution whose parameters are
estimated using the training set. In the Gaussian mixture model
(GMM) classifier, each class pdf is assumed to consist of a mix-
ture of a specific number of multidimensional Gaussian dis-
tributions. The iterative EM algorithm can be used to estimate
the parameters of each Gaussian component and the mixture
weights. In this work GMM classifiers with diagonal covariance
matrices are used and their initialization is performed using the
-means algorithm with multiple random starting points. Fi-

nally, the -nearest neighbor ( -NN) classifier is an example



Fluctuation Patterns
• Also summarises rhythmic behaviour.

• FFT of envelope: the fluctuation (AM) 

frequency of the perceived loudness of 
critical bands (log spectral) (represented on 
the Bark scale).


• 20 Bark x 60 BF matrix ➩ PCA for matching
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0.4 

11.5Rock DJ

0.4

9.9In Stereo

0.2

3.1Yesterday

Figure 6: The median of the rhythm patterns of Rob-
bie Williams, Rock DJ, Bomfunk MC’s, In Stereo,
and The Beatles, Yesterday. The axes represent the
same scales as in Figure 5.

Stereo, which combines the styles of Hip Hop, Electro and
House, are just as strong. However, the beats are also a lot
faster 5Hz (300bpm). The final example depicts the median
of the rhythm patterns of the song Yesterday by The Beat-
les. There are no strong reoccurring beats. The activation
in the rhythm pattern is similar to the one of Für Elise, ex-
cept that the values are generally higher and that there are
also activations in higher frequency bands.

4. ORGANIZATIONANDVISUALIZATION
We use the typical rhythm patterns as input to the Self-
Organizing Map (SOM) [12] algorithm to organize the pieces
of music on a 2-dimensional map display in such a way that
similar pieces are grouped close together. We then visualize
the clusters with a metaphor of geographic maps to create
a user interface where islands represent musical genres or
styles and the way the islands are automatically arranged
on the map represents the inherent structure of the music
archive.

4.1 Self-Organizing Maps
The SOM is a powerful tool for explorative data analysis,
and in particular to visualize clusters in high-dimensional
data. Methods with similar abilities include Principial Com-
ponent Analysis [11], Multi-Dimensional Scaling [15], Sam-
mon’s mapping [27], or the Generative Topographic Map-
ping [3]. One of the main advantages of the SOM with
regard to our application is, that new pieces of music, which
are added to the archive, can easily be placed on the map ac-
cording to the existing organization. Furthermore, the SOM
is a very e�cient algorithm which has proven to be capable
of handling huge amounts of data. It has a strong tradition
in the organization of large text archives [13, 24, 18], which
makes it an interesting choice for large music archives.

The SOM usually consists of units which are ordered on
a rectangular 2-dimensional grid. A model vector in the
high-dimensional data space is assigned to each of the units.
During the training process the model vectors are fitted to
the data in such a way that the distances between the data
items and the corresponding closest model vectors are mini-
mized under the constraint that model vectors which belong
to units close to each other on the 2-dimensional grid, are
also close to each other in the data space.

For our experiments we use the batch-SOM algorithm. The
algorithm consists of two steps that are iteratively repeated
until no more significant changes occur. First the distances
between all data items {xi} and the model vectors {mj} are
computed and each data item xi is assigned to the unit ci

that represents it best.

In the second step each model vector is adapted to better
fit the data it represents. To ensure that each unit j rep-
resents similar data items as its neighbors, the model vec-
tor mj is adapted not only according to the assigned data
items but also in regard to those assigned to the units in
the neighborhood. The neighborhood relationship between
two units j and k is usually defined by a Gaussian-like func-
tion hjk = exp(�d2

jk/r2
t ), where djk denotes the distance

between the units j and k on the map, and rt denotes the
neighborhood radius which is set to decrease with each iter-
ation t.

Assuming a Euclidean vector space, the two steps of the
batch-SOM algorithm can be formulated as

ci = argmin
j

⇥xi �mj⇥ , and

m§
j = i hjci xi

i�hjci�
,

where m§
j is the updated model vector.

Several variants of the SOM algorithm exist. A particu-
larly interesting variant regarding the organization of large
music archives is the adaptive GHSOM [6] which provides
a hierarchical organization and representation of the data.
Experiments using the GHSOM to organize a music archive
are presented in [25].

4.2 Smoothed Data Histograms
Several methods to visualize clusters based on the SOM can
be found in the literature. The most prominent method vi-
sualizes the distances between the model vectors of units
which are immediate neighbors and is known as the U-
matrix [32]. We use Smoothed Data Histograms (SDH) [21]
where each data item votes for the map units which repre-
sent it best based on some function of the distance to the
respective model vectors. All votes are accumulated for each
map unit and the resulting distribution is visualized on the
map. As voting function we use a robust ranking where the
map unit closest to a data item gets n points, the second
n-1, the third n-2 and so forth, for the n closest map units.
All other map units are assigned 0 points. The parameter
n can interactively be adjusted by the user. The concept of
this visualization technique is basically a density estimation,
thus the results resemble the probability density of the whole
data set on the 2-dimensional map (i.e. the latent space).
The main advantage of this technique is that it is compu-
tationally not heavier than one iteration of the batch-SOM
algorithm.

To create a metaphor of geographic maps, namely Islands
of Music, we visualize the density using a specific color code
that ranges from dark blue (deep sea) to light blue (shallow
water) to yellow (beach) to dark green (forest) to light green
(hills) to gray (rocks) and finally white (snow). Results of
these color codings can be found in [20]. In this paper we use
gray shaded contour plots where dark gray represents deep
sea, followed by shallow water, flat land, hills, and finally
mountains represented by the white.

4.3 Illustrations
Figure 7 illustrates characteristics of the SOM and the clus-
ter visualization using a synthetic 2-dimensional data set.

Median of the fluctuation patterns of examples of (L-R) Heavy Metal, 
Dance and Pop. Y axis shows critical bands (Bark 1-20), X axis shows beat 
frequencies 0-10Hz (0-600BPM) From Pampalk, Rauber & Merkl, (2002)



Meter estimation
• Requires measure (“bar”) period and phase 

(downbeat) identification.

• Measure period reasonably successful, albeit 

with octave errors.

• Downbeat identification much harder!

• Genre dependent.
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Meter Estimation Systems
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Joint estimation of chord  change 
and downbeat (Papadopoulos & Peeters 2008)

• Hidden Markov Model:

– States: 24 Major & Minor triads * 4 positions within 

the Measure (pim) for (4/4 time signature).

– Computes chroma features at each beat.

– Assumes independence between beat position and 

chord type: P(O|s) = P(O|c) P(O|pim)

– Transition probabilities enforce sequential beats & 

likelihood of chord transitions.

• Optimal state determined by Viterbi decoding.


– Chord progression detection improved using 
metrical knowledge.


– Identification of downbeats aided by harmonic 
information.
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Review

• Modeling rhythm requires representing 
perception.


• Onset detection functions capture significant 
events.


• Multiple approaches to beat-tracking 
represent competing perceptual models.


• Beat-tracking enables higher-level rhythmic 
features (FP, BH).


• Beat-tracking enables multi-modal 
estimation (e.g., down-beat from chords).


• References: http://ccrma.stanford.edu/workshops/mir2011/BeatReferences.pdf
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