
Sometimes, an unsupervised learning technique is preferred.  Perhaps you do not have access to adequate training data.  Or 
perhaps the classifications for the training data's labels events are not completely clear.  Or perhaps you just want to quickly 
sort real-world, unseen, data into groups based on it's feature similarity.   Regardless of your situation, clustering is a great 
option!

First, we'll start with some easy framing and MFCCs….

PURPOSE

SECTION 1  SEGMENTING INTO EVERY N ms FRAMES

Segmenting: Chopping up into frames every N seconds
Previously, we've either chopping up by the location of it's onsets (and taking the following 100 ms) or just analyzing the e ntire 
file.  

Analyzing the audio file by "frames" is another technique for your arsenal that is good for analyzing entire songs, phrases, or  non -
onset-based audio examples.

frameSize = 0.100 * fs;   % 100ms

currentFrame = x(i:i+frameSize-1);              % this is the current audio frame 

% Now, do your feature extraction here and store the features in some matrix / array

for i = 1: frameSize : (length(x)-frameSize+1) 

end

You easily chop up the audio into frames every, say, 100ms, with a for loop. 

Very often, you will want to have some overlap between the audio frames - taking an 100ms long frame but sliding it 50 ms each 
time.  To do a 100ms frame and have it with 50% overlap, try: 

frameSize = 0.100 * fs;   % 100ms
hop = 0.5;                         %  50%overlap

for i = 1: hop * frameSize : (length(x)-frameSize+1) 
...
end

  

Note that it's also important to multiple the signal by a window [e.g., Hamming / Hann window] equal to the frame size to 
smoothly transition between the frames.  

Load an audio file of your choosing from the audio folder on \usr\ccrma\courses\mir2010\audio
Use this as an opportunity to explore this collection.

BAG OF FRAMES

currentFrameIndex = 1;    
for i = 1: frameSize : (length(x)-frameSize+1)
    currentFrame = x(i:i+frameSize-1) +  eps  ;      % this is the current audio frame
                                                                                   % Note that we add EPS to prevent divide by 0 errors

Test out MFCC to make sure that you know how to call it.  We'll use the CATbox implementation of MFCC.

SECTION 2  MFCC
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                                                                                   % Note that we add EPS to prevent divide by 0 errors
    % Now, do your other feature extraction here 
        
    % The code generates MFCC coefficients for the audio signal given in the current frame.
    [mfceps] = mfcc(currentFrame ,fs)' ;   %note the transpose operator!
    delta_mfceps = mfceps - [zeros(1,size(mfceps,2)); mfceps(1:end-1,:)]; %first delta
    
    % Calculate the mean and std of the MFCCs, MFCC-deltas.
    MFCC_mean(currentFrameIndex,:) = mean(mfceps) ;
    MFCC_std(currentFrameIndex,:) = std(mfceps);
    MFCC_delta_mean (currentFrameIndex,:)= mean(delta_mfceps);
    MFCC_delta_std(currentFrameIndex,:)= std(delta_mfceps);
    currentFrameIndex =  currentFrameIndex + 1;
end

features = [MFCC_mean MFCC_delta_mean ];  % In this case, we'll only store the MFCC and delta-MFCC means
% NOTE: You might want to toss out the FIRST MFCC coefficient and delta-coefficient since it's much larger than 

others and only describes the total energy of the signal.

You can include this code inside of your frame-hopping loop  to extract the MFCC-values for each frame.  

We’re going to use these techniques in later labs - so make sure to save your work for later use.  

SECTION 3  CLUSTERING
Now we're going to try clustering with a familiar bunch of audio files and code.  Sorry, the simple drum loop is going to mak e an 
appearance again.  However, once we prove that it works - you should experiment with other loops in the audio collection that 
are posted.  

Create a new .m file for your code.   1.

Load simpleLoop.wav.  (It's best to start simple - because if it don't work for this file, we have a problem.)2.

Segment this file into 100ms frames based on the onsets.3.

Now, feature extract the frames  using only zero crossing and centroid.  Store the feature values in one matrix for both the kick 
and the snares… remember, we don't care about the labels with clustering - we just want to create  some clustered groups of 
data.

4.

Scale the features (using the scale function) from -1 to 1.   (See Lab 2 if you need a reminder.)5.

It's cluster time.  We're using NETLAB's implementation of the kmeans algorithm.  6.

(1) The center-points of clusters.  You can use the coordinates of the center of the cluster to measure the distance of any 
point from the center.  This not only provides you with a distance metric of how "good" a point fits into a given cluster, but 
this allows you to sort by the points which are closest to the center of a given frame!  Quite useful.  

(2) Each point will be assigned a label, or cluster #.   You can then use this label to produce a transcription, do creative stuff, 
or further train another downstream classifier.

Use the kmeans algorithm to create clusters of your feature.   kMeans will output 2 things of interest to you:  

There are 2 functions called kmeans - one from the CATBox and another from Netlab.  You should be using the one 
from Netlab.  Verify that you are by typing which kmeans   in your command line to verify...

Attention:

Here's the help function for kmeans: 

> help kmeans
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> help kmeans

KMEANS Trains a k means cluster model.

Description
CENTRES = KMEANS(CENTRES, DATA, OPTIONS) uses the batch K-means

algorithm to set the centres of a cluster model. The matrix DATA
represents the data which is being clustered, with each row
corresponding to a vector. The sum of squares error function is used.
The point at which a local minimum is achieved is returned as
CENTRES.  The error value at that point is returned in OPTIONS(8).

[CENTRES, OPTIONS, POST, ERRLOG] = KMEANS(CENTRES, DATA, OPTIONS)
also returns the cluster number (in a one-of-N encoding) for each
data point in POST and a log of the error values after each cycle in
ERRLOG.    The optional parameters have the following
interpretations.

OPTIONS(1) is set to 1 to display error values; also logs error
values in the return argument ERRLOG. If OPTIONS(1) is set to 0, then
only warning messages are displayed.  If OPTIONS(1) is -1, then
nothing is displayed.

OPTIONS(2) is a measure of the absolute precision required for the
value of CENTRES at the solution.  If the absolute difference between
the values of CENTRES between two successive steps is less than
OPTIONS(2), then this condition is satisfied.

OPTIONS(3) is a measure of the precision required of the error
function at the solution.  If the absolute difference between the
error functions between two successive steps is less than OPTIONS(3),
then this condition is satisfied. Both this and the previous
condition must be satisfied for termination.

OPTIONS(14) is the maximum number of iterations; default 100.

Now, simply put, here are some examples of how you use it: 

% Initialize # of clusters that you want to find and their initial conditions.
numCenters = 2;           % the size of the initial centers; this is passed to k-means to determine the value of k.
numFeatures = 2;        %  replace the "2" with however many features you have extracted
centers = zeros(numCenters , numFeatures );           % inits center points to 0

% setup vector of options for kmeans trainer
options(1) = 1; 
options(5) = 1;
options(14) = 50;   % num of steps to wait for convergence

% train centers from data
[centers,options,post] = kmeans(centers , your_feature_data_matrix , options);

%Output: 
%     Centers contains the center coordinates of the clusters - we can use this to calculate the distance for each point      
         in the distance to the cluster center.
%     Post contains the assigned cluster number for each point in your feature matrix.  (from 1 to k) 

Write a script to list which audio slices (or audio files) were categorized as Cluster # 1.  Do the same or Cluster # 2.  Do the clusters 
make sense?    Now, modify the script to play the audio slices that in each cluster - listening to the clusters will help us build 

7.
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make sense?    Now, modify the script to play the audio slices that in each cluster - listening to the clusters will help us build 
intuition of what's in each cluster.  

Repeat this clustering (steps 3-7), and listening to the contents of the clusters with CongaGroove-mono.wav.   8.

Repeat this clustering (steps 3-7) using the CongaGroove and 3 clusters.  Listen to the results.  Try again with 4 clusters.  Listen to 
the results.  (etc, etc…)

9.

Once you complete this, try out some of the many, many other audio loops in the audio loops. (Located In audio\Miscellaneous 
Loops Samples and SFX)

10.

Let's add MFCCs to the mix.  Extract the mean of the 12 MFCCs (coefficients 1-12, do not use the "0th" coefficient) for each 
onset using the code that you wrote.  Add those to the feature vectors, along with zero crossing and centroid.  We should now 
have 14 features being extracted - this is started to get "real world"!   With this simple example (and limited collection of audio 
slices, you probably won't notice a difference - but at least it didn't break, right?)  Let's try it with the some other audio to truly 
appreciate the power of timbral clustering.

11.

You might not want to necessarily keep all of the MFCC features for a file.  So, you would summarize all of the frames by 
keeping the mean and stdev of the MFCCs, across all frames. 

MFCC_file_mean = mean(MFCC_mean );
MFCC_file_std = std(MFCC_mean );

FILE-BASED SUMMARY 

BONUS (ONLY IF YOU HAVE EXTRA TIME…)
Now that we can take ANY LOOP, onset detect, feature extract, and cluster it, let's have some fun.   12.
Choose any audio file from our collection and use the above techniques break it up into clusters.   
Listen to those clusters.

You can break a drum kit or percussion loop into 3 - 6 clusters for it to segment well.  More is OK too.○

Musical loops: 3-6 clusters should work nicely.  ○

Songs - lots of clusters for them to segment well.  Try 'em out!○

Some rules of thumb: since you need to pick the number of clusters ahead of time, listen to your audio files first.  

BONUS (ONLY IF YOU REALLY HAVE EXTRA TIME…)
Review your script that PLAYs all of the audio files that were categorized as Cluster # 1 or Cluster # 2.  13.
Now, modify your script to play and plot the audio files which are closest to the center of your clusters.

This hopefully provides you with which files are representative of your cluster.  

Helpful Commands for sorting or measuring distance: 

d = dist2( featureVector1 ,featureVector2 )   % measures the Euclidean distance betw/ point 1 and point 1

DIST2 Calculates squared distance between two sets of points.
  Description

D = DIST2(X, C) takes two matrices of vectors and calculates the
squared Euclidean distance between them.  Both matrices must be of
the same column dimension.  If X has M rows and N columns, and C has
L rows and N columns, then the result has M rows and L columns.  The
I, Jth entry is the  squared distance from the Ith row of X to the
Jth row of C.

>> help sort
[y,ind] = sort(    ) 
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>> help sort
SORT   Sort in ascending or descending order.

    For vectors, SORT(X) sorts the elements of X in ascending order.
    For matrices, SORT(X) sorts each column of X in ascending order.
    For N-D arrays, SORT(X) sorts the along the first non-singleton
    dimension of X. When X is a cell array of strings, SORT(X) sorts
    the strings in ASCII dictionary order.

    Y = SORT(X,DIM,MODE)
    has two optional parameters.  
    DIM selects a dimension along which to sort.
    MODE selects the direction of the sort
       'ascend' results in ascending order
       'descend' results in descending order
    The result is in Y which has the same shape and type as X.

    [Y,I] = SORT(X,DIM,MODE) also returns an index matrix I.
    If X is a vector, then Y = X(I).  
    If X is an m-by-n matrix and DIM=1, then
        for j = 1:n, Y(:,j) = X(I(:,j),j); end

    When X is complex, the elements are sorted by ABS(X).  Complex
    matches are further sorted by ANGLE(X).

    When more than one element has the same value, the order of the
    elements are preserved in the sorted result and the indexes of
    equal elements will be ascending in any index matrix.

    Example: If X = [3 7 5
                     0 4 2]

    then sort(X,1) is [0 4 2  and sort(X,2) is [3 5 7
                       3 7 5]                   0 2 4];

[y,ind] = sortrows (  ) 

SORTROWS Sort rows in ascending order.
    Y = SORTROWS(X) sorts the rows of the matrix X in ascending order as a
    group. X is a 2-D numeric or char matrix. For a char matrix containing
    strings in each row, this is the familiar dictionary sort.  When X is
    complex, the elements are sorted by ABS(X). Complex matches are further
    sorted by ANGLE(X).  X can be any numeric or char class. Y is the same
    size and class as X.

    SORTROWS(X,COL) sorts the matrix based on the columns specified in the
    vector COL.  If an element of COL is positive, the corresponding column
    in X will be sorted in ascending order; if an element of COL is negative,
    the corresponding column in X will be sorted in descending order. For 
    example, SORTROWS(X,[2 -3]) sorts the rows of X first in ascending order 
    for the second column, and then by descending order for the third
    column.

    [Y,I] = SORTROWS(X) and [Y,I] = SORTROWS(X,COL) also returns an index 
    matrix I such that Y = X(I,:).

[y,ind] = sortrows (featureData_from_a_particular_cluster, clusterNum)
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