A Hopefully-Simple Introduction
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What are probabilistic graphical
models?

Compact representation of joint probability
distributions — factored joint distributions

Tools for reasoning about conditional
independence and dependence

“a marriage between probability theory and
graph theory” (Jordan 1998)

— Graph theory used to design efficient algorithms to
work with models

Sub-types:

— Markov Random Fields (undirected), Bayesian Belief
Networks (directed)



How can graphical models be used?

Propose a model that could
explain a real-world
phenomenon (build a model)

Infer parameters of the proposed
model from available data

Given parameters and structure,
make predictions for new data

preat . C.~ Ny, o?)
— Classification, regression | 8l
— Causal explanations, diagnosis
— Temporal predictions or smoothing

Given several candidate models,
pick the “best”

Mpop = -23



Necessary probability and
corresponding notation



Random variables

 Arandom variable is a function that maps
events to numbers

— e.g., event = drawing a card from a standard deck
* rv. X =1 iff card is 2 of spades, 0 otherwise
* rv. Y = 1iff card is a 2 of any suit, O otherwise

— Or, event = measuring height of an 18-24 year old
female in the USA

* r.v. Z = height measured in inches



Notation: A random variable



Distributions, parameters, and priors

A distribution assigns probability to regions of sample space
— Space for X: p(1) = 1/52, p(0) =51/52
— Space for Y: p(1) =4/52 =1/13; p(0) =12/13
— SpaceforZ:Z~ N(65.5, 6.25)
* e.g., p(Z<68)=0.841

« Common distributions in the literature: Gaussian/Normal,

binomial, beta, gamma, multinomial, Bernoulli, Dirichlet,
uniform

* For a particular problem, the distribution is specified by the
distribution type and its parameters

— e.g., mean and variance for Gaussian

— In Bayesian framework, there may be a prior distribution over

these parameters (e.g., prior on mean is a uniform distribution
over [0, 22.5])



Notation: the distribution and
parameters

* The distribution is normally not explicitly represented in the
graphical notation, but it will be described in the text.

* Occasionally, you will see parameters of the distribution
represented in the notation

* O or B commonly used for unknown parameter values; mt for
prior distributions A

 hat commonly used to represent estimate of a parameter: 0

X~ ‘J\f(u, 1.0)



Outcomes / samples

 An sample is an outcome or observation from

a probability distribution (typically a number
or vector of numbers)

* E.g., x ~ N(0, 50):
— Each x; is an outcome of sampling from the
distribution, typically assumed i.i.d.
— X, 1 =1 to 5 might look like:
x,=-17.5, x,=80.31, x,=38.49, x,=-30.49, x:=55.90



Notation: sample

e Specific outcomes not represented in model
graph

 Qutcomes are lower case (X vs. x)

* Be careful: Random variable may take value of
a vector

— is x; the it" outcome or the it" element?



Conditional distribution

* The conditional distribution P(X | Y =y) is the
probability distribution of X when the value of
r.v. Y is known to be a particular value, v.

— e.g., P(X]Y) can be specified as:
P(X|Y=.3) = N(.2, 1.0) and P(X|Y !=.3) = N(.5, 1.0)



Notation: Conditional relationships

* Distribution of r.v. X is specified conditioned on
its parents in the graph

— Parents of X defined as all nodes P s.t. exists a
directed arc from P to X

P(W.X,Y,Z) =
Q P(W)P(Z)P(X|W)P(Y|X,2)



Independence and dependence

* Conditionally independent events:
— A = “My favorite color is green”
— B = “it’s going to rain in Bali tomorrow”
— Knowledge of one != knowledge of probability of the other
« P(A| B)=P(A), P(B| A) =P(B)
 P(Aand B)=P(A)P(B)
* Conditionally dependent events:
— A = “It’s raining in San Francisco today”
— B ="“Jay’s lawn is wet”

— Knowing A changes our knowledge of likelihood of B, and
vice versa

— P(A | B) '=P(A)



Independence & observation

* Independence may change when events are
observed (known & fixed)

 Add a 3" event:

— A = “It's raining in San Francisco today”
— B = “Jay’s lawn is wet”

— C = “Jay turned on his sprinkler before leaving
this morning.”

— A and B are independent if we observe C to be
true.



Notation: Observation

* Observed variables (whose values are known) are
shaded

* NOT restricted to particular locations in graph

* Graphical models provide a way to reason
about which variables marginally independent

given the
observed data @ a “

— e.g., “Bayes Ball”

algorithm @
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What do we get from graphical

representation?

Local structure = factorization of full joint

distribution = more efficient

representation of full joint probability

distribution

— Size of joint is O(2”n) for n binary variables;

Here only O(n * 27k) for k max fan-in.

Ability to simulate drawing from joint

distribution (generation)

A basis for many exact and approximate
inference algorithms, using graph theory

— e.g., infer values of unobserved nodes from
observed nodes

— or infer parameters of the model
A set of [visually distinguishable] “design

patterns” for reasoning about problem
structures

ABCD P(AB,CD)
FFFF 0.17
FFFT 0.02
FFTF 0.11
FFTT 0.09
FTFF 0.01
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TTFF 0.08
TTFT 0.01
TTTF 0.06
TTTT 0.04




Some common probabilistic
models



Nalve Bayes



The Naive Bayes assumption

e Generative model:

— Class C drawn from a prior distribution (e.g.,
Bernoulli for binary classification)

— Each feature F, drawn from distribution

conditional on C (e.g., a Normal distribution
whose parameters depend on c)

* P(F, F,, ... Fy | C) = P(F,|C)P(F,|C)...P(F\|C)

— Value of each feature independent of other
features, given the class.



Nalve Bayes




Plate notation

* Plate denotes structural repetitions, e.g. N
features




More plates

* Can represent D datapoints

N




Making parameters explicit

(B,is chosen
according to
document
class, cy

N




Using Nailve Bayes

e Classification: which class is most likely, given
the observed features and model parameters?

— Maximize p(C | Fy, 1, B)
* Requires first knowing m, B

— Training/inference: find the values of i, B that
maximize the likelihood of the training data



Gaussian Mixture Models



A mixture of Gaussians
X




The GMM generative model

* There exist some K “clusters” or “hidden
categories”; a prior 1t assigns probabilities
to choosing cluster k

* Once the cluster identity k. has been
chosen, the observed vector x, is chosen by

sampling from Gaussian k.
—X; ~ Ny, 2 )



Graphical model notation for GMM

Z is a latent
variable: useful in
formulating
model but not
observed.



Using GMMs

Could compute “best” cluster ID (Z) for some data
Could compute likelihood of some data under a GMM

Classification: Train GMM for each class, then choose
GMM that maximizes the likelihood of the observed

data

Vector Quantization (VQ): Represent features with
class ID only

Possible problem: must know or assume an
appropriate # of mixture components

— Non-parametric methods, e.g. latent Dirichlet allocation,
allow to infer # of hidden categories



Hidden Markov Models



Hidden Markov Models

* Models a sequence of observations in time

* Assumes an underlying time sequence of
hidden states



An HMM



HMM applications

Infer the most likely hidden sequence
Predict most likely next observation(s)
Infer single most likely hidden state at time t

Generate likely sequences (e.g. Mark V
Shaney)

Choose most likely model for an observed
sequence (e.g., word spoken, pitches played)



Inference



Inference: How to estimate model
parameters from the data

* Find parameters that maximize the likelihood
of the data
—i.e., find © to maximize p(D | 0)

— Often maximize log likelihood (multiplication of
terms -> summation of terms)

 Sometimes can compute directly: e.g., Naive
Bayes, HMM

* Sometimes must approximate: e.g., GMMs



Inference algorithms

* Exact and approximate
— Simple MLE computation for Naive Bayes

— Message passing / dynamic programming methods (e.g.,
forward/backward for HMMs)

— Expectation-Maximization (EM) for GMMs

— Variational inference, Gibbs sampling, Markov chain Monte
Carlo (MCMC) for other model types

* Challenges

— If you design a new model architecture, you have to come
up with an inference method

— Certain algorithms can get stuck in local maxima
— Inference can be computationally intensive



Reading an MIR paper

M. Hoffman, D. Blei, P. Cook, "Easy as CBA: A
Simple Probabilistic Model for Tagging
Music," in Proceedings of the 10th
International Conference on Music
Information Retrieval, Kobe, 2009. pdf



Goals

* How to assign semantic tags to audio?
— Build a binary classifier per tag?
— Build a GMM for each tag?

 What does it mean to have multiple tags?

 Hoffman, Blei & Cook: Build a model for joint
distribution of tags and audio features

* Use model to compute probability that a tag
applies to a song
— Annotation
— Retrieval




A compact feature representation

* Start with 39-dimensional MFCC-Deltas
— CAL500: 10,000 unordered feature vectors per
song (!)
* Vector quantize all feature vectors
— VQ space: K codewords total (K=5 to 2500)
* Represent song as K-dimensional vector of

codeword counts (K features, 1 datapoint per
song)



Building a model

III

* “All models are wrong, but some are usefu
George E. P. Box



Model

W=#unique tags

J=Hsongs K=#codewords

n, =# times codeword k appears in song ]

z;,,~ the w-th codeword in song j, a value 1:K

b,,, = parameter for Bernoulli for codeword k and tag w
Y = true iff tag w appears in song j



Generative process

W=#unique tags

J=Hsongs K=#codewords
For each song:

For each possible tag:
Draw a codeword from song j, from observed codewords
Draw y from Bernoulli for that (codeword,tag) pair
Apply the tag iff y is true.



Inference

* Find maximum likelihood estimators B for
(codeword, tag) Bernoullis

—i.e., find B to maximize p (y | n, B)
* Use EM algorithm to estimate MLEs

— Latent variable z comes in handy here



Using the model: Annotation

* Can directly compute probability that tag w
applies to new song j, using song features &
parameters computed in inference step:

P(Yiw[nj, B) > p(ziw = k|ny)p(yiw|ziw = k)
k

1 |
pPYyjw = 1|n;, B) = N, ; Nk Blew (1)



Using the model: Retrieval

 Compute probability of each tag applying to
each song in database

— =>rank songs for each tag

* Return first N of ranked list for a tag query



Evaluation

Compute IR metrics for annotation and retrieval
(we’ll discuss these tomorrow)

— Compare to previously published results, “upper
bound,” and “random”

Compute for different values of K (5 to 2500)

Compute VQ, training and classification time

Comparable to or better than previously published
results

— P <=.286 (Upper bound =.712)
— R<=.162 (Upper bound =.375)



Other example applications in MIR

Raphael: computer accompaniment of a
numan soloist

Lanckriet, Turnbull, Barrington (cal @UCSD):
lots of work, including tagging

Hoffman @ Princeton: tagging, source
separation / transcription

Many GMM applications
— e.g., Tzanetakis & Cook 2002



Wrap-up



Probabilistic generative models vs.
discriminative classifiers

Provide full probability model of all variables, not just
P (class | features)

Encode your own assumptions about data and “generative”
process

Take advantage of modularity, hierarchy, temporal behavior
in data

Leverage cutting-edge techniques from speech, vision,
document analysis research

Can be less “cookie-cutter” than classification; inference
can be long; can require lots of knowledge of probability &
statistics to do create new models, BUT it is still possible to
read papers and appreciate contributions and assumptions
without this.



Good reading

Intro to graphical models:
— Short: http://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html by Kevin Murphy

— Long:
http://citeseerx.ist.psu.edu/viewdoc/download?
doi=10.1.1.116.7467&rep=repl&type=pdf by Michael Jordan

— Video: http://videolectures.net/mlss07 ghahramani_grafm/ by Zoubin
Ghahramani

Graphical models & music:

— A.T. Cemgil’s ISMIR 2006 tutorial:
http://www-sigproc.eng.cam.ac.uk/~atc27/papers/cemgil-ismir-tutorial.pdf

EM algorithm for GMMs:
http://bengio.abracadoudou.com/lectures/old/tex gmm.pdf by Samy Bengio

HMMs:
http://www.google.com/url?sa=t&source=web&cd=1&ved=0CBIQFjAA&url=http
%3A%2F%2Fwww.cs.ubc.ca%2F~murphyk%2FBayes
%2Frabiner.pdf&ei=U7g2TKX8AYPCsAPkrvGoBQ&usg=AFQjCNHeXLhTHmuKUXKKC
HYSs58TxVGfZg by Rabiner




Good textbooks

Pattern Recognition and Machine Learning by Christopher
M. Bishop, 2006
— Excellent and readable machine learning textbook covering both
generative and discriminative methods
Bayesian Data Analysis by Andrew Gelman, 2"9 ed, 2003
— Extremely thorough and lots of information. True to the title.

Artificial Intelligence: A Modern Approach by Stuart Russell
and Peter Norvig, 3™ ed., 2009

— A standard university textbook on Al, accessible to those
without any prior knowledge. Focus is broader than machine
learning, but good introductory treatment of several classifiers

and HMMs.



