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Traditional Music 
Representations  
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Pitch content  
Ø  Harmony, melody = pitch concepts  

Ø  Music Theory             Score = Music 

Ø  Bridge to symbolic MIR  

Ø  Automatic music transcription  

Ø  Non-transcriptive arguments 
Split the octave  
to discrete  
logarithmically 
spaced intervals 
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MIDI   
Ø  Musical Instrument Digital Interfaces 

Ø  Hardware interface 
Ø  File Format  

Ø  Note events 

Ø  Duration, discrete pitch, "instrument" 
Ø  Extensions 

Ø  General MIDI 
Ø  Notation, OMR, continuous pitch 
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Representations 
Ø  Score  

Ø  Discrete, high level abstraction,  
explicit structure, no performance info 

Ø  MIDI  
Ø  Discrete, medium level of abstraction, explicit 

time but less structure, targeted to keyboard 
performance 

Ø  Audio 
Ø  Continuous, low level abstraction, timing and 

structure implicit  
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Psychoacoustics 

Ø  Scientific study of sound perception  

Ø  Frequently limits of perception  

Ø  Range (20Hz – 20000Hz)  
Ø  Intensity (0dB-120dB)  
Ø  Masking  

Ø  Missing fundamental (2xf, 3xf, 4xf) give 
humans the impression of 1xf pitch  
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Pitch Detection  

P 

Time-domain 
Frequency-domain 
Perceptual 

Rhythm -> ~20 Hz Pitch 
(courtesy of R.Dannenberg – Nyquist) 

Pitch is a PERCEPTUAL attribute  
correlated but not equivalent to  
fundamental frequency 
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Pitch Perception I  

Ø  Pitch is not just fundamental frequency 

Ø  Periodicity or harmonicity or both ?   

Ø  Human judgements (adjust sine method)  

Ø  1924 Fletcher – harmonic partials missing fundamental 
(pitch is still heard)  

Ø  Examples: phone, small radio 
Ø  Terhardt (1972), Licklider (1959)  

Ø  duplex theory of pitch (virtual & spectral pitch)  
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Pitch Perception II  

Ø  One perception – two overlapping mechanisms 

Ø  Counting cycles of period  < 800Hz 
Ø  Place of excitation along basilar membrane > 

1600 Hz  

FFT Pick sinusoids weighting / masking candidate  
generation 

common divisors most likely pitch 
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Time Domain  

C4 Clarinet Note  C4 Sine Wave 

# zero-crossings sensitive to noise – needs LPF 
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AutoCorrelation 

Efficient computation possible for powers of 2 using FFT  

F(f) = FFT(X(t)) 
S(f) = F(f) F*(f) 
R(l) = IFFT(S(f))  
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Average Magnitude 
Difference Function 

No multiplies –  
more efficient for fixed point 
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Frequency Domain 

Fundamental frequency (as well as pitch) will correspond to peaks in the  
Spectrum. The fundamental does not necessarily have the highest amplitude.  

Sine C4 Clarinet C4 
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Multiple Pitch 
 Detection  

> 1kHz 

< 1kHz 

Half-wave Rectifier 
LowPass 

Periodicity 
Detection 

Periodicity 
Detection 

SACF  
Enhancer 

Pitch Candidates 

Tzanetakis et al, ISMIR 01 Tolonen and Karjalainen, TSAP00  
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Plotting over Time  

A4, B4, C4 
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Polyphonic  
Transcription 

Original Transcribed 

Mixture signal Noise Suppression 

Klapuri et al, DAFX 00 

Predominant pitch  
estimation 

Remove detected  
sound  

Estimate # voices 
iterate 
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Perceptual Pitch 

Scales 
Ø  Perception of frequency 

Ø  Various perceptual scales based on JND 

Ø  Typically linear below a break frequency 
Fb and logarithmic above  

Ø  Popular choices for break frequency (1000, 
700, 625, 228) 

Ø  What the hell is a mel ?  
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Mel Mapping 
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Musical Pitch 

Ø  Tuning = different ways of subdividing the 
octave logarithmically (as ratios) into 
intervals  

Ø  Tension between harmonic ratios, 
modulation to different keys, regularity, 
pure fifths (ratio of 1.5 or 3:2)  

> Many tuning systems have been explored 
through history  
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Tuning systems 

Ø  Just intonation (1:1, 9:8, 5:4, 4:3, 3:2, 5:3, 
15:8, 2:1) 

Ø  Pythagorean tuning all notes derives from 
3:2 (1:1, 256:243, 9:8,…)  

Ø  Equal temperament  

Ø  All notes spaced by logarithmically equal 
distances (100 cents). Each step is 
higher by 21/12 (1.0594) from previous.  
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Notation  

Ø  A, B, C, D, E, F, G  

Ø  Number indicate octave 

Ø  A4 is 440Hz and MIDI number 69  
Ø  Do, Re, Mi, Fa, Sol, La, Ti  

Ø  MIDI (0-128)  

Ø  m = 69 + 12 log2(f/440) 
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Pitch Helix 

Linear pitch (i.e log(frequency) is wrapped 
around a cylinder – in order to model  
the octave equivalence.  
 
Pitch perception has two dimensions:  
Height: naturally organizes pitches from  
low to high 
Chroma: represents the inherent circularity 
of pitch 
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Pitch Histograms 

C G C G 

(7 * c ) mod 12 

Circle of 5s 
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Chroma 
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Calculating Pitch  
Profiles – Warping  

Ø  Calculate FFT of a signal segment  

Ø  Map each FFT bin to Hertz  

Ø  512 time domain samples -> 256 FFT bins @ 
22050 Hz. Each bin will be 11025/256 ~= 43 
Hz  

Ø  f = k * (srate / fft_size) 

Ø  Map each bin (in Hertz) to MIDI:  

Ø  m = 69 + 12 log2(f/440) 
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Pitch Histogram 

Ø  Average amplitudes of bins mapping to the 
same MIDI note number  

(different averaging shapes can be used)  

Ø  If desired fold the resulting histogram, 
collapsing bins that belong to the same 
pitch class into one  

Ø  Frequently more than 12 bins per octave to 
account for tuning/performance variations  
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Chroma Profiles 

Sine C4 Clarinet C4 

0 bin is A and spacing is chromatic  
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Chromagrams 
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Time Alignment 

Ø  ARTHUR (Foote 2000) 

Ø  Two sequences of energy contours 
corresponding to two performances of the 
same symphony 

Ø  We are given two pitch sequences of the 
same melody sung by different singers  

Ø  How can we find if they match ?  
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Dynamic Time  
Warping 
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Music Representations 

Ø  Symbolic 
Representation 
–  easy to manipulate 
–  “flat” performance 
 

Ø  Audio Representation 
–  expressive 

performance 
–  opaque & unstructured 

    Align 

POLYPHONIC AUDIO AND MIDI 
ALIGNMENT 
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Similarity Matrix 

Similarity Matrix for Beethoven’s 5th Symphony, first movement  

Optimal 
Alignment 

Path 

Oboe solo: 
• Acoustic Recording 
• Audio from MIDI 

(Duration: 6:17) 

(D
ur

at
io

n:
 7

:4
9) 

POLYPHONIC AUDIO AND MIDI 
ALIGNMENT 



33 Copyright 2011 G.Tzanetakis 

Performance  
matching 

A B C D 

Power plot 

24d “pitch”  
vectors from FFT 

Nearest neighbor with  
Locality-Sensitive Hashing  
Identical, different copy,  
different vocals,  
different performance (80%) 

Characteristic sequence 

Yang, WASPAA 99 

Foote, ISMIR 00 

Dynamic programming 
Symphonies  
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Structural Analysis 

Ø  Similarity matrix 

Ø  Representations 

Ø  Notes 
Ø  Chords 
Ø  Chroma  

Ø  Greedy hill-climbing algorithm  

Ø  Recognize repeated patterns 
Ø  Result = AABA (explanation)  

Dannenberg & Hu, ISMIR 2002 
Tzanetakis, Dannenberg & Hu, WIAMIS 03 
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Similarity Matrices 

Satin Doll - MIDI  Satin Doll – Audio-from-midi 
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An example – Naima 
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Perception-based  
approaches 

Ø  Pitch perception 
Ø  Loudness percetion 
Ø  Critical Bands 
Ø  Mel-Frequency Cepstral Coefficients  
Ø  Masking 
Ø  Perceptual Audio Compression (MPEG)  
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The Human Ear 

Pinna 
Auditory canal 
Ear Drum  
Stapes-Malleus-Incus (gain control) 
Cochlea    (freq. analysis) 
Auditory Nerve    ? 

Wave travels to cutoff slowing  
down increasing in amplitude 
power is absorbed  

Each frequency has a position  
of maximum displacement  
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Masking 

Two frequencies -> beats 
                            -> harsh 
                            -> seperate 

Inner Hair Cell excitation 
 
Frequency Masking  
Temporal Masking  
 
 

Pairs of sine waves (one softer) – how much weaker in order to be masked ? 
(masking curves)   wave of high frequency can not mask a wave of lower  
frequency  
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Mel Frequency Cepstral 
Coefficients 

Mel-scale 
13 linearly-spaced filters  
27 log-spaced filters  
 

CF CF-130 
CF / 1.0718 

CF+130 
CF * 1.0718   

Mel-filtering 

Log 

DCT 

MFCCs 
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Discrete Cosine Transform 
Ø  Strong energy compaction 

Ø  For certain types of signals    
 approximates KL transform (optimal)  

Ø  Low coefficients represent most     of 
the signal - can throw high 

Ø  MFCCs keep first 13-20  

Ø  MDCT (overlap-based) used in MP3, AAC, Vorbis audio 
compression 
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   MPEG Audio  
Feature Extraction 

Analysis 
Filterbank 

Psychoacoustics  
Model 

 Available bits  

Perceptual Audio Coding (slow encoding, fast decoding) 

MP3 

Pye                              ICASSP 00  
Tzanetakis & Cook     ICASSP 00 
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Psychoacoustic Model 

Ø  Each band is quantized  

Ø  Quantization introduces noise  

Ø  Adapt the quantization so that it is inaudible 

Ø  Take advantage of masking  

Ø  Hide quantization noise where it is masked 
Ø  MPEG standarizes how the quantized bits are 

transmitted not the psychoacoustic model – (only 
recommended)  
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HMM segmentation 

Hidden 

  p(   |       )  

Observed 

Model  

1 2 

  P(        |        )  

3 4 5 

 t t-1 

Aucouturier & Sandler, AES 01 
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  Locating singing voice 
segments 

Berenzweig & Ellis, WASPAA 99 

Multi-layer perceptron 
2000 hidden units 
54 phone classes 

16 msec 
p(phone class) 

80% accuracy 
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“Classic” multi-stage  
approach 

Grouping Cue 1 

Time-Frequency 
representation 

Short Time Fourier Transform 
Discrete basis: windowed sine waves 

Grouping Cue 2 

Partial Tracking (McAuley & Quatieri)  

Sound source formation: 
grouping of partials based on harmonicity  

PROBLEMS: Difficult to decide ordering, brittle 
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Spectral Clustering 

Ø  Alternative to traditional         point-based algorthms 
(k-means) 

Ø  Doesn’t assume convex shapes 

Ø  Doesn’t assume Gaussians 

Ø  Avoid multiple restarts 

Ø  Eigenstructure of          similarity matrix 
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Sound Source 
Separation using Spectral Clustering 
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 Comparison with  
partial tracking 

MacAuly and Quatieri 
Tracking of Partials 

Proposed  Approach 
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Synthetic Mixtures of 
Instruments 

4-note mixture 

Instrumentation detection based on timbral models 
Martins, et al, ISMIR07 
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“Real world” separation  
results 

                                           
                             

Ø  Mirex database 

Ø  Live U2 

More examples: http://opihi.cs.uvic.ca/NormCutAudio 
                  http://opihi.cs.uvic.ca/Dafx2007 
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Playlist generation 

(s1,s2,s3, ... , sn) 20% slow songs, 80% fast, female jazz singers 

Tewfik, ICASSP 99 
Pachet,  IEEE Multimedia00 
 
 

Constraint-satisfaction problem 
Smooth transitions 

Technical attributes (artist, album, name) 
Content    attributes (jazz singer, brass)  
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Audio Thumbnailing 

Ø  Representative short summary of piece 

Ø  Segmentation-based 
Ø  Repetition-based 

Ø  Hard to evaluate  
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Segmentation-based 
Thumbnailing 

Ø  Begin and end times of a 2 second thumbnail that 
best represents the segment 

" 62% first two seconds of the segment 
" 92% two seconds within the first five seconds 

of the segment 
Ø  Automatic thumbnailing 

" first 5 sec + best effort about 80% "correct" 
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Repetition-based  
thumbnailing 

Thumbnail = maximum repeated segment 

Logan, B.,  ICASSP 00 
Bartch and Wakefield,WASPAA99 

Alternatives: Clustering, HMM  
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Structure from  
similarity 

Feature vector trajectory 
Correlation at various time lags 

Foote et al,            ISMIR 02 
Dannenberg et al,  ICMC  02 

ABAA' 
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Query-by-humming 

Ø  User sings a melody 

Ø  Computer searches database for song 
containing the melody  

Ø  Probably less useful than it sounds but 
interesting problem  

Ø  The challenge of difficult queries 
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The MUSART system  

Ø  Query preprocessing   

Ø  Pitch contour extraction  (audio)  
Ø  Note segmentation   (symbolic) 

Ø  Target preprocessing       (symbolic) 

Ø  Theme extraction  
Ø  Model-forming, representation 

Ø  Search to find approximate match  

Ø  Dynamic Programming, HMMs 
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Representations 

Ø  Pitch and tempo invariance  

Ø  Quantized pitch intervals  
Ø  Quantized IOI ratio  

Ø  Approximate matching 

Ø  HMM 
Ø  Dynamic programming 
Ø  Time Series 
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Audio Fingerprinting  
and Watermarking 

Ø  Watermarking 

Ø  Copyright protection  
Ø  Proof of ownership 
Ø  Usage policies  

Ø  Metadata hiding 

Ø  Fingerprinting 

Ø  Tracking 
Ø  Copyright protection 
Ø  Metadata linking 
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Watermarking 

Ø  Steganography (hiding information in messages – invisible 
ink )  

Watermark 
Embedder 

watermark data 

key 

signal 
repres. 

transmission 
   attacks 

  

Watermark 
Extractor 

key 

watermark  
data 

(original music) 
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Desired Properties 

Ø  Perceptually hidden (inaudible)  
Ø  Statistically invisible  
Ø  Robust against signal processing  
Ø  Tamper resistant  
Ø  Spread in the music, not in header  
Ø  key dependent  
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Representations 
for Watermarking 

Ø  Basic Principles  

Ø  Psychoacoustics  
Ø  Spread Spectrum  

Ø  redundant spread of information in TF plane  
Ø  Representations  

Ø  Linear PCM  

Ø  Compressed bitstreams  
Ø  Phase, stereo 
Ø  Parametric representations 
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Watermarking 
on parametric representations 

Yi-Wen Liu 
J. Smith 2004 

message 

parameters p  

QIM 
p' Audio  

Synthesis 
Attack 

Parameter 
Estimation Min dist 

decoding 

W 

W' p'' Choose attack tolerance  
quantize so perceptual  
distortion < t and lattice  
finding possible 
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Problems with  
watermarking 

Ø  The security of the entire system depends on devices 
available to attackers  

Ø  Breaks Kerckhoff's Criterion: A security system must 
work even if reverse-engineered  

Ø  Mismatch attacks  

Ø  Time stretch audio – stretch it back (invertible) 

Ø  Oracle attacks 

Ø  Poll watermark detector  
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Audio Fingerprinting 

Ø  Each song is represent as a fingerprint (small robust 
representation) 

Ø  Search database based on fingerprint 

Ø  Main challenges 

Ø  highly robust fingerprint extraction 
Ø  efficient fingerprint search strategy  

Ø  Information is summarized from the whole song – 
attacks degrade unlike watermarking 
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Hash functions 

Ø  H(X) -> maps large X to small hash value  

Ø  compare by comparing hash value  

Ø  Perceptual hash function ?  

Ø  impossible to get exact matching 
Ø  Perceptually similar objects result in similar 

fingerprints 

Ø  Detection/false alarm tradeoff  
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Properties 

Ø  Robustness 

Ø  Reliability 

Ø  Fingerprint size 

Ø  Granularity  

Ø  Search speed and scalability  
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Fraunhofer  

Ø  LLD Mpeg-7 framework (SFM)  

Ø  Vector quantization (k-means)  

Ø  Codebook of representative vectors 
Ø  Database target signature is the codebook  

Ø  Query -> sequence of feature vectors  

Ø  Matching by finding “best” codebook  

Ø  Robust not very scalable (O(n) search))  

Allamanche Ismir 
2001 
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Philips Research 

Ø  32-bit subfingerprints for every 11.6 msec 

Ø  overlapping frames of 0.37 seconds (31/32 overlap)  

Ø  PSD -> logarithmic band spacing  (bark)  

Ø  bits 0-1 sign of energy  

Ø  looks like a fingerprint  

Ø  assume one fingerprint perfect – hierarchical database 
layout (works ok)  

Haitsa & Kalker  
Ismir 2002 
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Shazam Entertainment 

Ø  Pick landmarks on audio – calculate 
fingerprint 

Ø  histogram of relative time differences for 
filtering  

Ø  Spectrogram peaks (time, frequency)  
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Spectrogram Peaks 

Very robust – even over noisy cell phones 
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Audio Fingerprinting 

Music piece 

Signature 
Database 

Signature 1.5 million Matching 

Robustness 

300 bytes 

1sec 

20msec 

Copyright, metadata 

 
moodlogic.net 
 
 



     

STEREO PANNING FEATURES  
FOR CLASSIFYING  

RECORDING PRODUCTION STYLE 

George Tzanetakis  gtzan@cs.uvic.ca 

Randy Jones  

Kirk McNally    

ISMIR 2007 
8th International Conference on Music Information Retrieval 

23rd – 27th September 2007 

Vienna, Austria 



75 ISMIR 2007 – Stereo Panning Features for Classifying  
Recording Production Style 

Motivation 

•  The “classic” audio MIR system     
          

•  Mixing and production are critical in modern recordings 

–  The Producer as a Composer - Virgil Moorefield, MIT Press, 2005 

–  “Famous” record producers 

•  Phil Spector, George Martin, Quincy Jones, Brian Eno  

•  Can recording production information and more specifically 
stereo mixing information assist the automatic extraction of 
information from audio signals ?  

 

Convert2Mono � Feature�
Extraction �

Machine�
Learning �
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Recording Production Style 

Related Work  

•  The “album” effect   

–  Artist identification performance degrades when different albums are 
used for training & evaluation (Whitman, IEEE NNSP, 2003)  

–  Compensate mastering equalization curves (Kim, ISMIR 2006)  

•  “Glass” ceiling of timbral features  

–  (Aucouturier, Journal of Negative Results in Speech and Audio 2004)  

•  Stereo-based source separation  

–  For each FFT bin calculate panning coefficient  

–  Group together bins that have similar panning coefficients as belonging 
to the same sound source  

–  (Avendano, WASPAA 2003) (Woodruff, ISMIR 2003)  
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Recording Production Style 

Stereo Panning Spectrum  

Based on �
(Avendano, WASPAA 2003)�

For every FFT bin a �
panning coefficient �

between -1 (left) and +1 (right)�
with the center at 0 �
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Recording Production Style 

Example I   

Hell’s Bells - ACDC  (black left, white right)�
Important note: Just panning information �
(invariant to frequency content/dynamics)�
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Recording Production Style 

Example II 

Supervixen by Garbage (black left, white right)�
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Recording Production Style 

Stereo Panning Spectrum Features 

Panning RMS for subbands�
Low       (0-250 Hz) �
Medium   (250-2500 Hz)�
High       (2500-22050 Hz) �

Texture-window features �
For dynamics �

Final features are the means and standard deviations of �
the entire audio clip resulting in a 4*2*2 = 16 dimensional vector / audio clip �
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Recording Production Style 

Experiments 

•  Collections  

–  1960s “garage” (The Byrds, The Kinks, Buddy Holly) 

–  1980s “grunge” (Nirvana, PearlJam, RadioHead)  

–  Acoustic Jazz (Miles Davis, John Coltrange, Wynton Marsalis)  

–  Electric Jazz (Return to Forever, Weather Report, Mahavishnu Orchestra)  

•  Configurations  

–  STEREO Stereo Panning Spectrum Features (SPSF)  

–  STEREO MFCC (concatenate MFCCs for left and right)  

–  STEREO (SPSF+MFCC)  
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Recording Production Style 

Results (10-fold cross-validation) 

�
 �
�

Naïve Bayes Classifier�
Linear SVM trained �

Using SMO�
Decision Tree  �
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Recording Production Style 

Some more results    

Mean Average Panning Histograms�

Acoustic Jazz� Electric Jazz�

Artist20 Id �
with album folds�
(not in paper) �
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Recording Production Style 

MIREX 2007 results 

•  Music Information Retrieval Evaluation Exchange (MIREX)  

–  Annual forum for comparing algorithms of different MIR tasks 

–  2007 “classification tasks”  

•  Audio Artist Identification, Classical Composer Identification  

•  Audio Genre Classification, Audio Mood Classification  
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Implementation 

http://marsyas.sourceforge.net �
�
�

bextract -e STEREOSPS /pathto/mirexcollection.txt -w fmatrix.arff�

�bextract -e STEREOMFCC /pathto/mirexcollection.txt -w fmatrix.arff�

bextract -e STEREOSPSMFCC /pathto/mirexcollection.txt -w fmatrix.arff�
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Future Work & Acknowledgements  

•  Characterize more generally recording production style  

•  Audio-based record producer identification  

–  Maybe a future MIREX task ?  

•  Dave Pensado describing one of his mixes (Mix Magazine) 

–  “Massive club bottom, hiphop sensibility in the bottom, and this real smoothed-out, 
classy Quincy Jones types top”  

–  Can we move this type of description into audio MIR ? 

•  Many thanks to: 

–  NSERC, SSHRC Canada  

–  Carlos Avendano for clearly describing his algorithm  

–  Dan Ellis for providing stereo files for the ArtistID 20  

–  Perry Cook for suggesting using stereo information a long time ago  
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Computational Musicology -  
recitation research 

Ø  Transition from oral to written transmission 

Ø  Study how diverse recitation traditions having 
their origin in primarily non-notated melodies, 
later became codified 

Ø  Hungarian siratok, torah cantillation, koran 
recitation, 10th century St. Gallen plainchant   
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Pitch Contour Extraction  
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Histogram-based  
contour abstraction 
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Dynamic-Time Warping 
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Cantillion 
http://cantillion.sness.net 
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Retrieval  
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Retrieval at different levels 
of abstraction 
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Marsyas Overview 
Ø  Software framework for audio analysis, synthesis and retrieval  

Ø  Efficient and extensible framework design  

Ø  specific emphasis on Music Information Retrieval (MIR) 

Ø  C++, OOP 
Ø  Multiplatform (Linux, MS Windows®, MacOSX®, …) 

Ø  Provides a variety of building blocks for performing common audio 
tasks: 

Ø  soundfile IO, audio IO, signal processing and machine learning 
modules 

Ø  blocks can be combined into data flow networks that can be 
modified and controlled dynamically while they process data in 
soft real-time. 

WAV source 

FFT 

KNN 

WAV source Hanning FFT  
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Marsyas Overview 

Ø  Marsyas Brief History 

Ø  1998 ~2000 

Ø  Created by George Tzanetakis during his PhD activities at Princeton   
Ø  2000 ~2002 

Ø  Marsyas 0.1 
Ø  First stable revisions of the toolkit 
Ø  Distributions hosted at SourceForge 
Ø  Creation of a developer community 

Ø  User and Developer Mailing lists 
Ø  2002 ~ … 

Ø  Marsyas 0.2  
Ø  Major framework revision 
Ø  SourceForge SubVersion 
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Related Work Context 

Ø  Open Source frameworks 
Ø  CLAM (http://clam.iua.upf.edu/) 

Ø  STK (http://ccrma.stanford.edu/software/stk/) 

Ø  Chuck (http://chuck.cs.princeton.edu/) 

Ø  PureData (Pd) (http://crca.ucsd.edu/~msp/software.html) 

Ø  Open Sound Control (OSC) (
http://cnmat.berkeley.edu/OpenSoundControl/) 

 
Commercial toolkits 

Ø  MAX/MSP® (http://www.cycling74.com/) 

Ø  MATLAB® Simulink® (http://www.mathworks.com/products/simulink/) 

Ø  LabView® (http://www.ni.com/labview/) 

Ø  DirectShow® GraphEdit  
 (http://windowssdk.msdn.microsoft.com/en-us/library/ms787460.aspx) 
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Statistics 
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Statistics  
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Statistics 
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Statistics 
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Users & Applications 

Ø  Musicream (Masataka Goto) 

Ø  Music playback system with similarity 
capabilities 

Ø  Uses Marsyas as its music similarity engine 

 

http://staff.aist.go.jp/m.goto/Musicream/  
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Users & Applications 

http://www.cs.princeton.edu/sound/software/sndpeek/  
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Users and Applications 

Joao Oliveira, Fabien Gouyon,  
and Luis Paulo Reis 
INESC Porto, Portugal  
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Users and Applications 

MusieMood 
Vladimir Kim  
Steven Bergner 
Torsten Moller 
 
Simon Fraser Univ.  
Vancouver, Canada 
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Usage Scenarios 

Ø  Marsyas command line tools 
Ø  Efficient  
Ø  Execute in real-time (when applied) 
Ø  No library dependencies 
Ø  Tools and examples: 

Ø  sfplay 

Ø  bextract 

Ø  phasevocoder 

Ø  sfplugin 

Ø  … 
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Usage Scenarios 

Ø  Some examples:  
 
> bextract -e STFTMFCC music.mf speech.mf -p ms.mpl -w myweka.arff 
 

> sfplugin –p ms-mpl unknownAudioSignal.wav 
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Usage Scenarios 

Ø  Qt4  User Interfaces  MarGrid2 
MarPlayer 
MarPhasevocoder 
MarNetworkWidget 
… 
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MIREX 2008 results  
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MIREX 2008 Results  
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Architecture  

Ø  Biggest challenge: expressivity without 
sacrificing efficiency  

Ø  Compile-time 

Ø  Definition of processing blocks  

Ø  Run-time  

Ø  Assembling network  

Ø  Passing data through it  

Ø  Changing behavior through controls 
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Architecture 

Ø  Marsyas 0.2 
Ø  New dataflow model of audio computation 

hierarchical messaging system used to control the dataflow 
network (inspired on Open Sound Control (OSC) ) 

Ø  general matrices instead of 1-D arrays as data 
 

Processing 1

Processing 2

Composite/Parallel

SinkSource

Composite/Series
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Architecture 

FFT
512 smpls * 1 obs

22050 Hz

22050 / 512 Hz

1 smpls * 512 obs

Ø  MarSystem Slices 
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Architecture 

Source

Fanout

F1

F2

F3

Destination

IMPLICIT PATCHING 

Source

F1

F2

F3

Destination

EXPLICIT PATCHING # EXPLICIT PATCHING:  
     source, F1, F2, F3, destination; 
# Connect the in/out ports 
     connect(source, F1); 
     connect(source, F2); 
     connect(source, F3); 
     connect(F1, destination); 
     connect(F2, destination); 
     connect(F3, destination); 
 
# IMPLICIT PATCHING 
     source, F1, F2, F3, destination; 
     Fanout mix; 
     mix.add([F1, F2, F3]); 
     Series net; 
     net.add(source,mix,destination); 
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Architecture 
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Architecture 
Ø  Feature Extraction using Implicit Patching 
MarSystemManager mng; 
 

MarSystem* Series1 = mng.create("Series", “Series1"); 

MarSystem* Fanout1 = mng.create(“Fanout", “Fanout1"); 

MarSystem* Series2 = mng.create("Series", “Series2"); 

MarSystem* Fanout2 = mng.create(“Fanout”, “Fanout2”); 

MarSystem* Fanout3 = mng.create(“Fanout”, “Fanout3”); 
 

Fanout3->addMarSystem(mng.create(“Mean”, “Mean”)); 

Fanout3->addMarSystem(mng.create(“Variance”, “Variance”)); 
 

Fanout2->addMarSystem(mng.create(“Centroid”, “Centroid”)); 

Fanout2->addMarSystem(mng.create(“RollOff”, “Rolloff”)); 

Fanout2->addMarSystem(mng.create(“Flux”, “Flux”); 
 

Series2->addMarSystem(mng.create(“Spectrum”, “Spectrum”); 

Series2->addMarSystem(Fanout2); 
 

Fanout1->addMarSystem(mng.create(“ZeroCrossings”, “ZeroCrossings”); 

Fanout1->addMarSystem(Series2); 
 

Series1->addMarSystem(mng.create("SoundFileSource",“Source")); 

Series1->addMarSystem(Fanout1); 

Series1->addMarSystem(mng.create(“Memory”, “TextureMemory”)); 

Series1->addMarSystem(Fanout3); 

Series1->addMarSystem(mng.create(“classifier”, “Classifier”)); 

Source

Series1
Fanout 1

Zero 
Crossings

Texture
Memory

Fanout 3

Mean

Variance

Classifier

Spectrum

Fanout 2

Centroid

Rolloff

Flux

Series 2
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Interoperability 

Ø  Python (Ruby, Java) bindings 

Ø  Qt 4.x toolkit   

Ø  MATLAB 

Ø  Weka  

Ø  MIDI  

Ø  Open Sound Control (OSC) 

Ø  Max/MSP external  

Ø  VAMP plugin  

 

Qt4® is available as GPL open source  
code for all platforms 
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Industrial  
Collaborations 

Ø  Marsyas is licensed under the GNU Public 
License 

Ø  Anyone can download and modify the 
source code for free 

Ø  Software that uses Marsyas source 
code must also be GPL 

Ø  Copyright remains with the author  
 



119 Copyright 2011 G.Tzanetakis 

Modes of  
collaboration 

Ø  Modes of collaboration with industry  

Ø  Consulting  
Ø  Prototype and rewrite  
Ø  Internal tool/batch processing  

Ø  Based on proprietary data  
Ø  Commercial Licensing  
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How can you help ?  

Ø  Encourage your students to use Marsyas  

Ø  Encourage your students to work on open source projects  

Ø  Donate money to open source projects - even small 
amounts can make a huge difference  

Ø  Do not hesitate to get involved in the community of a 
project  

Ø  Hire open source developers for particular tasks  
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Summary  

Ø  Marsyas is a free software framework for research in 
audio processing  

Ø  It has been in development for 10 years and has steadily 
been growing  

Ø  Several academic and commercial projects have used 
Marsyas  

Ø  Open source development in academic environments is 
challenging but has its rewards  

Ø  Any questions ?  


