CCRMA MIR Workshop 2012 Signal Analysis & Feature Extraction

Leigh M. Smith iZotope Inc. Ismith@izotope.com

Monday, June 25, 2012

Outline

- **MIR** Applications
- Signal Analysis and Feature Extraction
- MIR Application Design
- Feature-vector Design
 - Time-domain Features
 - Windowed Feature Extraction
 - Frequency-domain Features
 - Spatial-domain Features
 - Other Feature Domains
- APIs

Introductions, Context

Leigh Smith

- Comp Sci Dept. University of Western Australia
- Universiteit van Amsterdam EmCAP project.
- IRCAM Quaero project.
- Imagine Research Inc. now part of iZotope Inc.
- CCRMA MIR Workshop 2011
- <u>lsmith@izotope.com</u>

Monday, June 25, 2012

http://www.leighsmith.com/Research

Problem Statement: MIR Applications

Examples

- Automatic playlist generation
- Audio transcription

Example App:

Classification

Signal Analysis and Feature Extraction for MIR Applications

What do we want to do?

- Match, search, index, transcribe, src-sep, ...
- What do we need to know to do it?
 - Basic feature set
 - Higher-level features
 - Feature data post-processing
 - Application integration
- MIR application design
 - How does the metadata fit in?
- Feature vector design for applications

Dimensions of Music Information Retrieval Applications

- Indexing, query, access
 - Use content or metadata for query
- Understanding, transcription
 - Derive (music/speech) model
- Clustering, classification
 - Feature vector for discrimination
- Content identification, finger-printing
- Preference-matching, recommendation

MIR/MDB Applications

Tzanetakis's "MIR Pipeline"

Signal Processing

Machine Learning

Human Computer Interaction

MIR Systems & Retrieval Tasks

Typke's Appl. Table

	In	put	Matching				Features										
Name	Audio	Symbolic	Audio	Symbolic	Exact	Approximate	Polyphonic	Audio Fingerprints	Pitch	Note Duration	Timbre	Rhythm	Contour	Intervals	Other	Indexing	Collection Size (Records)
audentify!	•		•			•	•	•								Inverted files	15,000
C-Brahms		•		•	•	•	•		•	•		•		•		none	278
CubyHum	•			•		•								•		LET	510
Cuidado	•		•			•	•				•	•			•	not de- scribed	works for > 100,000
GUIDO/ MIR		•		•		•			•	•		•		•	•	Tree of transition matrices	150
Meldex/ Greenstone	•	•		•		•							•	•		none	9,354
Musipedia	•	•		•		•							•			Vantage objects	> 30,000
notify! Whistle	•	•		•		•			•			•				Inverted files	2,000
Orpheus		•		•		•	•		•	•		•		•		Vantage objects	476,000
Probabilistic "Name That Song"		•		•		•								•	•	Clustering	100
PROMS		•		•	•	•			•			•				Inverted files	12,000
Cornell's "QBH"	•			•		•							•			none	183
Shazam	•		•		•		•	•								Fingerprints are indexed	> 2.5 million
SOMeJB	•		•			•	•								•	Tree	359
SoundCompass	•			•		•			•			•				Yes	11,132
Super MBox	•			•		•			•			•				Filtering	12,000
Themefinder		•		•	•				•				•	•		none	35,000

Monday, June 25, 2012

MIR Application **Design Stages**

- Considerations
 - Content format
 - Low-level analysis procedures
 - High-level derived features
 - DB design
 - Application flow and integration
- Design Issues
 - System architecture and design impacted by each of these decisions.

Content Format

- Impacts all levels of system
 - Data volume, storage options, analysis DSP, DB design, etc.
- Systems may or may not maintain original source content (vs. metadata)
- Systems may preserve several formats of source and metadata (n-tier)
- This is typically a given rather than a design option

Content Formats

- Audio-based
 - Properties/volume of source recordings
 - MP3/AAC/WMA decoders
- MIDI-based
 - Problems with MIDI, assumptions to make
 - Human-performed vs "quantized" MIDI
- Score image based
 - Useful, but not treated here genre specific.
- Formal language-based
 - SCORE, SMDL, Smoke, etc.
 - MusicXML

Numerical Processing

- Data Reduction, Smoothing
- Correlation, Grouping
- Princ./Indep. Component Analysis
- Audio Segmentation and Musical Form
- Clustering and Classification

Typical Processing Stages

Input processing

- Streaming, decompression, reformatting
- Signal segmentation, windowing in time/freq
 - window size, share, overlap
- 1st-pass windowed feature extraction
 - Basic time-, freq-domain features
- 2nd-pass feature processing
 - Feature massaging, smoothing, pruning
 - 2nd-pass features (tempo, segmentation)
- Post-processing, data output
 - Many options

Signal Analysis

- Time-domain Audio Analysis
 - Windowed RMS Envelope Extraction
 - Beat Detection and Rhythm Analysis
 - Time-based signal segmentation
- Frequency-domain Analysis
 - Pitch Detection Techniques
 - Spectral Analysis and Interpretation
 - Spectral Peaks and Tracking
 - Other Spectral Measures
- Other Kinds of Analysis: Wavelets
- Cross-domain analysis

Mel Frequency Cepstral Coefficients (32 bit floating point data)

Real Applications

- Query systems, browsers, and MIR frameworks
- DBMS issues
- Machine Learning
- Informed tools
- Stand-alone delivery applications

Implementation example

Databases & Applications

- Searching, Indexing, and Players
- Audio Summarization and Thumb-nailing
- Content Matching and Finger-printing
- Data Clustering and Genre Classification
- Other Applications

Database Technology

- Database Designs: Schema vs. None?
- Relational DBMS (MySQL/Oracle/PostgreSQL)
 - Fixed table-formatted data
 - Few data types (number, string, date, ...)
 - One or more indices/table (part of DB design, application-specific, impacts performance)
 - Cross-table indexing and joins
 - SQL examples (create, insert, update, select)
- Media data (historically images)
 - Volume (large single items)
 - Format (items no known structure)
 - Content and metadata (required for usage)
 - Handling of Large/Dynamic Feature Vectors (MongoDB)
- Consider Application Requirements and Design

Feature-vector Design

Application Requirements

- Labeling, segmentation, etc.
- Derive feature vector from the app requirements
- Kinds/Domains of Features
 - Time-domain
 - Simple features, onset detection
 - Rhythm, segmentation
 - Frequency-domain
 - Spectrum, spectral statistics
 - Pitch, chroma, key

(See e.g: http://www.create.ucsb.edu/~stp/PostScript/PopeHolmKouznetsov_icmc2.pdf)

Feature Vectors and Indexing

Feature = derived (numerical) parameter

- Feature vector = list of features for a single point/window in time, or average for an entire selection
- Feature table = list of feature vectors for several time slices (not always used/stored)

Example Features

Features:

- Time-domain, low-level
 - Windowed RMS amplitude
- Time-domain, high-level
 - Tempo, beat structure, segmentation
- Frequency-domain, low-level
 - Pitch, spectrum, spectral peaks
- Frequency-domain, high-level
 - Peak track birth/death statistics, instrument ID
- Many other possibilities (see below)

Feature Vector Examples

Field	Bringin' Da Noise	I'll Be Your Everyth	. Weighted	
Volume Width	48.126621	47.903584	0.182064596871	and a second
LPC Avg-Track-Dur	260.071	291.654	0.246736659056	T
Bass Loudness	-3.82097	-3.48169	1.151592910141	
Spectral Contrast	17.8124	27.7138	1.260984294687	
LPC Track-Harmo	1.15606	1.10925	1.386355020613	
BusyMid	399.87873138	382.9394489400	2.090529929650	
Freq Max	0.579932	0.629061	2.756166578401	
Average Volume	34.344021	37.742193	3.0927788888824	1
Freq Avg	0.004416	0.004209	3.273244781783	1
Tempo	111.966	105.943	3.872166433080	1
LPC Peaks-Per-S	258.61	229.837	5.144795608229	1
LPC Freq-Deviation	6257.06	5584.61	5.146495852036	1
% Freq Over Avg	24.050509	21.898819	5.313072728419	I
Spectral Variety	57.0208	97.2588	5.591531132924	1
BusyLow	412.44579522	341.0040312499	6.891936456624	
Spectral Saturation	0.712956	0.651703	7.476978442821	1
LPC Tracks-Per-S	56.5431	48.2628	7.601499754612	
Snare Strength	0.328855	0.235586	8.982285629537	
Overall Grunge	0.248330529671	0.067614786427	12.20650524954	
% Rhythm	99.48301435406	97.82279545454	N/A	1
BEAT: hiquot	5.2	5.8	N/A	
BEAT: maxscore	1550.0	926.0	N/A	1
BEAT: spikewon	0.0	0.0	N/A	
DEAT window	20.0	20.0	NIA	1

Example: FMAK3 Feature Table

class FeatureTable {

public:

// FeatureTable is a root object (no parents)

	// Data 1	members (instance variables)
<pre>float mTimeStamp;</pre>	// When	do I start?
<pre>float mTimeDur;</pre>	// How l	ong a time-span do I represent?
	// Time-	domain features
unsigned int mRMSWindowSize;	// Size	of RMS window
<pre>FeatureDatum mRMS;</pre>	// Recta	ngular-windowed RMS amplitude
FeatureDatum mPeak;	// Max s	ample amplitude
<pre>FeatureDatum mLPRMS;</pre>	// RMS au	mplitude of LP-filtered signal
<pre>FeatureDatum mHPRMS;</pre>	// RMS and	mplitude of HP-filtered signal
<pre>size_t mZeroCrossings;</pre>	// Count	of zero crossings
<pre>FeatureDatum mDynamicRange;</pre>	// RMS d	ynamic range of sub-windows
<pre>FeatureDatum mPeakIndex;</pre>	// RMS p	eak sub-window index
FeatureDatum mTempo;	// RMS/F	WT instantaneous tempo estimate
<pre>FeatureDatum mTimeSignature;</pre>	// Time	signature guess
FeatureDatum mBassPitch;	// Bass j	pitch guess in Hz
unsigned int mBassNote;	// Bass :	note (MIDI key number) guess
FeatureDatum mBassDynamicity;	// Bass :	note dynamicity (size of histogram)
	// Spati	al features
FeatureDatum mStereoWidth;	// L/R d	ifference
<pre>FeatureDatum mSurroundDepth;</pre>	// Front	Surround difference
FeatureDatum mCenterDistinction	n; // Ce	nter vs. L/R sum difference

Example: FMAK3 Feature Table, cont'd

// Frequency-domain features unsigned int mFFTWindowSize; // Size of FFT window FtVector mSpectrum; // Hanning windowed FFT data (1024 points, or NULL) FtVector mReducedSpectrum; // 1-octave FFT data (10-12 points) FtVector mBandSpectrum; // 2.5-octave FFT data (4 points -- spectral bands) FPartialVector mSpectralPeaks; // List of major spectral peak indeces FPartialVector mSpectralTracks; // List of tracked peak frequencies FeatureDatum mSpectralCentroid; // Spectral centroid measure FeatureDatum mSpectralSlope; // Spectral slope measure FeatureDatum mSpectralVariety;// Inter-frame spectral variety measure // Hi-frequency properties FeatureDatum HiFreqBalance; // Relative HF level FeatureDatum HiFreqVariety; // HF inter-frame spectral variety FeatureDatum HiFreqCorrelation;// Correlation between HF and audio-band tracks FeatureDatum mSTrackBirths; // Spectral peak track births and deaths // LPC features unsigned int mLPCWindowSize; // Size of LPC window FPartialVector mLPCFormants; // List of LPC formant peaks // List of tracked LPC formants FPartialVector mLPCTracks; FeatureDatum mLPCResidual; // LPC residual level (noisiness) // Pitch estimate FeatureDatum mLPCPitch; // LPC formant peak track births, deaths FeatureDatum mLTrackBirths; // Wavelet-domain (FWT) features FtVector mWaveletCoeff; // FWT coefficient or NULL FtVector mWTNSpectrum; // Reduced FWT HiFreq noise spectrum FtVector mWTTracks; // List of tracked FWT peaks // FWT noise estimate FeatureDatum mWTNoise;

Intermission

To be continued!

Analysis Domains and Transformations

- Time-domain Audio Analysis and Applications
 - Windowed RMS Envelope Extraction
 - Beat Detection and Tempo Analysis
 - Time-based signal segmentation
- Frequency-domain Analysis
 - Pitch Detection Techniques
 - Spectral Analysis and Interpretation
 - Spectral Peaks and Tracking
 - Other Spectral Measures
- Other Kinds of Analysis: Wavelets
- Cross-domain analysis

Feature Extraction and Signal Analysis

Multi-step process:

- Read input
- Apply window
- Derive several low-level features
- Map, derive next-level features
 - Possible heuristics determine which nextlevel features are relevant
- Prune data when appropriate

Time-domain Features

RMS, Peak

$$RMS = \sqrt{\frac{1}{N}\sum_{n}^{N} x_{n}^{2}}$$

- LPF/HPF RMS

 e.g., F < 200 Hz, F > 2000 Hz
- Dynamic range - What window for calc?
- Zero-crossing rate (time- or freq-domain?)
- Higher-level statistics
 - Mean/variance
 - Variance of sliding windows
 - Spacing of peaks/troughs
 - Many other options
- Time-domain onset-detection & beats

Time Sequences, Windowing

Read audio input

- Vector multiply by window function
- Perform analysis
- Step to next window
- Hop size not normally = window size (overlap)
- Window features
 - Main lobe width, side
 lobe level, side lobe slope

Time-domain Audio Analysis and Applications

- Use rectangular window if no overlap or triangular window if overlapping
- Medium-sized window (10 Hz or better resolution desired)
- Derived windowed RMS value
- Count zero crossings

Windowed RMS Envelope Extraction

pseudo-code for envelope extraction:

- Outer loop for windows
- Inner loop to run window and compute RMS value
- Silence threshold (noise gate)
- Note-on trigger (peak detector)
- Example sound: piano sample, drum loop

Optional Time-domain Steps

- Pre-filter to get low-freq and high-freq RMS values
- Process stereo channels to get M/S (sum/ difference) signals
- Noise detection
- Silence detection

Windowed Feature Comparison

Monday, June 25, 2012

Windowed Amplitude Envelopes

- Choice of window size, hop size, window function shape
- May use several frequency bands (kick drum vs. hi-hat)
- Useful for silence detection, beat tracking, simple segmentation, summarization, etc.
- Simple, effective, well-understood techniques, many options

Frequency-domain Features

Spectrum, Spectral bins

- Window/hop sizes
- Improving spectral data: phase unwrapping, time realignment
- Spectral measures (statistical moments)
- MFCCs
- Peak-picking and peak-tracking
- Pitch-estimation and pitch-tracking

Frequency-domain Analysis

- Short-time Fourier transform
 - Configuration options and trade-offs
 - Interpretation/weighting of spectral bins (perceptual scales)
- Other frequency-domain techniques
 - Filter banks
 - Linear prediction
 - Filter matching
- Loads of options

Speech Spectrogram

- Kinds of spectral plots
- Features

Windows and their Spectra

- Trade-offs between window characteristics
- Different windows for different analysis domains

Advanced Windows for Spectral Analysis

Windowing and the STFT

The Pitch/Time Trade-off

Monday, June 25, 2012

Harmonics and Formants

Source/Filter – instrument resonances

Composite Spectra

How to disambiguate?

- Track birth/death statistics
- Vibrato (see figure)
- Statistical techniques

Spectral Analysis and Interpretation

- Spectral data extraction
 - Base frequency
 - Overtone spectrum
 - Formants, resonances, regions
 - Instrument signatures
- Spectral statistics
 - Peak, mean, average, centroid, slope, etc.
 - Spectral variety, etc.

Spectral Moments

Spectral Centroid - (Mean) 1st moment

- Variance 2nd moment
- Skew 3rd Moment
- Kurtosis 4th Moment

Spectra as Time-varying

- Track peaks/regions between frames (requires thresholds of change)
- Model the dynamicity (e.g., formant trajectory, vibrato extraction)

Spectral Peaks and Tracking

- Peak finding (remember autocorrelation?)
- Peak discrimination
- Peak continuation: tracks and guides
- Derived statistics
- Problem cases

Peaks and Tracks

- Peak-finding
 - Thresholds,
 distances, heuristics
- Peak-continuation
 - Inter-frame distances and guides
 - Dropped frames and stretching
 - Track birth/death criteria

Spectral Peak-Tracking Example

Monday, June 25, 2012

Spectral Peak Detection Algorithm

From Blum et al. patent # 5,918,223

Spectral Smoothness Measure

Smoothed Spectrum Types

55

Pitch Detection Techniques

- Find the period of a "periodic" signal
 - First guess whether or not it's periodic
- Simple techniques work for many signals
 - Zero-crossings (with direction, slope)
 - Autocorrelation (with range limitation)
- But it's hard to tell when they fail
 - Random data, silence
 - Octave over/under-tone errors

Filter-based Pitch Detection

Simple adaptive process for single-frequency source with strong fundamental (i.e., many, but not all, instruments and voices)

- Easily implemented in analog circuitry
- Many variations

Auto-Correlation

- Slide a signal across itself, taking the vector product at each step
- This AC array has a peak at 0, and the period of the signal
- No peaks for noise

Harmonic Product Spectra

- Decimation of FFT spectra, summation, and spectral peak location
- Assumes overtones are significant, not that fundamental is

Equal-loudness Curves

Fletcher-Munson vs. Robinson-Dadson

Monday, June 25, 2012

Frequency Regions and Scaling

Mel-warped frequency bands

Mel-Freq Cepstral Coefficients

Steps:

- Signal
- FT
- Log magnitude
- Phase unwrapping
- FT (or DCT)
- Interpretations
 - "ceps" = "Spec"trum of spectrum
 - "Quefrency"
 - Mel-scale
 - Mel-scale filters

Instead of AC, use FFT or DCT of PDS

 Leads to interesting statistics of higher-level spectral properties, see next section

MFCC Analysis

Analogy

- Start with log spectrum of mixed complex tones: several sets of related partial peaks
- Take, e.g., the autocorr.
 of the FFT PDS
- Warped frequencies of peaks correspond to fundamental frequencies of overtone series

Comparison With LPC (by Andrianakis & White)

Spatial-domain Features

- M/S Encoding (stereo sum & difference)
- Surround-sound processing
 - L/R vs C
 - L/R vs Ls/Rs
- Frequency-dependent spatial separation
- Higher-dimensional sources
- Stem tracks

Other Feature Domains

- Other time-domain features
 - Beats, beat histograms
- Other frequency-domain features
 - Fluctuation patterns
- Other time-frequency transforms
 - Filter banks
- Wavelets
 - Trades off temporal & spectral resolution
- Linear Predictive Coding
 - polynomial representation

APIs for MIR Tools

Marsyas: G. Tzanetakis (11), flexible tool set, scripting language, segmentation and classification

- LibOFA: Holm/Pope (00), simple FV for unique ID comparing to a large pre-analyzed database
- D2K/M2K: West/MIREX (06), Java-based GUI related to D2K, many apps.
- LibTSP: P. Kabal (00), C routines for DASP & IO
- CSL: STP/MAT (05), C++ class library for DASP, synthesis, control, spatialization and MIR

APIs – 2

- Libxtract
- Aubio
- SonicVisualizer plug-ins
- Loris
- SPEAR
- CSL
- LibTSP

Spectral Tools

- **SPEAR**
- Loris
- Marsyas
- Sonic visualizer

Review

MIR Apps

- Signal analysis processing chains
- Feature vector design from app requirements
- Kinds of audio features
- Basic feature statistics