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Outline

MIR Applications

Signal Analysis and Feature Extraction
MIR Application Design
Feature-vector Design

- Time-domain Features

- Windowed Feature Extraction
- Frequency-domain Features
- Spatial-domain Features

- Other Feature Domains

APIs
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Introductions, Context

Leigh Smith

Comp Sci Dept. University of Western Australia
Universiteit van Amsterdam - EmCAP project.
IRCAM - Quaero project.

Imagine Research Inc. now part of iZotope Inc.
- CCRMA MIR Workshop 2011

e Ismith@izotope.com

e http://www.leighsmith.com/Research
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Problem Statement: MIR Applications

Examples
- Automatic playlist generation
- Audio transcription

Recummended Flay List

Lapez, Jennifen=houldye Mever m
Myallt's A1l About Me [Mo Rating =]
Backstrast BoysiShow Me The Maanmg:iilf Belngl  [Junk x
Mint Sonditioni3panish Eves m
Jay-ZiHova Song (Intra). W
Cir: DreED-ucation m
EveiStuck g (Featuring C.0. m
LFOTHirk Afiout Yau [worty =]
Sisqoils Love Enough [Ear-Bleed =]

Ja-FiReal Migoar Ko Rating u

Detection function

|StretchEnundarieajﬁ Play | Recalculate Close |

time seconds

Courtesy Stephen T. Pope
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Signal

Analysis and Feature

Extraction for MIR Applications

What ¢
- Matc

e What C
- Basic

o we want to do?

o we need to know to do it?
feature set

- Higher-level features
- Feature data post-processing
- Application integration

e MIR application design

- How

does the metadata fit in?

e Feature vector design for applications
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Dimensions of Music Information
Retrieval Applications

Indexing, query, access
- Use content or metadata for query
e Understanding, transcription
- Derive (music/speech) model
e Clustering, classification
- Feature vector for discrimination
e Content identification, finger-printing
e Preference-matching, recommendation
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MIR/MDB Applications

Indexing
Content
T Classification _
Real-ti description Real-time
L =Ene 0 .
. B Time . Browsing ——  multichannel
audio ,
segmentation : audio
Rendering
Recorded . | Separation > Navigation » Recorded
audio Tempo audio
, tracking Authoring
Associated Metadaia
e - Pitch - > Overation scrivts
mefadala Pﬂl‘ﬁ]]‘lllillg PEerainon SCrIs
Other analyses

T

Local & remote storage - Internet access - Peer-to-pecr Sharing |
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Tzanetakis’s “MIR Pipeline”

Hearing Understanding
Representation Analysis

Signal Processing Machine Learning

Acting
Interaction

S

o g J )

o

Human Computer
Interaction
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MIR Systems & Retrieval Tasks
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Spectrum for Trumpet Playing Concert A4

MIR Application
Design Stages

spectral amplitude

Considerations
- Content format
Low-level analysis procedures ° 5 gy
High-level derived features
DB design
Application flow and integration

e Design Issues

- System architecture and design impacted by each
of these decisions.
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Content Format

Impacts all levels of system

- Data volume, storage options, analysis DSP, DB
design, etc.

e Systems may or may not maintain original

source content (vs. metadata)

e Systems may preserve several formats of
source and metadata (n-tier)

e This is typically a given rather than a design
option
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Content Formats
Audio-based

- Properties/volume of source recordings
- MP3/AAC/WMA decoders

e MIDI-based

- Problems with MIDI, assumptions to make
- Human-performed vs “quantized” MIDI
e Score image based
- Useful, but not treated here - genre specific.

e Formal language-based
- SCORE, SMDL, Smoke, etc.
- MusicXML
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Numerical Processing

Sensor

Data Reduction, Smoothing gnal |

_ _ Pre-processing/
e Correlation, Grouping segmentation

segment

e Princ./Indep. Component Y

Feature extraction

Analysis

feature vector l

e Audio Segmentation and -
Classification

Musical Form Sans 1

e Clustering and Classification Post-processing

15

Monday, June 25, 2012



Typical Processing Stages

Input processing

- Streaming, decompression, reformatting

Signal segmentation, windowing in time/freq
- window size, share, overlap

1st-pass windowed feature extraction

- Basic time-, freg-domain features

2nd-pass feature processing

- Feature massaging, smoothing, pruning
- 2nd-pass features (tempo, segmentation)

Post-processing, data output
- Many options
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frame based

- Pitch Detection Techniques processing

Y
Mel Spectrum

O n (‘Si%egph_ Wavef((;rrtn) Front l:]::rld Pr;)cessing
Signal Analysis iR
: Pre-E(ZLI:))hasis :
Time-domain Audio Analysis I ! I
| . |
- Windowed RMS Envelope Extraction S O
- Beat Detection and Rhythm Analysis e
. . . | (4b) |
- Time-based signal segmentation | ; |
| |
e Frequency-domain Analysis | [Pover Spectrum)
| |
| |
| |
| |
| |
| |
| |
| |
| |

- Spectral Analysis and Interpretation 0
. Y
- Spectral Peaks and Tracking el g
- Other Spectral Measures - =T

[ Other Klnds Of AnaIYSIS- WaVEIetS Mel Frequency Cepstral Coefficients (32 bit floating point data)
e Cross—-domain analysis
.(@)4
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Real Applications

Query systems,
browsers, and MIR
frameworks

DBMS issues
Machine Learning
Informed tools
Stand-alone delivery
applications

Stage 1 Analy 515

v}

Al-based classific atlon

XML
Database

Statistical Analysis

A

User Preferences
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plementation example

Sound Classification Process Diagram

[ 5 \\\
’E,_ AT

L5
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Databases & Applications

e Searching, Indexing, and Players

e Audio Summarization and Thumb-nailing
e Content Matching and Finger-printing

e Data Clustering and Genre Classification
e Other Applications
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Database Technology

Database Designs: Schema vs. None?
Relational DBMS (MySQL/Oracle/PostgreSQL)
- Fixed table-formatted data

Few data types (number, string, date, ...)

One or more indices/table (part of DB design,
application-specific, impacts performance)
Cross-table indexing and joins
SQL examples (create, insert, update, select)

Media data (historically images)

- Volume (large single items)

- Format (items no known structure)

- Content and metadata (required for usage)

- Handling of Large/Dynamic Feature Vectors (MongoDB)

Consider Application Requirements and Design
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Feature-vector Design

Application Requirements

- Labeling, segmentation, etc.
- Derive feature vector from the app requirements

e Kinds/Domains of Features

- Time-domain
e Simple features, onset detection
e Rhythm, segmentation
- Frequency-domain
e Spectrum, spectral statistics
e Pitch, chroma, key

(See e.qg: http://www.create.ucsb.edu/~stp/PostScript/PopeHolmKouznetsov_icmc2.pdf) '
.(‘g' "Z’ 1

22
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Feature Vectors and

Indexing

Feature = derived (numerical) parameter

e Feature vector = list of features for a single
point/window in time, or average for an entire
selection

e Feature table = list of feature vectors for
several time slices (not always used/stored)
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Example Features

Features:

- Time-domain, low-level
e Windowed RMS amplitude
Time-domain, high-level
e Tempo, beat structure, segmentation
Frequency-domain, low-level

e Pitch, spectrum, spectral peaks
Frequency-domain, high-level
e Peak track birth/death statistics, instrument ID
Many other possibilities (see below)
.(©).

24
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Feature
Vector
Examples

8 Product Comparison

Field Bringin' Dia Noise |11l Be YourEvendh | \Weighted
Valume YWidth 48.126621 |47.903584 0182064596871 ... |-
LPC Avg-Track-Dur | 260.071 291,654 |0.246736659056...
Bass Loudness  |-3.82007 -3.48168 1151592910141
Spectral Contrast  |17.8124 |27.7138 1.260384294687...
LPC Track-Harmo... 1 15606 110925 1.386355020613...
BusyMia  [389.87873138  |382.9394489400... |2.090529829650...
Freq Masx 0579332 0629061 2756166578401
Average Volume | 34344021 37.742193 3.092778888824...
Freq Ava 0.004415 0.004209 3 i'ﬁ_z_ilﬁ'a_fljgg__
Tempo 111 966 105.943 3.872166433080...
LPC Peaks-Per-S.. |258.61 1229.837 5.144795608229..,
LPC Freq-Deviation 6257 06 5584.61 5.146495852036...
% Freq Over Avg | 24.050509 121.898819 5.313072728419..
Spectral Variety  |57.0208 97,2588 550915311320924 .
BusyLow 41244579522  |341.0040312409.. |6.891936456624...
Spectral Saturation [0.712956 0651703 7 ATROTE442821 .
LPC Tracks-Per-5..|56.5431 40,2626 |7.601499754612...
Snare Strength | 0.328855 10,235586 |#.982285620537 .
Overall Grunge | 0.249330529671... 0.067614786427.. |12, 20650524854 ..
% Rhythm _ 99.48301435406... |97.82279545454... [NIA .
BEAT: hiquot 5.2 5.8 i
BEAT. maxscore 15500 1926.0 [Nl
BEAT: spikewon 0.0 0.0 A
QAT -...ui.n.r\h-\:uzj iR 2NN |h:.||'.l't :]

SHENES I Close |
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Example: FMAK3 Feature Table

class FeatureTable { // FeatureTable is a root object (no parents)

public: // Data members (instance variables)

float mTimeStamp; // When do I start?

float mTimeDur; // How long a time-span do I represent?
// Time-domain features

unsigned int mRMSWindowSize; // Size of RMS window

FeatureDatum mRMS; // Rectangular-windowed RMS amplitude

FeatureDatum mPeak; // Max sample amplitude

FeatureDatum mLPRMS; // RMS amplitude of LP-filtered signal

FeatureDatum mHPRMS; // RMS amplitude of HP-filtered signal

size t mZeroCrossings; // Count of zero crossings

FeatureDatum mDynamicRange; // RMS dynamic range of sub-windows

FeatureDatum mPeakIndex; // RMS peak sub-window index

FeatureDatum mTempo; // RMS/FWT instantaneous tempo estimate

FeatureDatum mTimeSignature; // Time signature guess

FeatureDatum mBassPitch; // Bass pitch guess in Hz

unsigned int mBassNote; // Bass note (MIDI key number) guess

FeatureDatum mBassDynamicity; // Bass note dynamicity (size of histogram)
// Spatial features

FeatureDatum mStereoWidth; // L/R difference

FeatureDatum mSurroundDepth; // Front/Surround difference

FeatureDatum mCenterDistinction; // Center vs. L/R sum difference
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Example: FMAK3 Feature Table,
cont’d

unsigned int mFFTWindowSize; // Size of FFT window
FtVector mSpectrum; // Hanning windowed FFT data (1024 points, or NULL)
FtVector mReducedSpectrum; // l-octave FFT data (10-12 points)
FtVector mBandSpectrum; // 2.5-octave FFT data (4 points -- spectral bands)
FPartialVector mSpectralPeaks;// List of major spectral peak indeces
FPartialVector mSpectralTracks; // List of tracked peak frequencies
FeatureDatum mSpectralCentroid; // Spectral centroid measure
FeatureDatum mSpectralSlope; // Spectral slope measure
FeatureDatum mSpectralVariety;// Inter-frame spectral variety measure
// Hi-frequency properties
FeatureDatum HiFregBalance; // Relative HF level
FeatureDatum HiFreqgVariety; // HF inter-frame spectral variety
FeatureDatum HiFreqCorrelation;// Correlation between HF and audio-band tracks
FeatureDatum mSTrackBirths; // Spectral peak track births and deaths
// LPC features
unsigned int mLPCWindowSize; // Size of LPC window
FPartialVector mLPCFormants; // List of LPC formant peaks
FPartialVector mLPCTracks; // List of tracked LPC formants
FeatureDatum mLPCResidual; // LPC residual level (noisiness)
FeatureDatum mLPCPitch; // Pitch estimate
FeatureDatum mLTrackBirths; // LPC formant peak track births, deaths
// Wavelet-domain (FWT) features
FtVector mWaveletCoeff; // FWT coefficient or NULL
FtVector mWTNSpectrum; // Reduced FWT HiFreq noise spectrum
FtVector mWTTracks; // List of tracked FWT peaks
FeatureDatum mWTNoise; // FWT noise estimate
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Intermission

To be continued!
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Analysis

Domains and

Transformations

Time-domain Audio Analysis and Applications
- Windowed RMS Envelope Extraction
- Beat Detection and Tempo Analysis
- Time-based signal segmentation
e Frequency-domain Analysis
- Pitch Detection Techniques

- Spectra
- Spectra
- Other S

Analysis and Interpretation
Peaks and Tracking

nectral Measures

e Other Kinds of Analysis: Wavelets
e Cross—-domain analysis
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Feature Extraction and Signal Analysis

Multi-step process:
Read input
Apply window
Derive several low-level features
Map, derive next-level features

e Possible heuristics determine which next-
level features are relevant

Prune data when appropriate
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Time-domain Features

RMS, Peak

LPF/HPF RMS

- e.g., F <200 Hz, F > 2000 Hz
Dynamic range

- What window for calc?
Zero-crossing rate (time- or freg-domain?)
Higher-level statistics

- Mean/variance

- Variance of sliding windows

- Spacing of peaks/troughs

- Many other options

e Time-domain onset-detection & beats
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Time Sequences, Windowing

Read audio input
Vector multiply by
window function
Perform analysis

Step to next window
Hop size not normally =
window size (overlap)

Window features
- Main lobe width, side
lobe level, side lobe slope
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Time-domain Audio Analysis and
Applications

Use rectangular window if no overlap or
triangular window if overlapping

e Medium-sized window (10 Hz or better
resolution desired)

e Derived windowed RMS value

e Count zero crossings
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Windowed RMS Envelope Extraction

pseudo-code for envelope extraction:

- Quter loop for windows
Inner loop to run window and compute RMS value
Silence threshold (noise gate)
Note-on trigger (peak detector)

Example sound: piano sample, drum loop
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Optional Time-domain Steps

Pre-filter to get low-freq and high-freq
RMS values

Process stereo channels to get M/S (sum/
difference) signals

e Noise detection

e Silence detection
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Windowed Feature Comparison

RMS
Peak
ZeroC

Centroid
Variety
Stope

1-sec Data

Spectral Frames ZeroCross

Diff Fcns T SpectralCentroid

Segmentation 5 SpectralVariety
2-oct Bands
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Windowed Amplitude Envelopes

Choice of window size, hop size, window
function shape

e May use several frequency bands (kick drum
vs. hi-hat)

e Useful for silence detection, beat tracking,
simple segmentation, summarization, etc.

e Simple, effective, well-understood techniques,
many options
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Frequency-domain Features

Spectrum, Spectral bins

- Window/hop sizes

- Improving spectral data: phase unwrapping, time
realignment

Spectral measures (statistical moments)
MFCCs

Peak-picking and peak-tracking
Pitch-estimation and pitch-tracking
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Frequency-domain Analysis

Short-time Fourier transform
- Configuration options and trade-offs
- Interpretation/weighting of spectral bins
(perceptual scales)
e Other frequency-domain techniques
- Filter banks
- Linear prediction
- Filter matching

e Loads of options
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Speech Spectrogram

Kinds of 5
spectral plots
e Features o £

1000

Ri ce Lini ver si ty
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Windows and their Spectra

Trade-offs between

Rectangle Window Rectangle Window's Transform

window
characteristics ' J L :

[ D|fferent WIndOWS -1 05 0 05 1
for different Triangle Window Triange Window's Transform

analysis domains /\

-1 -05 a 0.5 1
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Advanced
Windows for

Spectral
Analysis

Biackmian Window
ag= 0427, a; = 0497, a, = 0.077

Blackman Window's Transform
@y =0.427, a, = 0.497, a, = 0.077

-1 0.5 0.3

Kaiser Window
{oe = 3.5)

Kaiser Window's Transform
[(UC. = 3_5}

Blackman-Harris Window
{(4-tevm , - 96 4B)

nnﬁﬁﬁﬂm

Blackman-Harris Window's Transform
{4-zerm , -96 4B)

eanififn 1 L afNAAs.

42
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Windowing and the STFT

Input Q A [} ~ Z \ ﬁ"_\ /
” .
DA

Time

CS > \ Windowed excerpts
PREPES
%vaw\-'
_/\j\\ . Time-varying spectra

Fast Founer Transform FFT
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The Pitch/Time Trade-off
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Freguency
P
=
=
=

1000
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3000 |
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.
=
=
-
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Marrowband Spectrogram
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Harmonics and Formants

Source/Filter - instrument resonances

0dB

60

|

OHz

S

Formants

Eee vowel
Harmonics \\ (beet)

{

il

3KkHz 4.5kHz
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o

Composite 2,
Spectra £ .
S
—600
How to
disambiguate?
e Track birth/death ~
statistics 3
o Vibrato (see figure) §
o Statistical techniques §g
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Spectral Analysis and Interpretation

Spectral data extraction
- Base frequency
- Overtone spectrum
- Formants, resonances, regions
- Instrument signatures
e Spectral statistics

- Peak, mean, average, centroid, slope, etc.
- Spectral variety, etc.
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Spectral Moments

Spectral Centroid - (Mean) 1st moment
e Variance - 2nd moment
e Skew - 3rd Moment
e Kurtosis 4th Moment
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Spectra as Time-varying

Track peaks/regions M
between frames (requires
thresholds of change)

e Model the dynamicity
(e.g., formant trajectory,
vibrato extraction)
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Spectral Peaks and Tracking

Peak finding
(remember
autocorrelation?)

Peak discrimination

Peak continuation:

tracks and guides
Derived statistics

Problem cases
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Peaks and Tracks

Peak-finding

- Thresholds,
distances, heuristics

e Peak-continuation

- Inter-frame distances
and guides

- Dropped frames and
stretching

- Track birth/death
criteria

magnkude (dB)
: & 3

ﬁ ﬁa Jﬂ'.
JW \r N

Id 16 ie 20
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Spectral Peak-Tracking Example

,J-t— D:AParasoft\Wav\SteelyDan_WhatAShame_short wav

File Edit View Analyze Other Help

DeEs28 8%

Test " LoPass HzCut

E,WF,LT‘ [HAMMING =] |30

Tes| | ¢ HiPass |2000

+* BPass HzBand

»| m| W] || © BReject [600 EFILT 0 Overlap [100 Maxtin [ =] color Light

Ready

MinHz [0 Divide [0.006 Mag € FFT
& LPC

4000 MaxHz ™ dB .|_,_D 004 Win 7 on/off = | foss & EE

010 Len [200  MexTracks | [512 Bins

2 oTel=le SIS ]3] 2% ]2]0

29747 |-397 50 [40
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' + B

maxAmp = MAX(mag (], frameSize/2) L 400

Spectral Peak
Detection Algorithm

= binindex = binlndex + 1 ]x_ ane
L

From Blum et al. P

patent # 5,918,223 gy

left = mag| binlndex-1]
center = mag|binindex]
right = mag|binindex+1] 408

tenter > lel}
AND

~.genter > righ
?

e

No

/ I3 \\(
Mo center > (.05

+ maxAmp

A4

/
deviation = 0.5 + (left - right) / (left — (2 center) + right)
peckFreq| peakCount] = (binlndex ¢ freginc) + (deviotion * freqinc)
peakAmp[peokCount] = center — (0.25% left - right)* deviation)

i

. r
| peakCount = peckCount + 1 |— 416

[ |
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Spectral Smoothness Measure

gm, 6 ’ 1"21518%1%42?3;0' ',
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Smoothed Spectrum Types

0 Cepstrum envelope (order 30)
Discrete cepstrum (order 30)
1 Parial peaks
LPC envelope {order 30)
-0 Log magnitude spectrum
_2[| -
— —30 |-
v}
=
g
£ -40 -
L
__5[| L
-60 H ‘ ﬁ
70| ﬂ ' ﬂ
-80 | I | 1 | I | . I
0 1000 2000 3000 4000 5000 6000 7000 8000
Frequency [Hz]
<@
55
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Pitch Detection
Techniques

Find the period of a “periodic” signal
- First guess whether or not it’s periodic
e Simple techniques work for many signals
- Zero-crossings (with direction, slope)
- Autocorrelation (with range limitation)
e But it’s hard to tell when they fail

- Random data, silence
- Octave over/under-tone errors
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Filter—-based Pitch Detection
Current estinated center frequency

v

Bandpass

Input
Sgnal

vi1n)
T L ONVEergence FPitch
. —» = — _
flter test estinate

T

A1)

Simple adaptive process for single-frequency
source with strong fundamental (i.e., many,
but not all, instruments and voices)

e Easily implemented in analog circuitry

e Many variations
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Auto-Correlation

Slide a si gn al across . ?ﬂgma. S ) syt e o mm S
itself, taking the | '
vector product at
each step

e This AC array has a
peak at O, and the
period of the signal

e No peaks for noise
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Harmonic Product Spectra

Decimation of FFT spectra, summation, and
spectral peak location

e Assumes overtones are significant, not that
fundamental is

Signal Fundamental

AAAN, Frequency

YRV vAsmve —
>®a UJLUAA_‘ ‘J‘* >
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Equal-loudness Curves
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Frequency Regions and Scaling

Mel-warped frequency bands
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Mel-Freq Cepstral Coefficients

Steps: Instead of AC, use FFT
- Signal or DCT of PDS

FT e Leads to interesting

Log magnitude statistics of higher-level
Phase unwrapping

FT (or DCT)

e Interpretations
“ceps’ = “Spec”trum of spectrum
“Quefrency”
Mel-scale
Mel-scale filters

spectral properties, see
next section
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MFCC Analysis
Analogy

- Start with log spectrum MEANERUR RN
of mixed complex tones: " e
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=
o
T

T T
a) waveform

amplitude
(=]

©
(2]

[=]
[=]

T
b} spectrum

I
L]
T

amplitude
%]
(=]

=]

p a rt i a I p e a k S = = ; - 1DI[H] /.1 550 . 2OIOD éEIOO

frequency (Hz)

o

c) log(spectrum)

- Take, e.qg., the autocorr.
of the FFT PDS

- Warped frequencies of
peaks correspond to
fundamental frequencies TR e e oo e e @z
of overtone series

A A ", I -
Lm b T e (] R i e
) | Ty A i -y
o TN g WYYy

amplitude
(=]

n

500 1000 1500 2000 2500
frequency (Hz)

=
in

__ pericd of waveform d) cepstrum
¥

" | . A .
i W N Tl N A0 Y AR B B AP e PR
W

amplitude
=]

(=]
[&4]

63

Monday, June 25, 2012



Comparison With LPC (by Andrianakis
& White)

FET PSD 13-pole LPC 20 Mel

Spectrum Spectrum

Frequency [HZz]
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Spatial-domain Features

M/S Encoding (stereo sum & difference)

Surround-sound processing
- L/Rvs C
- L/Rvs Ls/Rs

Frequency-dependent spatial separation
Higher-dimensional sources
Stem tracks
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Other Feature Domains
Other time-domain features
- Beats, beat histograms

Other frequency-domain features
- Fluctuation patterns

Other time-frequency transforms
- Filter banks

Wavelets

- Trades off temporal & spectral resolution
Linear Predictive Coding

- polynomial representation
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_ —
API S fo r M I R TOO I S Core Tcl/Tk Libraries

Marsyas: G. Tzanetakis (11), flexible tool set,
scripting language, segmentation and classification
LibOFA: Holm/Pope (00), simple FV for unique ID
comparing to a large pre-analyzed database
D2K/M2K: West/MIREX (06), Java-based GUI related
to D2K, many apps.

LibTSP: P. Kabal (00), C routines for DASP & IO

CSL: STP/MAT (05), C++ class library for DASP,
synthesis, control, spatialization and MIR
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APls - 2

Libxtract

Aubio

SonicVisualizer plug-ins
Loris '

SPEAR
CSL
LibTSP
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Spectral Tools

SPEAR
e Loris
e Marsyas

e Sonic visualizer
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Review

MIR Apps
e Signal analysis processing chains

e Feature vector design from app
requirements

e Kinds of audio features

e Basic feature statistics
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