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Outline
• Modelling Rhythm Cognition.
• Onset-detection.
• Beat-tracking & Tempo-derivation.

• Autocorrelation.
• Beat Spectral approaches.
• Histogram models.

• Meter determination.
• Applications, Exercises
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– Why?
– Tempo and Beat are strong discriminators in 

judgements of music similarity, and even genre 
(Tzanetakis & Cooke 2002, Dixon et. al 2004).

– Understanding the beat facilitates understanding 
the importance other musical elements: 
– Relative importance of tonal features.
– Diatonic or chromatic character of a piece.
– Complexity of a piece.

– Applications: musicology & ethnomusicology, 
automatic DJing, query by example, composition 
tools.

Beat-finding and Tempo Derivation
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Modelling Rhythm
– “...the systematic patterning of sound in terms of 

timing, accent, and grouping.” (Patel 2008 p.96)

– (Not always periodic patterns)

– Accent sources include: dynamics, melody, 
harmony, articulation, timbre, onset asynchrony 
etc.

– Consists of hierarchical and figural (proximal) 
temporal structures.
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Measuring Beat
• Inter-Onset Intervals (IOI)
• Inter-Beat Interval (IBI)
• Tempo: frequency of the beat (BPM) = 1/IBI
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Musical Time
• Multiple simultaneous levels of musical time

– Tactus: the foot-tapping rate.
– Tempo: estimated from tactus, typically median 

IBI.
– Meter: Periodic perceived accentuation of beats. 
– Tatum: Shortest interval between events.

• Rubato - change in tempo during 
performance to emphasise structure.
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Rhythmic Strata
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– Musical rhythm can be considered as 
composed of a hierarchy of temporal levels 
or strata (Yeston 1976, Lerdahl & Jackendoff 1983, 
Clarke 1987, Jones & Boltz 1989).

From 
Jones & 
Boltz ‘89
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Metrical Structure

8

■ Meter is expressed as a hierarchical grouping in time. e.g 
Subdivision of 4/4 (4 beats to the bar):

Martin 1972, 
Longuet-Higgins & 
Lee 1982, Honing 
2002
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Meter
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■ Subdivision of 3/4 (3 beats to the bar):
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Meter
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■ Subdivision of 6/8:
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Meter
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(Courtesy Olivia Ladinig) 

• Meter is expressed in Western music as 
time-signatures (4/4, 3/4 etc).

Subdivision of 4/4 (4 beats to the bar):
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Meter
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(Courtesy Olivia Ladinig) 

• Meter is expressed in Western music as 
time-signatures (4/4, 3/4 etc).

Subdivision of 4/4 (4 beats to the bar):
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Hierarchical Grouping: Meter

– Meters are argued to arise from the 
interaction between temporal levels (Yeston 
1976).
– Therefore a meter implies two frequencies: the 

pulse rate and the measure (“bar”) rate.
– The tactus is considered as the most salient 

hierarchical level, consistent with the 
notated meter, or the foot tapping rate (Desain 
& Honing 1994).
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Mental schemas for Meter
– Metrical Profiles (Palmer & Krumhansl 1990)

– Pre-established mental frameworks (“schemas”) 
for musical meter are used during listening.
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Mental schemas for Meter
– Metrical Profiles (Palmer & Krumhansl 1990)

– Pre-established mental frameworks (“schemas”) 
for musical meter are used during listening.
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From Palmer & 
Krumhansl (1990). 
Mean goodness-of-fit 
ratings for musicians 
(solid line) and 
nonmusicians (dashed 
line).
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Syncopation

– Listener judgements of 
musical complexity are 
correlated with degree of 
syncopation (i.e. note 
location within the beat) 
(Shmulevich & Povel 2000, 
Smith & Honing 2006).

– Compared judgements 
against formal model of 
syncopation (Longuet-
Higgins & Lee 1984).
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Active Rhythm Perception
– Viewed as a resonance between top down and 

bottom-up processes (see e.g Desain & Honing 2001):
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Onset-detection vs. Beat-detection
• Traditionally beat detection relied on 

accurate onset detection.
– i.e from MIDI data for Score Following 

(Dannenberg 1991, Cont 2009).

• This can be difficult for MIR from polyphonic 
audio recordings.
– A higher freq. Onset Detection Function from 

the entire audio signal can be used for beat 
tracking without all onsets being detected (Schloss 
1985, Goto & Muraoka 1994, Scheirer 1998).
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The Onset Detection Function
• Represents:

– Ideal: Each note that contributes to the beat.
– Practice: Combined envelopes of all notes.

• Tends to emphasise:
– strong transients (i.e. impulsive sounds)
– loud notes
– bass notes
– wide-band spectrum events (e.g. snare drums).
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Dixon’s Envelope Onset Detection
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Example Onset 
Detection

• Pre-processing
• Filtering
• Down-sampling
• Difference function
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Common ODF methods
– e.g (Bello et. al 2005, Dixon 2007, Peeters 2007)
• Optional pre-rectification filtering.
• Envelope mixture from rectification/energy.
• Smoothing of envelope (LP filter).
• Down-sampling for data reduction.
• d(log E)/dt highlights perceived impulses.
• Weighting higher frequencies captures wide-

band events.
• Spectral difference between STFT frames.
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Existing Beat tracking Models
– Parsing metrical grammars (Longuet-Higgins and Lee 

1982).
– Forward projection of likelihood (Desain 1992).
– Autocorrelation (Desain & Vos 1990, Brown 1993, Eck 

2006).
– Oscillator bank entrainment (Toiviainen 1998, Large 

& Kolen 1994, Ohya 1994, Miller, Scarborough & Jones 1989).
– Frequency of Onset Function: (Scheirer 1998, 

Klapuri et al. 2006, Peeters 2007, Davies & Plumbley 2007).
– Dynamic time warping of beat interval (Dixon 

2001, Ellis 2007).
– Multiresolution Approaches (Todd 1994, Todd, 

O’Boyle & Lee 1999, Smith & Honing 2008).
21
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Approaches to beat tracking considered

• Autocorrelation 
– Finding Periodicity in the ODF.

• Beat Spectrum approaches:
– Spectrum of the ODF.
– Multi-resolution representation of ODF.

• Dynamic Programming approaches.
– Efficient selection of correct beat interval.
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Autocorrelation of ODF
• AC peaks ⇒ time lags 

where signal is most 
similar to itself.

• Captures periodicities of 
ODF.

• Does not capture rubato 
well.

• OK for metronomic 
music, not for those with 
variation in tempo.
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Windowed RMS and its 
Autocorrelation (for drum loop)
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Max peak = 2-bar loop

1/4 note

1st peak = 1/8 note
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• Filterbanks of tuned 
resonators (i.e. “rhythmic 
reverb”) of the ODF.

• Resonator whose 
resonant F matches rate 
of ODF modulation will 
phase-lock.

• Resonator outputs of 
common freq summed 
across subbands:

Beat spectrum methods (Scheirer 1998)
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Beat Tracking by Peeters (2007)
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Peeters 2007
• Filtered, rectified spectral energy envelope 

– Onset detection function.
• Combined Fourier & autocorrelation analysis

– DFT of ODF, ACF of ODF
– ACF result mapped into Fourier domain.
– DFT * Freq(ACF) - disambiguates periodicities.
– Octave errors occur in two different domains.

• Viterbi decoding of joint estimates of meter 
and tempo.

27

Time steps (time windows)

Combined 
tempo and 

meter
states
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Multiresolution Representations
– Auditory-Motor “Primal Sketch” from Sombrero 

filter banks (Todd 1994, Todd, O’Boyle & Lee 1999) 
– Continuous wavelet transform of rhythmic 

signals (Smith 1996, Smith & Honing 2008)
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Continuous wavelet transform (CWT) decomposes 
(invertibly) a signal onto scaled and translated 
instances of a finite time “mother function” or “basis”.

Wavelet time-frequency analysis
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Continuous wavelet transform (CWT) decomposes 
(invertibly) a signal onto scaled and translated 
instances of a finite time “mother function” or “basis”.

Wavelet time-frequency analysis
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Continuous wavelet transform (CWT) decomposes 
(invertibly) a signal onto scaled and translated 
instances of a finite time “mother function” or “basis”.
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Wavelets for Rhythm (Smith & Honing 2008)
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Wavelets for Rhythm (Smith & Honing 2008)

• The CWT enables representation of temporal 
structure in terms of time varying rhythmic 
frequencies.
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Wavelets for Rhythm (Smith & Honing 2008)

• The CWT enables representation of temporal 
structure in terms of time varying rhythmic 
frequencies.

– Produces magnitude and phase measures 
which reveal time-frequency ridges 
indicating the frequencies present in the 
input rhythm signal (collectively a skeleton, 
Tchamitchian & Torrésani ’92).
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Implementation
• Implemented as a set of complex value 

bandpass filters in Fourier domain.
• Scaling produces a “zooming” time window 

for each frequency “scale”.
• Creates simultaneous time and frequency 

localisation close to the Heisenberg 
inequality.
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Memory Based Tactus
Wavelet rhythm analysis is also applicable to 
continuous onset salience traces from 
auditory models (Coath, et. al 2009).
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Memory Based Tactus
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Memory Based Tactus

• Uses lossy windowed integrator to amass 
tactus likelihood.
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Memory Based Tactus

• Uses lossy windowed integrator to amass 
tactus likelihood.

• Suppress all but the magnitude coefficients 
of the extracted tactus ridge.
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Memory Based Tactus

• Uses lossy windowed integrator to amass 
tactus likelihood.

• Suppress all but the magnitude coefficients 
of the extracted tactus ridge.

• Invert the extracted tactus ridge and original 
phase plane back to the time domain. 
Creates a single beat oscillation.
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Memory Based Tactus

• Uses lossy windowed integrator to amass 
tactus likelihood.

• Suppress all but the magnitude coefficients 
of the extracted tactus ridge.

• Invert the extracted tactus ridge and original 
phase plane back to the time domain. 
Creates a single beat oscillation.

• Nominating a starting beat and noting its 
phase, all other foot-taps are generated for 
the same phase value.
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Foot-tapping to singing
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• Singing examples of Dutch folk songs from 
the "Onder de Groene Linde" collection 
(Meertens Institute) using memory based 
derivation of tactus:

Foot-tapping to singing
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• Singing examples of Dutch folk songs from 
the "Onder de Groene Linde" collection 
(Meertens Institute) using memory based 
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• Singing examples of Dutch folk songs from 
the "Onder de Groene Linde" collection 
(Meertens Institute) using memory based 
derivation of tactus:

• Example 1:

Foot-tapping to singing

Original...
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• Singing examples of Dutch folk songs from 
the "Onder de Groene Linde" collection 
(Meertens Institute) using memory based 
derivation of tactus:

• Example 1:

Foot-tapping to singing

+ Accompaniment.Original...
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• Singing examples of Dutch folk songs from 
the "Onder de Groene Linde" collection 
(Meertens Institute) using memory based 
derivation of tactus:

• Example 1:
• Example 2: ...Original + Accompaniment.

Foot-tapping to singing

+ Accompaniment.Original...
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• Goal to generate beat times that match 
onsets and have near constant IBI.

• F(Δt, τ) = - log(actual IBI/ideal IBI)2.
• Ideal IBI from tempo estimation from 

weighted autocorrelation.
• Recursively calculates max C*(t) starting from 

t=0-2τ, finding times of max(F + C*(τ)).
• Chooses final max C*(t) from last interval, 

backtraces the saved times.

Dynamic Programming (Ellis 2007)

35

C ftigð Þ ¼
XN

i¼1

OðtiÞ þ a
XN

i¼2

Fðti % ti%1; tpÞ;
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Beat Histograms
– Summarises rhythmic behaviour 

of a piece for similarity 
measures, classification etc.

– Pampalk, Dixon & Widmer (2003)
– Uses summation of comb 

filters of Scheirer, not just 
argmax, for comparison.

– Tempo histogram is weighted 
using a preference model (van 
Noorden & Moelants 1999).

– PCA used to reduce 2000 ➪ 
60 dimensions for matching.

36

(from Scheirer 1998)
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Beat Histograms (Tzanetakis and Cook, 2002)

– Similar approach 
using 
Autocorrelation.

– Add the amplitudes 
of the top 3 AC 
peaks to histogram 
at each frame.

– Beat histograms are 
reducible to single 
features including 
sum and peak/mean.
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Fluctuation Patterns
• Also summarises rhythmic behaviour.
• FFT of envelope: the fluctuation (AM) 

frequency of the perceived loudness of 
critical bands (log spectral) (represented on 
the Bark scale).

• 20 Bark x 60 BF matrix ➩ PCA for matching

38

0.4 

11.5Rock DJ

0.4

9.9In Stereo

0.2

3.1Yesterday

Median of the fluctuation patterns of examples of (L-R) Heavy Metal, 
Dance and Pop. Y axis shows critical bands (Bark 1-20), X axis shows beat 
frequencies 0-10Hz (0-600BPM) From Pampalk, Rauber & Merkl, (2002)
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Meter estimation
• Requires measure (“bar”) period and phase 

(downbeat) identification.
• Measure period reasonably successful, albeit 

with octave errors.
• Downbeat identification much harder!
• Genre dependent.

39
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Meter Estimation Systems

40

c. 2006
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Joint estimation of chord  change 
and downbeat (Papadopoulos & Peeters 2008)

• Hidden Markov Model:
– States: 24 Major & Minor triads * 4 positions within 

the Measure (pim) for (4/4 time signature).
– Computes chroma features at each beat.
– Assumes independence between beat position and 

chord type: P(O|s) = P(O|c) P(O|pim)
– Transition probabilities enforce sequential beats & 

likelihood of chord transitions.
• Optimal state determined by Viterbi decoding.

– Chord progression detection improved using 
metrical knowledge.

– Identification of downbeats aided by harmonic 
information.
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Review

• Modeling rhythm requires representing 
perception.

• Onset detection functions capture significant 
events.

• Multiple approaches to beat-tracking 
represent competing perceptual models.

• Beat-tracking enables higher-level rhythmic 
features (FP, BH).

• Beat-tracking enables multi-modal 
estimation (e.g., down-beat from chords).

• References: http://ccrma.stanford.edu/workshops/mir2011/BeatReferences.pdf
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