CCRMA MIR Workshop 2014 Signal Analysis & Feature Extraction

Leigh M. Smith Humtap Inc. leigh@humtap.com

Basic system overview

Basic system overview

Outline

- Signal Analysis and Feature Extraction
- Feature-vector Design
 - Time-domain Features
 - Windowed Feature Extraction
 - Frequency-domain Features
 - Spatial-domain Features
 - Other Feature Domains

Introductions, Context

- Leigh Smith
 - University of Western Australia Comp Sci Dept.
 - Universiteit van Amsterdam EmCAP project.
 - IRCAM Quaero project.
 - iZotope Inc., Humtap Inc.
 - CCRMA MIR Workshop 2011 2013
- leigh@humtap.com
- http://www.leighsmith.com/Research

Signal Analysis and Feature Extraction for MIR Applications

- What do we want to do?
 - Match, search, index, transcribe, source-sep, ...
- What do we need to know to do it?
 - Basic feature set
 - Higher-level features
 - Feature data post-processing
 - Application integration
- MIR application design
 - How does the metadata fit in?
- Feature vector design for applications

Typical Audio Source Processing Stages

- Input processing
 - Streaming, decompression, reformatting
- Signal segmentation, windowing in time/freq
 - window size, share, overlap
- 1st-pass windowed feature extraction
 - Basic time-, freq-domain features
- 2nd-pass feature processing
 - Feature massaging, smoothing, pruning
 - 2nd-pass features (tempo, segmentation)
- Post-processing, data output
 - Many options

Feature Vectors and Indexing

- **Feature** = derived (numerical) parameter
- Feature vector = list of features for a single point/window in time, or average for an entire selection
- Feature table = list of feature vectors for several time slices (not always used/stored)

Signal Analysis

- Time-domain Audio Analysis
 - Windowed RMS Envelope Extraction
 - Beat Detection and Rhythm Analysis
 - Time-based signal segmentation
- Frequency-domain Analysis
 - Pitch Detection Techniques
 - Spectral Analysis and Interpretation
 - Spectral Peaks and Tracking
 - Other Spectral Measures
- Cross-domain or combined analysis
 - e.g. Wavelets.

Mel Frequency Cepstral Coefficients (32 bit floating point data)

Feature-vector Design

- Application Requirements
 - Labeling, segmentation, etc.
 - Derive feature vector from the app requirements
- Kinds/Domains of Features
 - Time-domain
 - Simple features, onset detection
 - Rhythm, segmentation
 - Frequency-domain
 - Spectrum, spectral statistics
 - Pitch, chroma, key

(See e.g: http://www.create.ucsb.edu/~stp/PostScript/PopeHolmKouznetsov_icmc2.pdf)

Example Features

- Features:
 - Time-domain, low-level
 - Windowed RMS amplitude
 - Time-domain, high-level
 - Tempo, beat structure, segmentation
 - Frequency-domain, low-level
 - Pitch, spectrum, spectral peaks
 - Frequency-domain, high-level
 - Peak track birth/death statistics, instrument ID
 - Many other possibilities (see below)

Feature Extraction and Signal Analysis

- Multi-step process:
 - Read input.
 - Apply window or frame extraction.
 - Derive several low-level features.
 - Map, derive next-level features
 - Possible heuristics determine which nextlevel features are relevant
 - Prune data when appropriate.
- Goal: reduce signal to the smallest set of numbers describing or matching human perception.

Time Sequences, Windowing

- Read audio input.
- Vector multiply by window function.
- Perform analysis.
- Step to next window.
- Hop size normally diff. to window size (overlap).
- Window features
 - Main lobe width, side lobe level, side lobe slope

Time-domain Features

- RMS, Peak
 - LPF/HPF RMS

$$RMS = \sqrt{\frac{1}{N} \sum_{n=1}^{N} x_n^2}$$

- e.g., F < 200 Hz, F > 2000 Hz
- Attack Time/Slope
- Zero-crossing rate (time & freq. domain)
- Temporal Centroid
- Higher–level statistics
 - Mean/variance
 - Variance of sliding windows
 - Spacing of peaks/troughs
 - Many other options

Optional Time-domain Steps

- Pre-filter to get low-freq. and high-freq.
 RMS values.
- Process stereo channels to get M/S (sum/ difference) signals.
- Noise detection.
- Silence detection.

Windowed RMS Envelope Extraction

- pseudo-code for envelope extraction:
 - Outer loop for windows
 - Inner loop to run window and compute RMS value
 - Silence threshold (noise gate)
 - Note-on trigger (peak detector)
 - Suitable sounds: piano sample, drum loop

Temporal Information: Attack Features

Picture courtesy: Olivier Lartillot

Temporal Information: Attack Features

 Rise time or Attack time – time interval between the onset and instant of maximal amplitude

Picture courtesy: Olivier Lartillot

Onset segmentation—Analysis frame

Onset segmentation—Analysis frame

Onset segmentation-Analysis frame

Onset segmentation→Analysis frame

Onset segmentation—Analysis frame

Frame 1

Frame 1

Frame 1

Frame 1

Zero crossing rate = 9

Zero crossing rate = 423

Features: SimpleLoop.wav

Frame	ZCR
1	9
2	423
3	22
4	28
5	390

Warning: example results only - not actual results from audio analysis...

Temporal Centroid

$$C_t = \frac{\sum_t tE(t)}{\sum_t E(t)}$$

Temporal Centroid

"Balancing point" of event energy ⇒ short vs. long.

$$C_t = \frac{\sum_t tE(t)}{\sum_t E(t)}$$

Temporal Centroid

"Balancing point" of event energy ⇒ short vs. long.

$$C_t = \frac{\sum_t tE(t)}{\sum_t E(t)}$$

Temporal Centroid

"Balancing point" of event energy ⇒ short vs. long.

$$C_t = \frac{\sum_t tE(t)}{\sum_t E(t)}$$

To Be Continued...

• Frequency Domain features.

Frequency-domain Features

- Spectrum, Spectral bins
 - Window/hop sizes
 - Improving spectral data: phase unwrapping, time realignment
- Spectral measures (statistical moments)
- MFCCs
- Peak-picking and peak-tracking
- Pitch-estimation and pitch-tracking

Frequency-domain Analysis

- Short-time Fourier transform
 - Configuration options and trade-offs
 - Interpretation/weighting of spectral bins (perceptual scales)
- Other frequency-domain techniques
 - Filter banks
 - Linear prediction
 - Filter matching
 - Multiresolution techniques (i.e. Wavelets)
- Many options!

Example Speech Spectrogram

- Kinds of spectral plots
- Short term spectral energy representation.
- Features can be derived from 2D spectral representation.

Windows and their Spectra

- Trade-offs between window characteristics
- Different windows for different analysis domains

Advanced Windows for Spectral Analysis

Windowing and the STFT

The Pitch/Time Trade-off

Harmonics and Formants

• Source/Filter – instrument resonances

Composite Spectra

- How to disambiguate?
- Track birth/death statistics
- Vibrato (see figure)
- Statistical techniques

Spectral Analysis and Interpretation

- Spectral data extraction
 - Base frequency
 - Overtone spectrum
 - Formants, resonances, regions
 - Instrument signatures
- Spectral statistics
 - Peak, mean, average, centroid, slope, etc.
 - Spectral variety, etc.

Spectral Features

- Spectral Centroid
- Spectral Bandwidth/Spread
- Spectral Skewness
- Spectral Kurtosis
- Spectral Tilt/Slope
- Spectral Roll-Off
- Spectral Flatness Measure

Spectral Features

- Spectral Centroid
- Spectral Bandwidth/Spread
- Spectral Skewness
- Spectral Kurtosis
- Spectral Tilt/Slope
- Spectral Roll-Off
- Spectral Flatness Measure

Spectral Features

- Spectral Centroid
- Spectral Bandwidth/Spread
- Spectral Skewness
- Spectral Kurtosis
- Spectral Tilt/Slope
- Spectral Roll-Off
- Spectral Flatness Measure

Spectral moments

FFT of single window (aka "frame")

FFT of single window (aka "frame")

Spectral Moments

$$\tilde{X}(k) = \frac{|X(k)|}{\sum_{k} |X(k)|}$$

- 1st Spectral Centroid
 - Dull vs. Brightness
- 2nd Bandwidth/Spread
 - Noisy vs. "peaky" (resonant)
- 3rd Skew
 - assymmetry of spectrum (high vs. low)
- 4th Kurtosis
 - Equal spectral energy vs. narrow.

$$SC = \frac{\sum_{k=0}^{N/2} f_k |X(k)|^2}{\sum_{k=0}^{N/2} |X(k)|^2} = C_f = \frac{k|X(k)|}{\sum_{k} |X(k)|}$$

$$S_f^2 = \sum_{k} (k - C_f)^2 \tilde{X}(k)$$

$$\gamma_1 = \frac{\sum_k (k - C_f)^3 \tilde{X}(k)}{S_f^3}$$

$$\gamma_2 = \frac{\sum_k (k - C_f)^4 \tilde{X}(k)}{S_f^4}$$

Higher Spectral Moments

Skewness

Kurtosis

http://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/mirtoolbox/userguide1.1

Spectra as Time-varying

- Track peaks/regions between frames (requires thresholds of change)
- Model the dynamicity
 (e.g., formant trajectory,
 vibrato extraction)

Spectral Peaks and Tracking

- Peak finding
 - (via autocorrelation)
- Peak discrimination
- Peak continuation:
 - tracks and guides
- Derived statistics
- Problem cases

Peaks and Tracks

- Peak-finding
 - Thresholds, distances, heuristics
- Peak-continuation
 - Inter-frame distances and guides
 - Dropped frames and stretching
 - Track birth/death criteria

Spectral Peak-Tracking Example

Courtesy Stephen T. Pope

Spectral Smoothness Measure

Smoothed Spectrum Types

Equal-loudness Curves

• Fletcher-Munson vs. Robinson-Dadson

Frequency Regions and Scaling

Mel-warped frequency bands

Mel Scale and Coefficients

Mel-scale
13 linearly-spaced filters
27 log-spaced filters

CF-130 CF CF+130
CF / 1.0718

CF * 1.0718

Mel-Freq Cepstral Coefficients

Steps:

- Signal
- FT
- Log magnitude
- Phase unwrapping
- FT (or DCT)

Interpretations

- "ceps" = "Spec"trum of spectrum
- "Quefrency"
- Mel-scale filters

- Represents spectrum in a small set of coeff's.
- Instead of AC, use FFT or DCT of PDS
- Leads to interesting statistics (1st deriv=DeltaMFCC, variance) of higher-level spectral properties, see next section

MFCC Analysis

Analogy

- Start with log spectrum
 of mixed complex tones:
 several sets of related
 partial peaks
- Take, e.g., the autocorr.
 of the FFT PDS
- Warped frequencies of peaks correspond to fundamental frequencies of overtone series

Comparison With LPC (by Andrianakis & White)

Spatial-domain Features

- M/S Encoding (stereo sum & difference)
- Surround-sound processing
 - L/R vs C
 - L/R vs Ls/Rs
- Frequency-dependent spatial separation
- Higher-dimensional sources
- Stem tracks

Other Feature Domains

- Other time-domain features
 - Beats, beat histograms (tomorrow)
- Other frequency-domain features
 - Fluctuation patterns
- Other time-frequency transforms
 - Filter banks
- Wavelets
 - Trades off temporal & spectral resolution
- Linear Predictive Coding
 - polynomial representation

Feature Vector Examples

Field	Bringin' Da Noise	I'll Be Your Everyth	Weighted	
Volume Width	48.126621	47.903584	0.182064596871	
LPC Avg-Track-Dur	260.071	291.654	0.246736659056	
Bass Loudness	-3.82097	-3.48169	1.151592910141	
Spectral Contrast	17.8124	27.7138	1.260984294687	
LPC Track-Harmo	1.15606	1.10925	1.386355020613	ı
BusyMid	399.87873138	382.9394489400	2.090529929650	1
Freq Max	0.579932	0.629061	2.756166578401	
Average Volume	34.344021	37.742193	3.092778888824	
Freq Avg	0.004416	0.004209	3.273244781783	1
Tempo	111.966	105.943	3.872166433080	1
LPC Peaks-Per-S	258.61	229.837	5.144795608229	1
LPC Freq-Deviation	6257.06	5584.61	5.146495852036	1
% Freq Over Avg	24.050509	21.898819	5.313072728419	I
Spectral Variety	57.0208	97.2588	5.591531132924	
BusyLow	412.44579522	341.0040312499	6.891936456624	
Spectral Saturation	0.712956	0.651703	7.476978442821	
LPC Tracks-Per-S	56.5431	48.2628	7.601499754612	
Snare Strength	0.328855	0.235586	8.982285629537	I
Overall Grunge	0.248330529671	0.067614786427	12.20650524954	
% Rhythm	99.48301435406	97.82279545454	N/A	Ī
BEAT: higuot	5.2	5.8	N/A	
BEAT: maxscore	1550.0	926.0	N/A	1
BEAT: spikewon	0.0	0.0	N/A	
DEAT window	20 D	on n	KRA	1

Example: FMAK3 Feature Table

```
class FeatureTable {
                                       // FeatureTable is a root object (no parents)
                                       // Data members (instance variables)
public:
                                       // When do I start?
          float mTimeStamp;
          float mTimeDur;
                                       // How long a time-span do I represent?
                                        // Time-domain features
          unsigned int mRMSWindowSize;
                                       // Size of RMS window
                                       // Rectangular-windowed RMS amplitude
          FeatureDatum mRMS;
                                       // Max sample amplitude
          FeatureDatum mPeak;
                                       // RMS amplitude of LP-filtered signal
          FeatureDatum mLPRMS;
          FeatureDatum mHPRMS;
                                       // RMS amplitude of HP-filtered signal
                                       // Count of zero crossings
          size t mZeroCrossings;
          FeatureDatum mDynamicRange;
                                       // RMS dynamic range of sub-windows
          FeatureDatum mPeakIndex;
                                       // RMS peak sub-window index
          FeatureDatum mTempo;
                                       // RMS/FWT instantaneous tempo estimate
          FeatureDatum mTimeSignature;
                                       // Time signature guess
          FeatureDatum mBassPitch:
                                       // Bass pitch guess in Hz
          unsigned int mBassNote;
                                       // Bass note (MIDI key number) guess
          FeatureDatum mBassDynamicity; // Bass note dynamicity (size of histogram)
                                       // Spatial features
                                       // L/R difference
          FeatureDatum mStereoWidth;
          FeatureDatum mSurroundDepth; // Front/Surround difference
          FeatureDatum mCenterDistinction; // Center vs. L/R sum difference
```

Example: FMAK3 Feature Table, cont'd

```
// Frequency-domain features
unsigned int mFFTWindowSize;
                             // Size of FFT window
                             // Hanning windowed FFT data (1024 points, or NULL)
FtVector mSpectrum;
FtVector mReducedSpectrum;
                             // 1-octave FFT data (10-12 points)
FtVector mBandSpectrum;
                             // 2.5-octave FFT data (4 points -- spectral bands)
FPartialVector mSpectralPeaks; // List of major spectral peak indeces
FPartialVector mSpectralTracks; // List of tracked peak frequencies
FeatureDatum mSpectralCentroid; // Spectral centroid measure
FeatureDatum mSpectralSlope; // Spectral slope measure
FeatureDatum mSpectralVariety;// Inter-frame spectral variety measure
                             // Hi-frequency properties
FeatureDatum HiFreqBalance;
                             // Relative HF level
FeatureDatum HiFreqVariety;
                             // HF inter-frame spectral variety
FeatureDatum HiFreqCorrelation; // Correlation between HF and audio-band tracks
FeatureDatum mSTrackBirths;
                             // Spectral peak track births and deaths
                              // LPC features
unsigned int mLPCWindowSize;
                             // Size of LPC window
FPartialVector mLPCFormants;
                             // List of LPC formant peaks
                             // List of tracked LPC formants
FPartialVector mLPCTracks:
FeatureDatum mLPCResidual:
                             // LPC residual level (noisiness)
                             // Pitch estimate
FeatureDatum mLPCPitch;
                             // LPC formant peak track births, deaths
FeatureDatum mLTrackBirths:
                             // Wavelet-domain (FWT) features
                              // FWT coefficient or NULL
FtVector mWaveletCoeff;
FtVector mWTNSpectrum;
                             // Reduced FWT HiFreq noise spectrum
FtVector mWTTracks:
                             // List of tracked FWT peaks
                             // FWT noise estimate
FeatureDatum mWTNoise;
```

Review

- Signal analysis processing chains
- Feature vector design from app requirements
- Kinds of audio features
- Basic feature statistics