

Intelligent Audio Systems: A review of the foundations and applications of semantic audio analysis and music information retrieval

Jay LeBoeuf Leigh Smith Steve Tjoa

Administration

- https://ccrma.stanford.edu/wiki/MIR_workshop_2014
- Daily schedule
- Today's schedule
- Introductions
 - A little about yourself
 - Your area of interest, background with DSP, coding, python, and any specific items of interest that you'd like to see covered.
 - And one interesting fact

Why MIR?

Organize Sound

- Intelligent metadata generation for media collections.
- Discovery and monetization of massive media archives.

Search Sound

- "Find me something that sounds like this" search engine for audio content (songs, real-world sounds, music loops, speech)
- Music-similarity search

Understand Sound

Revolutionary workflows in consumer products through machine hearing.
Automatic control of software, signal processing and mobile devices

Problems

- 1. Computers are deaf.
- 2. Content is overwhelming and unsearchable.

Audio Visualization

Simplifying User Experience

Detection algorithms help musicians achieve their desired results quicker.

Harmony / Chord / Key Estimation

Mixed In Key

Drum Transcription

Original

Transcription

Example 1

Example 2

Pitch Tracking / Query by Humming

QBH - SoundHound

Madonna - https://soundcloud.com/madonnagr/secret-acapella-lead-vox

https://www.youtube.com/watch?v=QnRt cWdV8c

https://www.youtube.com/watch?v=IArxakPsPE0

Discovery

Find me sound effects that sound like this?

Music recommendation

Name	Duration
M0112708_06 Overkill.wav	2:12
M0112707_05 Blood Lust.wav	2:12
M0112705_04 Napalm Blitz.wav	2:12
M0112711_08 Demolition Barbie.wav	2:23
M0112702_01 Axephetamine.wav	2:34
M0112703_02 Dimebag Damage.wav	2:25
Mermaid in Japan	5:06
M0112953_10 Hallowed By Thy Flame.wav	2:46
M0112713_09 Headlong Heracy.wav	3:01
M0112716_11 No Holds Barred.wav	2:37
M0112717_12 Billy Whizz.wav	2:40
M0112996_01 The Beast.wav	2:27
M0112704_03 Terrorize.wav	2:35
M0113007_07 Speed.wav	2:28
Bad Attraction – Earjamm Mix (Hipcola)	5:35
Show Me Fear	3:59
M0113004_05 Slow Death.wav	2:04
I Am	4:59
M0112544_15 Fastball Special.wav	3:51
Whispers and Knives (Yongen)	5:45

Rhythmic Similarity

Create by Example

Here's my seed riff.

Find me a Bass loop that grooves with that.

Find me a Drum loop that grooves with that.

Play them all together.

Dynamic Media

James Brown – The Payback

Original

Groove

Remixes

Graphic: Clint Bajakian

Tagging

Files belonging to: Distorted Guitar C 10016118_Lead 5.wav X L0016119_Lead 8.wav L0016120_Lead 3.wav "distorted, guitar" L0016121_Happy Harmonics.wav L0016122_Harmonic Feedback.wav L0016123_Harmonics 1.wav L0016124_Harmonics 2.wav L0016125_Harmonics 3.wav L0016126_Harmonics 4.wav A L0016127_Lazy.wav L0016128_Open Chord1.wav L0016129_Open Chord2.wav L0016130_Palm Mute1.wav L0016131_Power Chords.wav L0016132_Punch.wav L0016133_Slide Down.wav L0016134_Slide Down1.wav L0016135_Slide Down2.wav L0016136_Slide Up.wav L0016137_Squeel 1.wav L0016139_Suspense Harmonics.wav

Tagging

Tagging

Smarter DSP

ROADTRAFFIC NOISE

DeBreath

http://youtu.be/DZJfURZ12AM?t=7m15

Auto-mixing

Before After

For example: https://www.landr.com/#/

Why MIR?

- content-based querying and retrieval, indexing (tagging, similarity)
 - fingerprinting and digital rights management
 - music recommendation and playlist generation
- music transcription and annotation
 - score following and audio alignment
- automatic classification
- rhythm, beat, tempo, and form
- harmony, chords, and tonality
- timbre, instrumentation
- ★ genre
- emotion, style, and mood analysis
 - music summarization

BASIC SYSTEM OVERVIEW

Basic system overview

Segmentation

(Frames, Onsets, Beats, Bars, Chord Changes, etc)

Basic system overview

Segmentation

(Frames, Onsets, Beats, Bars, Chord Changes, etc)

Feature Extraction

(Time-based, spectral energy, MFCC, etc)

Basic system overview

Segmentation

(Frames, Onsets, Beats, Bars, Chord Changes, etc)

Feature Extraction

(Time-based, spectral energy, MFCC, etc)

Analysis / Decision Making

(Classification, Clustering, etc)

TIMING AND SEGMENTATION

Timing and Segmentation

- Slicing up by fixed time slices...
 - 1 second, 80 ms, 100 ms, 20-40ms, etc.
- "Frames"
 - Different problems call for different frame lengths

Frames

FEATURE EXTRACTION

Timing and Segmentation

- Slicing up by fixed time slices...
 - 1 second, 80 ms, 100 ms, 20-40ms, etc.
- "Frames"
 - Different problems call for different frame lengths
- Onset detection
- Beat detection
 - Beat
 - Measure / Bar / Harmonic changes
- Segments
 - Musically relevant boundaries
 - Separate by some perceptual cue

Frame 1

FEATURE EXTRACTION

FRAME 1

ZERO CROSSING RATE

FRAME 1

Frame 2

Zero crossing rate = 423

Features: SimpleLoop.wav

Frame	ZCR
1	9
2	423
3	22
4	28
5	390

Warning: example results only - not actual results from audio analysis...

Heuristic Analysis

- Use basic thresholds or simple decision tree to form rudimentary transcription of kicks and snares.
- Time for more sophistication...
- Stairway / Stairway sorted

Example Feature Vector

	ZCR	Centroid	Bandwidth	Skew
	1	2	3	4
1	205	982.0780	0.1452	1.3512e+03
2	150	621.0359	0.1042	296.0815
3	120.0000	361.6111	0.0607	263.7817
4	135	809.3978	0.1315	834.4116
5	220	634.7242	0.0906	274.5483
6	175	536.3318	0.0837	188.4155
7	190	567.0412	0.0953	253.0151
8	135	720.2892	0.1153	333.7646
9	195.0000	778.5310	0.1407	1.2328e+03
10	185	514.4315	0.0717	183.0322

ANALYSIS AND DECISION MAKING INSTANCE-BASED CLASSIFIERS (K-NN)

Training...

TRAINING SET

"kick drum"

"not a kick drum"

k-NN

Explanation...

Advantages:

Training is trivial: just store the training samples very simple to implement and use

Disadvantages

Classification gets very complex with a lot of training data Must measure distance to all training samples; Euclidean distance becomes problematic in high-dimensional spaces;

Can easily be "overfit"

We can improve computation efficiency by storing just the class prototypes.

k-NN

Steps:

- Measure distance to all points.
- Take the k closest
- Majority rules. (e.g., if k=5, then take 3 out of 5)

Fig. 2.15. k-nearest neighbours classification of two-dimensional data in the two-class case, with k=5. The new datum \mathbf{x} is represented by a non-filled circle. Elements of the training set (X,Y) are represented with dots (those with label -1) and squares (those with label +1). The arrow lengths represent the Euclidean distance between \mathbf{x} and its 5 nearest neighbours. Three of them are squares, which makes \mathbf{x} have the label $\mathbf{y}=+1$.

k-NN

- Instance-based learning training examples are stored directly, rather than estimate model parameters
- Generally choose k being odd to guarantee a majority vote for a class.