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Abstract— This work presents seven novel spectral features for speaker
recognition. These features are the spectral centroid (SC), spectral
bandwidth (SBW), spectral band energy (SBE), spectral crest factor
(SCF), spectral flatness measure (SFM), Shannon entropy (SE) and Renyi
entropy (RE). The proposed spectral features can quantify some of the
characteristics of the vocal source or the excitation component of speech.
This is useful for speaker recognition since vocal source information
is known to be complementary to the vocal tract transfer function,
which is usually obtained using the Mel frequency cepstral coefficients
(MFCC) or linear predication cepstral coefficients (LPCC). To evaluate
the performance of the spectral features, experiments were performed
using a text-independent cohort Gaussian mixture model (GMM) speaker
identification system. Based on 623 users from the TIMIT database, the
spectral features achieved an identification accuracy of 99.33% when
combined with the MFCC based features and when using undistorted
speech. This represents a 4.03% improvement over the baseline system
trained with only MFCC and ΔMFCC features.

I. INTRODUCTION

Speaker recognition has many potential applications as a biometric
tool for resources that can be accessed via the telephone or internet.
In these applications, the identity of users cannot be verified because
there is no direct contact between the user and the service provider.
Hence, speaker recognition is a cost effective and practical technology
that can be used for enhanced security.

Often in literature, the entire speech system is modeled with a
time-varying excitation and a short-time-varying filter [1]. Using this
model, the source and filter are assumed independent and hence the
speech signal (s(t)) is modeled by the linear convolution of:

s(t) = x(t) ∗ h(t) (1)

where, x(t) is a periodic excitation (for voiced speech) or white
noise (for unvoiced speech) and h(t) is a time-varying filter which
constantly changes to produce different sounds. Although h(t) is
time varying, it can be considered stable over a period of a few
milliseconds (ms); typically around 10-30ms is commonly used in
literature [1]. This convenient short-time stationary behavior is ex-
ploited by many speaker recognition systems in order to characterize
the vocal tract configuration given by h(t), which is known to be
a unique speaker-dependent characteristic for a given sound. While
assuming a linear model, this information can be easily extracted
from speech signals using well established deconvolution techniques
such as homomorphic filtering or linear prediction methods.

To date, the most effective features for speaker recognition have
been the Mel frequency cepstral coefficient (MFCC) and the linear
prediction cepstral coefficients (LPCC) [2][1][3]. These features can
accurately characterize the vocal tract configuration of a speaker and
can achieve good performance. Part of the success of these features
is that they provide a compact representation of the vocal tract which
can be modeled effectively. The first several MFCCs can characterize
the speaker’s vocal tract configuration and LPCCs generally define
lower order polynomials [1]. Additionally, the first derivative of the

MFCC feature (ΔMFCC) is largely uncorrelated with the MFCC
feature and has been shown to enhance recognition performance.

Although the MFCC and LPCC based features have proven to be
effective for speaker recognition, they do not provide a complete
description of the speaker’s speech system. Hence, vocal source
information can complement these traditional features by quantify-
ing some speaker-dependent characteristics such as pitch, harmonic
structure and spectral energy distribution [4][5].

This work proposes seven novel spectral features for speaker
recognition that can quantify the vocal source. These features are
the spectral centroid (SC), spectral bandwidth (SBW), spectral band
energy (SBE), spectral crest factor (SCF), spectral flatness measure
(SFM), Shannon entropy (SE), and Renyi entropy (RE). These
spectral features can be used to complement the MFCC or LPCC
features since they can quantify characteristics of the vocal source.

It is also known that there is some degree of coupling between
the vocal source and vocal tract [6][4] - i.e. the linear model
assumed when calculating MFCC and LPCC is not entirely accurate.
Therefore, the vocal source signal is to some extent predictable
for a given vocal tract configuration. Given these factors, features
that characterize the vocal source can be expected to improve the
performance of existing speaker recognition systems. In this work,
the seven proposed spectral features are extracted from the speech
spectrum and used to enhance the performance of MFCC-based
features in order to illustrate their effectiveness.

Others have attempted to use the vocal source for improving
performance of speaker recognition systems. Attempts have been
made to develop features from the LPCC residual [7][8] with some
success. In these cases, the authors have noted improved performance
by complementing vocal tract features with vocal source information.

The paper is organized as follows. Section II defines the baseline
system used for testing and presents the spectral features. Section
III presents the results as well as the experimental conditions and
Section IV concludes the paper.

II. PROPOSED TESTING METHOD

GMM based speaker recognition systems have become the most
popular method to date. This is because GMMs can capture the
acoustic phenomena or acoustic classes that are present in speech
[2]. In fact, some of the GMM clusters have been found to be
highly correlated with particular phonemes [9]. As a result, good
recognition performance can be achieved with GMM based systems.
The performance of the proposed spectral features will be com-
pared to the baseline system, which is a cohort text-independent
GMM classifier trained with 14-dimensional MFCC vectors and 14-
dimensional ΔMFCC vectors extracted from 30ms speech frames.
The log-likelihood function is used to find the user model that best
matches a given utterance.
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TABLE I
SUBBAND ALLOCATION USED TO CALCULATED SPECTRAL FEATURES.

Subband Lower Edge (Hz) Upper Edge (Hz)
1 300 627
2 628 1060
3 1061 1633
4 1634 2393
5 2394 3400

A. Training and GMM Estimation

The expectation maximization (EM) algorithm was used to esti-
mate the parameters of the GMM models. In the past, model orders
of 8-32 have been commonly used in literature however, good results
have been obtained with cohort GMM systems using as little as
16 components [2][10]. A model order of 24 was in this work to
account for the additional features being used in the system and also,
preliminary experimental results indicate that this model order was
the optimal order for the proposed feature set given models of order
16, 20, 24, 28 and 32. The k-means algorithm was used to obtain
the initial estimate for each cluster since it has been shown that the
initial grouping of data does not significantly affect the performance
of GMM based recognition systems [2].

A diagonal covariance matrix was used to estimate the variances
of each cluster in the models since it is well known that diagonal
covariance matrices are much more computationally efficient than full
covariance matrices. Furthermore, diagonal covariance matrices can
provide the same level of performance as full covariance matrices
because they can capture the correlation between the features if
a larger model order is used [11]. For these reasons, diagonal
covariance matrices have almost been exclusively used in previous
speaker recognition works. Each element of these matrices is limited
to a minimum value of 0.01 during the EM estimation process to
prevent singularities in the matrix, as recommended by [2].

B. Spectral Features

The proposed spectral features can be expected to improve the
performance of MFCC or LPCC features because they can capture
complementary information related to the vocal source such as pitch,
harmonic structure, energy distribution, bandwidth of the speech
spectrum and even voiced or unvoiced excitation. To illustrate the
effectiveness of these features, they are extracted from the speech
spectrum and used to enhance the performance of MFCC and
ΔMFCC features.

Spectral features should be extracted from multiple subbands,
as shown in Table I. This extraction method will provide better
discrimination between different speakers because the trend for a
given feature can be captured from the spectrum. This is better than
obtaining one global value from the spectrum, which is not likely to
show speaker-dependent characteristics.

The proposed subbands are linearly spaced on the Mel scale and
spans the range of a practical telephone channel (300Hz-3.4kHz).
This allocation scheme reflects the fact that most of the energy
of the speech signal is located in the lower frequency regions and
therefore, narrowly defined subbands are used in the lower frequency
regions in order to capture more detail. This is also consistent with
the non-linearities of human auditory perception, which shows
more sensitivity to lower frequencies than higher frequencies. This
non-linearity has been shown to be important for cepstral based
features such as the MFCC feature [3].

Spectral features are extracted from 30ms speech frames as
follows. Let si[n] for n ∈ [0, N ], represents the ith speech frame

and Si[f ] represents the spectrum of this frame. Then, Si[f ] can
be divided into M non-overlapping subbands where, each subband
(b) is defined by a lower frequency edge (lb) and a upper frequency
edge (ub). Now, each of the seven spectral features can be calculated
from Si[f ] as shown below.

Spectral Centroid (SC) - SC as given below is the weighted
average frequency for a given subband, where the weights are the
normalized energy of each frequency component in that subband.
Since this measure captures the center of gravity of each subband it
can locate large peaks in subbands. These peaks correspond to the
approximate location of formants [12] or pitch frequencies.

SCi,b =

∑ub
f=lb

f |Si[f ]|2∑ub
f=lb

|Si[f ]|2 (2)

Spectral Bandwidth (SBW) - SBW as given below is the weighted
average distance from each frequency component in a subband to
the spectral centroid of that subband. Here, the weights are the
normalized energy of each frequency component in that subband.
This measure quantifies the relative spread of each subband for
a given sound and therefore, it might characterize some speaker-
dependent information.

SBWi,b =

∑ub
f=lb

(f − SCi,b)
2 |Si[f ]|2∑ub

f=lb
|Si[f ]|2 (3)

Spectral Band Energy (SBE) - SBE as given below is the energy of
each subband normalized with the combined energy of the spectrum.
The SBE gives the trend of energy distribution for a given sound and
therefore, it contains some speaker-dependent information.

SBEi,b =

∑ub
f=lb

|Si[f ]|2∑
f,b |S[f ]|2 (4)

Spectral Flatness Measure (SFM) - SFM as given below is a
measure of the flatness of the spectrum, where white noise has a
perfectly flat spectrum. This measure is useful for discriminating
between voiced and un-voiced components of speech [13].

SFMi,b =

[∏ub
f=lb

|Si[f ]|2
] 1

ub−lb+1

1
ub−lb+1

∑ub
f=lb

|Si[f ]|2 (5)

Spectral Crest Factor (SCF) - SCF as given below provides a
measure for quantifying the tonality of the signal. This measure is
useful for discriminating between wideband and narrowband signals
by indicating the relative peak of a subband. These peaks correspond
to the most dominant pitch frequency in each subband.

SCFi,b =
max(|Si[f ]|2)

1
ub−lb+1

∑ub
f=lb

|Si[f ]|2 (6)

Renyi Entropy (RE) - RE as given below is an information theoretic
measure that quantifies the randomness of the subband. Here, the
normalized energy of the subband can be treated as a probability
distribution for calculating entropy and α is set to 3, as commonly
found in literature [14]. This RE trend is useful for detecting the
voiced and unvoiced components of speech.

REi,b =
1

1 − α
log2

⎛
⎝

ub∑
f=lb

∣∣∣∣∣
Si[f ]∑ub

f=lb
Si[f ]

∣∣∣∣∣
α
⎞
⎠ (7)

Shannon Entropy (SE) - SE as given below is also an information
theoretic measure that quantifies the randomness of the subband.
Here, the normalized energy of the subband can be treated as a
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probability distribution for calculating entropy. Similar to the RE
trend, the SE trend is also useful for detecting the voiced and unvoiced
components of speech.

SEi,b = −
ub∑

f=lb

∣∣∣∣∣
Si[f ]∑ub

f=lb
Si[f ]

∣∣∣∣∣ · log2

∣∣∣∣∣
Si[f ]∑ub

f=lb
Si[f ]

∣∣∣∣∣ (8)

To the best of our knowledge, these features are being used for
the first time in speaker recognition although they have previously
been used in other areas [15]. These spectral features along with the
MFCC and ΔMFCC features will be extracted from each speech
frame and appended together to form a combined feature matrix for
the speech signal. These vectors can then be modeled and used for
speaker recognition. Equation 9 shows the feature matrix that can
be extracted based on only one spectral feature, say the SC feature,
from i frames; where the bracketed number is the length of the
feature. It should be noted that any other spectral feature can be
substituted in for the SC feature in the feature matrix.

−→F =

⎡
⎢⎣

MFCC1(14) ΔMFCC1(14) SC1(5)
...

...
...

MFCCi(14) ΔMFCCi(14) SCi(5)

⎤
⎥⎦ (9)

The spectral features are expected to be largely uncorrelated with
the MFCC based features because the spectral features can capture
some information about the vocal source, whereas the MFCC features
tend to capture information about the vocal tract. Among the spectral
features, there may be some correlation between the SC and the
SCF features because they both quantify information about the peaks
(locations of energy concentration) of each subband. The difference is
that the SCF feature describes the normalized strength of the largest
peak in each subband while the SC feature describes the center of
gravity of each subband. Therefore, these features will perform well
if the largest peak in a given subband is much larger than all other
peaks in that subband. The RE and SE features are also correlated
since they are both entropy measures. However, the RE feature is
much more sensitive to small changes in the spectrum because of
the exponent term α. Therefore, although these features quantify the
same type of information, their performance may be different for
speech signals.

III. EXPERIMENTAL RESULTS

All speech samples used in these experiments were obtained from
623 speakers of the TIMIT speech corpus. Since the TIMIT database
has a sampling frequency of 16kHz, the signals were down sampled
to 8kHz which is well suited for telephone applications. Features
were extracted from 30ms long frames with 15ms of overlap with the
previous frames and a Hamming window was applied to each frame
to ensure a smooth frequency transition between frames. Twenty
seconds of undistorted speech from each speaker was used to train the
system and the remaining samples were used for testing. Although the
tests were performed with undistorted audio, it is expected that some
of these features will remain robust to different linear and non-linear
distortions [15].

A. Results and Discussions

MFCC based features are very effective for characterizing the
vocal tract configuration. Although this is the main reason for the
success of the MFCC based features, they do not provide a complete
description of the speaker’s speech system. The proposed spectral
features are expected to increase identification accuracy of MFCC

TABLE II
EXPERIMENTAL RESULTS USING 7S TEST UTTERANCES (298 TESTS)

Feature Accuracy(%)
MFCC & ΔMFCC (Baseline system) 95.30
MFCC & ΔMFCC & SC 97.32
MFCC & ΔMFCC & SBE 97.32
MFCC & ΔMFCC & SBW 96.98
MFCC & ΔMFCC & SCF 96.31
MFCC & ΔMFCC & SFM 81.55
MFCC & ΔMFCC & SE 90.27
MFCC & ΔMFCC & RE 98.32
MFCC & ΔMFCC & SBE & SC 96.98
MFCC & ΔMFCC & SBE & RE 96.98
MFCC & ΔMFCC & SC & RE 99.33

based systems because they provide some information about the
vocal source.

Table II demonstrates the identification accuracy of the system
when using spectral features in addition to the MFCC based features
with undistorted speech. The table also shows several combinations
of the best performing features. The accuracy rate represents the
percentage of test samples that were correctly identified by the
system, as shown below.

Accuracy =
Samples Correctly Identified

Total Number of Samples
(10)

It is evident from these results that there is some speaker-dependent
information captured by most of the proposed features since they im-
proved identification rates when combined with the standard MFCC
based features. In fact, when two of the best performing spectral
features (SC and RE) were simultaneously combined with the MFCC
based features, an identification accuracy of 99.33% was achieved,
which represents a 4.03% improvement over the baseline system.
These results suggest that the proposed spectral features provide
complementary and discriminatory information about the speaker’s
vocal source and system, which leads to enhanced identification
accuracies.

The best performing feature was the RE feature. This feature is
very effective at quantifying voiced speech which is quasi-periodic
(relatively low entropy) and un-voiced which is often represented
by AWGN (relatively high entropy). However, we suspect that the
RE feature may also be characterizing another phenomena other
than voice and unvoiced speech. This is likely since the SE feature
did not show any performance benefits and it too is an entropy
measure capable of discriminating between voiced and unvoiced
speech. One possibility is that the exponential term α in the RE
definition is contributing to this performance improvement. Since the
spectrum is a normalized to the range of [0,1] before calculating
these features, the exponent term α has the effect of significantly
reducing the contributions of the low energy components relative to
the high energy components. Therefore, the RE feature is likely to
produce a more reliable measure since it heavily relies on the high
energy components of each subband. However, the entropy features
in general are susceptible to random noise and will not perform well
in all conditions.

Figure 1(a) shows that the SC feature can capture the center of
gravity of each subband. Since the subband’s center of gravity is
related to the spectral shape of the speech signal, it implies that the SC
feature can also detect changes in pitch and harmonic structure since
they fundamentally affect the spectrum. Pitch and harmonic structure
convey some speaker-dependent information and are complementary
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Fig. 1. Plot of the spectral features. Subband boundaries are indicated
with dark solid lines and feature location is indicated with dashed lines. (a)
Location of the SC (b) Location of the SCF (c) SBW as a percentage of the
five subbands. (d) SBE as a percentage of the of the whole spectrum.

to the vocal tract transfer function for speaker recognition. In addition,
the SC feature can also locate the approximate location of the
dominant formant in each of the subbands since formants will tend
towards the subband’s center of gravity. These properties of the SC
feature provide complementary information and led to the improved
performance of the MFCC based classifier.

The SCF feature shown in Figure 1(b) quantifies the normalized
strength of the dominant peak in each subband. Given that the
dominant peak in each subband corresponds to a particular pitch
frequency harmonic, it shows that the SCF feature is pitch dependent
and therefore, it is also speaker-dependent for a given sound. This
dependence on pitch frequency is useful when the vocal tract config-
uration (i.e. MFCC) is known as seen by the enhanced performance.
Moreover, the SCF feature is a normalized measure and should not
be significantly affected by the intensity of speech from different
sessions.

The SBE feature, shown in Figure 1(d), also performed well in
the experiments. This feature provides the distribution of energy in
each subband as a percentage of the entire spectrum, which is another
measure that can quantify the harmonic structure of the signal. The
SBE feature is also a normalized energy measure and should not
be significantly affected by the intensity (or relative loudness) of
speech from different sessions. The results in Table II suggests that
for a given vocal tract configuration the SBE trend is predictable and
complementary for speaker recognition.

The SBW feature is largely dependent on the SC feature and the
energy distribution of each subband therefore, it has also performed
well for the reasons mentioned above. Figure 1(c) shows the SBW
for each subband as a percentage of all subbands.

The SFM feature did not perform well because it quantifies char-
acteristics that are not well defined in speech signals. For example,
the SFM feature measures the tonality of the subband, a characteristic
that is difficult to define in the speech spectrum since its energy is
distributed across many frequencies.

IV. CONCLUSION

Features such as the SC, SCF and SBE provide vocal source
information as it relates to harmonic structure, pitch frequency and
spectral energy distribution, while the entropy features quantify the

spectrum in terms of voiced and unvoiced speech. The proposed
features were shown to be complementary in nature and enhanced
performance when used with the vocal tract transfer function (i.e.
MFCC). This is mainly because the vocal tract transfer function is
the most discriminating feature for speaker recognition and it greatly
influences the spectral shape and harmonic structures of speech.

Experimental results show that the proposed spectral features
improve the performance of MFCC based features. Based on 623
users from the TIMIT database, the combined feature set of MFCC,
ΔMFCC, SC and RE achieved an identification accuracy of 99.33%
(for clean speech) by incorporating information about the vocal
source. This represents a 4.03% improvement over the baseline
system, which only used the MFCC based features.

The good performance of spectral features for speaker recognition
in this speaker identification system is very promising. These features
should also produce good results if used with more sophisticated
speaker recognition techniques, such as universal background model
(UBM) based approaches.
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