
Music Information Retrieval in Polyphonic
Mixtures

Steve Tjoa

MIR Workshop
CCRMA, Stanford University

iZotope, Inc.
San Francisco, CA, USA

June 27, 2012

A bit about myself...

A bit about myself...

A bit about myself...

Quick Review

What are the three main components of any classification
system?

What are some useful features for MIR?

What are some problems and applications addressed by MIR?

Quick Review

What are the three main components of any classification
system?

What are some useful features for MIR?

What are some problems and applications addressed by MIR?

Quick Review

What are the three main components of any classification
system?

What are some useful features for MIR?

What are some problems and applications addressed by MIR?

Music Transcription

From this song...

get the “piano roll”:

e3

f3

f#3

g3

g#3

a3

hb3

h3

c4

c#4

d4

eb4

e4

f4

f#4

g4

g#4

a4

hb4

h4

c5

c#5

d5

eb5

e5

f5

f#5

g5

g#5

a5

hb5

h5

c6

c#6

d6

Time (ticks)

P
it
c
h

Beatles - No Reply

100 200 300 400 500 600 700 800 900 1000

140

150

160

170

180

190

200

210

Music Transcription

From this song... get the “piano roll”:

e3

f3

f#3

g3

g#3

a3

hb3

h3

c4

c#4

d4

eb4

e4

f4

f#4

g4

g#4

a4

hb4

h4

c5

c#5

d5

eb5

e5

f5

f#5

g5

g#5

a5

hb5

h5

c6

c#6

d6

Time (ticks)

P
it
c
h

Beatles - No Reply

100 200 300 400 500 600 700 800 900 1000

140

150

160

170

180

190

200

210

Music Source Separation

Isolate, amplify, or suppress a musical voice/instrument.

Example: From these beats...

isolate the kick drum and
snare drum.

Music Source Separation

Isolate, amplify, or suppress a musical voice/instrument.

Example: From these beats... isolate the kick drum and
snare drum.

A Really Special Tool

Nonnegative Matrix Factorization (NMF):

Given X nonnegative, find W and H, both nonnegative, that
minimize some distance d(X,WH).

Easy! And it works.

Meaningful to humans.

Widely used.

A Really Special Tool

Nonnegative Matrix Factorization (NMF):

Given X nonnegative, find W and H, both nonnegative, that
minimize some distance d(X,WH).

Easy! And it works.

Meaningful to humans.

Widely used.

Why NMF?

Energy of musical events are nonnegative.

Brief Refresher: Matrix Multiplication

[
1 2

] [a
b

]
= a + 2b

[
3
4

] [
a b c

]
=

[
3a 3b 3c
4a 4b 4c

]
w
[
a b c

]
=
[
aw bw cw

]
[

3
4

]
h =

[
3h
4h

]

Brief Refresher: Matrix Multiplication

[
1 2

] [a
b

]
= a + 2b

[
3
4

] [
a b c

]
=

[
3a 3b 3c
4a 4b 4c

]

w
[
a b c

]
=
[
aw bw cw

]
[

3
4

]
h =

[
3h
4h

]

Brief Refresher: Matrix Multiplication

[
1 2

] [a
b

]
= a + 2b

[
3
4

] [
a b c

]
=

[
3a 3b 3c
4a 4b 4c

]
w
[
a b c

]
=
[
aw bw cw

]

[
3
4

]
h =

[
3h
4h

]

Brief Refresher: Matrix Multiplication

[
1 2

] [a
b

]
= a + 2b

[
3
4

] [
a b c

]
=

[
3a 3b 3c
4a 4b 4c

]
w
[
a b c

]
=
[
aw bw cw

]
[

3
4

]
h =

[
3h
4h

]

Nonnegative Matrix Factorizaton

Top right: X. Left: W. Bottom: H. Three piano notes:

1 2 3

F
re

q
u

e
n

c
y

3

2

1

Time

Nonnegative Matrix Factorizaton

Top right: X. Left: W. Bottom: H. Kick and snare:

1

F
re

qu
en

cy

1
2

Time

2

Spectrogram

NMF Algorithms

Multiplicative update rules:

W←W · XHT

WHHT
H← H · WTX

WTWH

See [Lee and Seung, NIPS 2001].

NMF Algorithms

Easy to implement!
Python:

1 for iter in range(maxiter):

2 W = multiply(W, (X*H.T)/(W*H*H.T))

3 H = multiply(H, (W.T*X)/(W.T*W*H))

Matlab:

1 for iter=1:maxiter

2 W = W.*(X*H’)./(W*H*H’);

3 H = H.*(W’*X)./(W’*W*H);

4 end

NMF Algorithms

Easy to implement!
Python:

1 for iter in range(maxiter):

2 W = multiply(W, (X*H.T)/(W*H*H.T))

3 H = multiply(H, (W.T*X)/(W.T*W*H))

Matlab:

1 for iter=1:maxiter

2 W = W.*(X*H’)./(W*H*H’);

3 H = H.*(W’*X)./(W’*W*H);

4 end

Example: Source Separation

kick and snare:

[kick drum] and [snare drum]

oboe and horn:

Duan et. al: [oboe] and [horn]

Wang et. al: [oboe] and [horn]

Tjoa and Liu: [oboe] and [horn]

Vivaldi, Winter, Four Seasons:

[solo] and [accompaniment]

Example: Source Separation

kick and snare:

[kick drum] and [snare drum]

oboe and horn:

Duan et. al: [oboe] and [horn]

Wang et. al: [oboe] and [horn]

Tjoa and Liu: [oboe] and [horn]

Vivaldi, Winter, Four Seasons:

[solo] and [accompaniment]

Example: Source Separation

kick and snare:

[kick drum] and [snare drum]

oboe and horn:

Duan et. al: [oboe] and [horn]

Wang et. al: [oboe] and [horn]

Tjoa and Liu: [oboe] and [horn]

Vivaldi, Winter, Four Seasons:

[solo] and [accompaniment]

Example: Instrument Recognition

Use NMF to identify the instruments in a musical signal.
Observe these atoms:

1

F
re

qu
en

cy

1
2

Time

2

Spectrogram

Filter the temporal atoms from NMF [Tjoa and Liu, 2010]:

ta = 0.010

ta = 0.020

ta = 0.040

ta = 0.080

ta = 0.160

ta = 0.320

ta = 0.640

ta = 1.280

0 1 2 3 4 5
Time (seconds)

Use support vector machine (SVM) to classify the processed
spectral and temporal atoms.

Feature Vector of Kick Drum

1.0000.8000.6000.4000.2000.1000.0500.020

n = 1.2

n = 1.5

n = 2.0

n = 3.0

max

Attack Time (seconds)

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Time (seconds)

Input
Atom

Feature Vector of Snare Drum

1.0000.8000.6000.4000.2000.1000.0500.020

n = 1.2

n = 1.5

n = 2.0

n = 3.0

max

Attack Time (seconds)

0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35 0.40
Time (seconds)

Input
Atom

Feature Vector of Trumpet

1.0000.8000.6000.4000.2000.1000.0500.020

n = 1.2

n = 1.5

n = 2.0

n = 3.0 max

Attack Time (seconds)

0.0 0.5 1.0 1.5 2.0
Time (seconds)

Input
Atom

Feature Vector of Violin

1.0000.8000.6000.4000.2000.1000.0500.020

n = 1.2

n = 1.5

n = 2.0

n = 3.0

max

Attack Time (seconds)

0 1 2 3 4 5 6
Time (seconds)

Input
Atom

Results: Isolated Instrument Recognition

Experiments on isolated instrument sounds:

Accuracy: 92.3%

Reflect state-of-the-art performance for isolated instrument
recognition among as many as 24 classes.

B
as

so
on

C
la

ri
ne

t
F

lu
te

O
bo

e
Sa

xo
ph

on
e

H
or

n
T

ro
m

bo
ne

T
ru

m
pe

t
T

ub
a

C
el

lo
V

io
la

V
io

lin
C

el
lo

P
iz

z
V

io
la

P
iz

z
V

io
lin

P
iz

z
G

lo
ck

en
sp

ie
l

G
ui

ta
r

M
ar

im
ba

P
ia

no
X

yl
op

ho
ne

K
ic

k
Sn

ar
e

T
im

pa
ni

To
m

s

Bassoon
Clarinet

Flute
Oboe

Saxophone
Horn

Trombone
Trumpet

Tuba
Cello
Viola

Violin
Cello Pizz
Viola Pizz

Violin Pizz
Glockenspiel

Guitar
Marimba

Piano
Xylophone

Kick
Snare

Timpani
Toms

0.01

0.10

0.20

0.40

0.60

0.80

1.00

Results: Solo Melodic Phrases

Instrument classifications. One decision per signal.
Accuracy: 96.2%.

ba
ss

oo
n

cl
ar

in
et

flu
te

ob
oe

ho
rn

tr
om

bo
ne

tr
um

pe
t

tu
ba

ce
llo

vi
ol

a

vi
ol

in

bassoon

clarinet

flute

oboe

horn

trombone

trumpet

tuba

cello

viola

violin
0.00

0.20

0.40

0.60

0.80

1.00

Results: Solo Melodic Phrases

Family classifications. One decision per signal.
Accuracy: 97.4%.

w
in

d

br
as

s

st
ri

ng
s

wind

brass

strings

0.00

0.20

0.40

0.60

0.80

1.00

Current and Future Work

Existing algorithms cannot handle “complicated” music.

Related work:

smoothness

harmonicity

statistical priors

Sparse Coding

What if you already have a large dictionary?

min
s

d(x,As)

Solution: Impose sparsity on s.

Benefits: guaranteed spectral structure; labels already known.

Sparse Coding

Related work:

matching pursuit (MP)

orthogonal matching pursuit (OMP)

basis pursuit (BP)

Disadvantages:

Complexity that is linear in the dictionary size.

Neither fast nor scalable.

Example: Orthogonal Matching Pursuit

OMP [Pati et al., 1993]:

Input: x ∈ RM ; A = [a1, a2, ..., aK] ∈ RM×K s.t. ||ak ||2 = 1
for all k .

Output: ŝ ∈ RK

Initialize: S ← ∅; s← 0; r← x; ε > 0.

While ||r|| > ε:

1. k ← argmaxj aT
j r

2. S ← S ∪ k
3. Solve for {sj |j ∈ S}: minsj |j∈S ||x−

∑
j∈S ajsj ||

4. r← x− As

ŝ← s

Proposed Algorithm: Approximate Matching Pursuit

AMP [Tjoa and Liu]:

Input: x ∈ RM ; A = [a1, a2, ..., aK] ∈ RM×K s.t. ||ak ||2 = 1
for all k .

Output: ŝ ∈ RK

Initialize: S ← ∅; s← 0; r← x; ε > 0.

While ||r|| > ε:

1. Find any k such that ak and r are near neighbors.
2. S ← S ∪ k
3. Solve for {sj |j ∈ S}: minsj |j∈S ||x−

∑
j∈S ajsj ||

4. r← x− As

ŝ← s

Locality Sensitive Hashing

Idea: Hash nearby points into the same bin.

0.2
0.4

0.6
0.8

0.2
0.4

0.6
0.8

0.2

0.4

0.6

0.8

Experiments: Music Transcription

0 1 2 3 4 5 6 7 8 9
Time (seconds)

20

30

40

50

60

70

80

90

100

110

P
it

ch
(M

ID
I

nu
m

be
r)

C Major Scale (OMP)

0 1 2 3 4 5 6 7 8 9
Time (seconds)

20

30

40

50

60

70

80

90

100

110

P
it

ch
(M

ID
I

nu
m

be
r)

C Major Scale (AMP, L=8, k=8)

Experiments: Music Transcription

0 2 4 6 8 10 12
Time (seconds)

20

30

40

50

60

70

80

90

100

110

P
it

ch
(M

ID
I

nu
m

be
r)

Debussy Clair de Lune, mm. 1-4 (OMP)

0 2 4 6 8 10 12
Time (seconds)

20

30

40

50

60

70

80

90

100

110

P
it

ch
(M

ID
I

nu
m

be
r)

Debussy Clair de Lune, mm. 1-4 (AMP, L=8, k=8)

Experiments: Music Transcription

0 2 4 6 8 10 12
Time (seconds)

20

30

40

50

60

70

80

90

100

110

P
it

ch
(M

ID
I

nu
m

be
r)

Debussy Clair de Lune, mm. 5-8 (OMP)

0 2 4 6 8 10 12
Time (seconds)

20

30

40

50

60

70

80

90

100

110

P
it

ch
(M

ID
I

nu
m

be
r)

Debussy Clair de Lune, mm. 5-8 (AMP, L=8, k=8)

Experiments: Music Transcription

Execution times in seconds.

Song OMP AMP8,8 AMP10,10

C-major scale 81.05 43.63 21.03
Debussy mm. 1-4 118.57 88.45 29.01
Debussy mm. 5-8 123.05 121.73 121.84

Where to Learn More

Conferences:

Int. Society of Music Information Retrieval (ISMIR)

MIR Evaluation Exchange (MIREX)

Int. Computer Music Conference (ICMC)

IEEE Int. Conf. Audio, Speech, Signal Processing (ICASSP)

ACM Multimedia

Journals:

IEEE Trans. Audio, Speech, Language, Processing

Journal of New Music Research

Computer Music Journal

Lab 3

Lab 3: Summary

Summary:

3.1 Separate sources.

3.2 Separate noisy sources.

3.3 Classify separated sources.

Lab 3: Matlab Programming Tips

Pressing the up and down arrows let you scroll through
command history.

A semicolon at the end of a line simply means “suppress
output”.

Type help <command> for instant documentation. For
example, help wavread, help plot, help sound. Use
help liberally!

Lab 3.1: Source Separation

1. In Matlab: Select File → Set Path.
Select “Add with Subfolders”.
Select /usr/ccrma/courses/mir2011/lab3skt.

2. As in Lab 1, load the file, listen to it, and plot it.

1 [x, fs] = wavread(’simpleLoop.wav’);

2 sound(x, fs)

3 t = (0:length(x)-1)/fs;

4 plot(t, x)

5 xlabel(’Time (seconds)’)

Lab 3.1: Source Separation

3. Compute and plot a short-time Fourier transform, i.e., the
Fourier transform over consecutive frames of the signal.

1 frame_size = 0.100;

2 hop = 0.050;

3 X = parsesig(x, fs, frame_size, hop);

4 imagesc(abs(X(200:-1:1,:)))

Type help parsesig, help imagesc, and help abs for
more information.
This step gives you some visual intuition about how sounds
(might) overlap.

Lab 3.1: Source Separation

4. Let’s separate sources!

1 K = 2;

2 [y, W, H] = sourcesep(x, fs, K);

Type help sourcesep for more information.

5. Plot and listen to the separated signals.

1 plot(t, y)

2 xlabel(’Time (seconds)’)

3 legend(’Signal 1’, ’Signal 2’)

4 sound(y(:,1), fs)

5 sound(y(:,2), fs)

Feel free to replace Signal 1 and Signal 2 with Kick and
Snare (depending upon which is which).

Lab 3.1: Source Separation

6. Plot the outputs from NMF.

1 figure

2 plot(W(1:200,:))

3 legend(’Signal 1’, ’Signal 2’)

4 figure

5 plot(H’)

6 legend(’Signal 1’, ’Signal 2’)

What do you observe from W and H?
Does it agree with the sounds you heard?

Lab 3.1: Source Separation

7. Repeat the earlier steps for different audio files.

125BOUNC-mono.WAV

58BPM.WAV

CongaGroove-mono.wav

Cstrum chord mono.wav

... and more.
Experiment with different values for the number of sources, K.
Where does this separation method succeed?
Where does it fail?

Lab 3.2: Noise Robustness

Begin with simpleLoop.wav. Then try others.

1. Add noise to the input signal, plot, and listen.

1 xn = x + 0.01*randn(length(x),1);

2 plot(t, xn)

3 sound(xn, fs)

Lab 3.2: Noise Robustness

2. Separate, plot, and listen.

1 [yn, Wn, Hn] = sourcesep(xn, fs, K);

2 plot(t, yn)

3 sound(yn(:,1), fs)

4 sound(yn(:,2), fs)

How robust to noise is this separation method?
Compared to the noisy input signal, how much noise is left in
the output signals?
Which output contains more noise? Why?

Lab 3.3: Classification

Follow the K-NN example in Lab 1, but classify the separated
signals.

1. As in Lab 1, extract features from each training sample in the
kick and snare drum directories.

2. Train a K-NN model using the kick and snare drum samples.

1 labels=[[ones(10,1) zeros(10,1)];

2 [zeros(10,1) ones(10,1)]];

3 model_snare =

4 knn(5, 2, 1, trainingFeatures, labels);

5 [voting, model_output] =

6 knnfwd(model_snare, featuresScaled)

Lab 3.3: Classification

3. Extract features from the drum signals that you separated in
Lab 3.1.
Classify them using the K-NN model that you built.
Does K-NN accurately classify the separated signals?
Repeat for different numbers of separated signals (i.e., the
parameter K in NMF).

4. Overseparate the signal using K = 20 or more. For those
separated components that are classified as snare, add them
together using sum. The listen to the sum signal. Is it
coherent, i.e., does it sound like a single separated drum?

...and more!

If you have another idea that you would like to try out, please
ask me!

Please collaborate with a partner.
Together, brainstorm your own problems, if you want!

Good luck!

Music Information Retrieval in Polyphonic
Mixtures

Steve Tjoa

MIR Workshop
CCRMA, Stanford University

iZotope, Inc.
San Francisco, CA, USA

June 27, 2012

	How?
	Lab 3

