Music Information Retrieval in Polyphonic
Mixtures

Steve Tjoa

MIR Workshop
CCRMA, Stanford University
iZotope, Inc.

San Francisco, CA, USA

>{_120t0pe June 27, 2012

@ UNIVERSITY OF
MARYLAND

>ﬁ'iZotope

© What are the three main components of any classification
system?

® What are the three main components of any classification
system?
® What are some useful features for MIR?

® What are the three main components of any classification
system?
® What are some useful features for MIR?

& What are some problems and applications addressed by MIR?

From this song...

From this song... get the “piano roll”:

Beatles - No Reply

500 600 700 800 900
Time (ticks)

Isolate, amplify, or suppress a musical voice/instrument.

Example: From these beats...

Isolate, amplify, or suppress a musical voice/instrument.

Example: From these beats... isolate the kick drum and
snare drum.

Nonnegative Matrix Factorization (NMF):

® Given X nonnegative, find W and H, both nonnegative, that
minimize some distance d(X, WH).

Nonnegative Matrix Factorization (NMF):

® Given X nonnegative, find W and H, both nonnegative, that
minimize some distance d(X, WH).

© Easy! And it works.
® Meaningful to humans.
© Widely used.

Energy of musical events are nonnegative.

4:92.

o
‘2
2
g
S
&
d
8
3
=
o
=
<}
w

Moderato.y.m

[1 2][Z]=a+2b

[1 2][Z]=a+2b

| 3a 3b 3¢
| 4a 4b 4c

[E—
—
\§}
o
[

a b cl=[aw bw cw]

|

Top right: X. Left: W. Bottom: H. Three piano notes:

>
o
c
()
>
o
(9}
—
L

Top right: X. Left: W. Bottom: H. Kick and snare:

Spectrogram

&
g
=4
5]
S
=
L

=

Multiplicative update rules:

XHT wWT’X
WHHT WTWH
See [Lee and Seung, NIPS 2001].

W« W.

Easy to implement!
Python:

1 for iter in range(maxiter):
2 W = multiply(W, (X*H.T)/(W+H+H.T))
3 H = multiply(H, (W.T*X)/(W.T*W*H))

Easy to implement!

Python:

1 for iter in range(maxiter):

2 W = multiply(W, (X*H.T)/(W+H+H.T))
3 H = multiply(H, (W.T*X)/(W.T*W*H))
Matlab:

1 for iter=1:maxiter

2 W = W.x(XxH’) ./ (WxH*H’) ;
3 H = H.x(W*X) ./ (W *WxH) ;
4 end

kick and snare:

© [kick drum] and [snare drum]

kick and snare:
© [kick drum] and [snare drum]
oboe and horn:
® Duan et. al: [oboe]| and [horn]
© Wang et. al: [oboe] and [horn]
® Tjoa and Liu: [oboe| and [horn]

kick and snare:
© [kick drum] and [snare drum]
oboe and horn:
® Duan et. al: [oboe]| and [horn]
© Wang et. al: [oboe] and [horn]
® Tjoa and Liu: [oboe| and [horn]
Vivaldi, Winter, Four Seasons:

© [solo] and [accompaniment]

Use NMF to identify the instruments in a musical signal.
Observe these atoms:

Spectrogram

Filter the temporal atoms from NMF [Tjoa and Liu, 2010]:

ta = 0.010
ta = 0.020
t, = 0.040
t, = 0.080
t, = 0.160

1o = 0.320

t, = 0.640

ta = 1.280

© Use support vector machine (SVM) to classify the processed
spectral and temporal atoms.

Attack Time (seconds)
0.100 0.200 0.400 0.600

Input |\
Atom

— |

Il . L L
0.00 0.05 0.10 0.15 0.20 0.25 0.30
Time (seconds)

Attack Time (seconds)
0.020 0.050 0.100 0.200 0.400 0.600 0.800 1.000

Input |
Atom

| | 1 | 1 I T
0.00 0.05 0.10 0.15 0.20 0.25 0.30 0.35
Time (seconds)

Attack Time (seconds)
0.020 0.050 0.100 0.200 0.400 0.600 0.800

1.000

1
1.0 1.5
Time (seconds)

Attack Time (seconds)
0.020 0.050 0.100 0.200 0.400 0.600 0.800 1.000

3
Time (seconds)

Experiments on isolated instrument sounds:
® Accuracy: 92.3%

® Reflect state-of-the-art performance for isolated instrument
recognition among as many as 24 classes.

swoJ,
uedurg,
areug
o
suoydoAx
ouerJ
BQUILIBIA
Tejrmy
[e1dsuayoo[n)
2Z1d UI[OIA
2Z1d BIOIA
2z1d o11*D
UI[OIA
BIOIA
o1eD
e,
jodwnay,
QuUOqUIOL],
wioHq
auoydoxeg
9090
amig
puLEer)
uoosseqg

Clarinet
Saxophone |-
Horn
Trombone
Trumpet -
Tuba |
Cello -
Viola [
Violin -
Cello Pizz [
Viola Pizz -
Violin Pizz -
Glockenspiel |-
Guitar
Marimba
Piano
Xylophone [
Kick |
Snare |
Timpani |-
Toms [

Instrument classifications.

Accuracy: 96.2%.

bassoon
clarinet
flute
oboe
horn

trombone

trumpet

tuba

cello

viola

violin

clarinet

One decision per

Family classifications. One decision per signal

Accuracy: 97.4%.

wind

brass

strings

strings

Existing algorithms cannot handle “complicated” music.

Related work:
® smoothness
® harmonicity

® statistical priors

What if you already have a large dictionary?

min d(x, As)
S

® Solution: Impose sparsity on s.

® Benefits: guaranteed spectral structure; labels already known.

Related work:
© matching pursuit (MP)
© orthogonal matching pursuit (OMP)
© basis pursuit (BP)

Disadvantages:
® Complexity that is linear in the dictionary size.

® Neither fast nor scalable.

OMP [Pati et al., 1993]:

RMXK

o Input: x € RM: A = [a1,ay,...,ax] € s.t. |Jakl2 =1

for all k.

© Output: § € RK

® Initialize: S+ 0; s «— 0; r — x; € > 0.

© While [[r|| > e
k < argmax; ajTr
S+ SUk
Solve for {s;|j € S}: mingjes [|x — > ;cs a5l
r<—x—As

© 8§+ s

AMP [Tjoa and Liu]:
o Input: x € RM: A =[ay,ay, ...,ax] € RM*K st |jay|[o =1
for all k.
© Output: § € RK
® Initialize: S+ 0; s «— 0; r — x; € > 0.
© While [[r|| > e

S+ SUk
Solve for {s;|j € S}: mingjes [|x — > ;cs a5l
r<x—As

® §<¢ s

Idea: Hash nearby points into the same bin.

A p XXX

I kK
ﬁ%ﬁ@ AR sy

C Major Scale (OMP)

Pitch (MIDI number)

B
2
g
]
=
5
&

Debussy Clair de Lune, mm. 1-4 (AMP, L=8, k=8)

. o

2 3
5 . 5
2 2
g g
E E
Z ; Z
8 2
E =S
g 5
& &

Debussy Clair de Lune, mm. 5-8 (OMP) Debussy Clair de Lune, mm. 5-8 (AMP, L=8, k=8)

Pitch (MIDI number)
Pitch (MIDI number)

—

éﬂwﬁ :

01
7ot
%bb\.

Execution times in seconds.

Song | OMP AMPgs AMP;q 10
C-major scale 81.05 43.63 21.03
Debussy mm. 1-4 | 118.57 88.45 29.01

Debussy mm. 5-8 | 123.05 121.73 121.84

Conferences:
© Int. Society of Music Information Retrieval (ISMIR)
MIR Evaluation Exchange (MIREX)
Int. Computer Music Conference (ICMC)
IEEE Int. Conf. Audio, Speech, Signal Processing (ICASSP)
ACM Multimedia
Journals:
© |IEEE Trans. Audio, Speech, Language, Processing

® Journal of New Music Research

@

[C]

®

® Computer Music Journal

Summary:
Separate sources.
Separate noisy sources.

Classify separated sources.

© Pressing the up and down arrows let you scroll through
command history.

® A semicolon at the end of a line simply means “suppress
output”.

© Type help <command> for instant documentation. For
example, help wavread, help plot, help sound. Use
help liberally!

In Matlab: Select File — Set Path.
Select “Add with Subfolders”.
Select /usr/ccrma/courses/mir2011/lab3skt.

As in Lab 1, load the file, listen to it, and plot it.
[x, fs] = wavread(’simpleLoop.wav’);
sound(x, fs)

t = (0:length(x)-1)/fs;

plot(t, x)

xlabel(’Time (seconds)’)

L

Compute and plot a short-time Fourier transform, i.e., the
Fourier transform over consecutive frames of the signal.

1 frame_size = 0.100;

2 hop = 0.050;

3 X = parsesig(x, fs, frame_size, hop);

4 imagesc(abs(X(200:-1:1,:)))

Type help parsesig, help imagesc, and help abs for
more information.

This step gives you some visual intuition about how sounds
(might) overlap.

Let's separate sources!

1 K = 2;

2 [y, W, H] = sourcesep(x, fs, K);
Type help sourcesep for more information.

Plot and listen to the separated signals.

plot(t, y)

xlabel(’Time (seconds)’)

legend(’Signal 1°, ’Signal 2°)

sound(y(:,1), fs)

sound(y(:,2), fs)

Feel free to replace Signal 1 and Signal 2 with Kick and
Snare (depending upon which is which).

L

Plot the outputs from NMF.

1 figure

2 plot(W(1:200,:))

3 legend(’Signal 1’, ’Signal 27)
4 figure

5 plot(H?)

6

legend(’Signal 1°, ’Signal 2’)
What do you observe from W and H?
Does it agree with the sounds you heard?

Repeat the earlier steps for different audio files.
©» 125BOUNC-mono . WAV

58BPM. WAV

CongaGroove-mono.wav

© Cstrum chord_mono.wav

@

@

. and more.
Experiment with different values for the number of sources, K.

Where does this separation method succeed?
Where does it fail?

Begin with simpleLoop.wav. Then try others.

Add noise to the input signal, plot, and listen.
1 xn = x + 0.01*randn(length(x),1);

2 plot(t, xn)

3 sound(xn, fs)

Separate, plot, and listen.

[yn, Wn, Hn] = sourcesep(xn, fs, K);

plot(t, yn)

sound(yn(:,1), fs)

sound(yn(:,2), fs)

How robust to noise is this separation method?

Compared to the noisy input signal, how much noise is left in
the output signals?

Which output contains more noise? Why?

= W N =

Follow the K-NN example in Lab 1, but classify the separated
signals.

As in Lab 1, extract features from each training sample in the
kick and snare drum directories.

Train a K-NN model using the kick and snare drum samples.
1 labels=[[ones(10,1) zeros(10,1)];

2 [zeros(10,1) ones(10,1)]1];

3 model_snare =

4 knn(5, 2, 1, trainingFeatures, labels);

5 [voting, model_output] =

6 knnfwd (model_snare, featuresScaled)

Extract features from the drum signals that you separated in
Lab 3.1.

Classify them using the K-NN model that you built.

Does K-NN accurately classify the separated signals?
Repeat for different numbers of separated signals (i.e., the
parameter K in NMF).

Overseparate the signal using K = 20 or more. For those
separated components that are classified as snare, add them
together using sum. The listen to the sum signal. Is it
coherent, i.e., does it sound like a single separated drum?

© If you have another idea that you would like to try out, please
ask mel!

® Please collaborate with a partner.
Together, brainstorm your own problems, if you want!

Good luck!

Music Information Retrieval in Polyphonic
Mixtures

Steve Tjoa

MIR Workshop
CCRMA, Stanford University
iZotope, Inc.

San Francisco, CA, USA

1Zotope

	How?
	Lab 3

