A Hopefully-Simple Introduction to Probabilistic Graphical Models

Outline

- What are they?
- Intro to necessary probability theory & corresponding notation
- A few simple probabilistic models
 - Naïve Bayes, latent variable models and GMMs,
 HMMs
- Inference overview
- Example MIR paper
- State of the art in MIR

What are probabilistic graphical models?

- Compact representation of joint probability distributions – factored joint distributions
- Tools for reasoning about conditional independence and dependence
- "a marriage between probability theory and graph theory" (Jordan 1998)
 - Graph theory used to design efficient algorithms to work with models
- Sub-types:
 - Markov Random Fields (undirected), Bayesian Belief Networks (directed)

How can graphical models be used?

- Propose a model that could explain a real-world phenomenon (build a model)
- Infer parameters of the proposed model from available data
- Given parameters and structure, make predictions for new data
 - Classification, regression
 - Causal explanations, diagnosis
 - Temporal predictions or smoothing
- Given several candidate models, pick the "best"

$$\mu_{pop} = .23$$

Necessary probability and corresponding notation

Random variables

- A random variable is a function that maps events to numbers
 - e.g., event = drawing a card from a standard deck
 - r.v. X = 1 iff card is 2 of spades, 0 otherwise
 - r.v. Y = 1 iff card is a 2 of any suit, 0 otherwise
 - Or, event = measuring height of an 18-24 year old female in the USA
 - r.v. Z = height measured in inches

Notation: A random variable

Distributions, parameters, and priors

A distribution assigns probability to regions of sample space

- Space for X: p(1) = 1/52, p(0) = 51/52
- Space for Y: p(1) = 4/52 = 1/13; p(0) = 12/13
- Space for Z: $Z \sim \mathcal{N}(65.5, 6.25)$
 - e.g., p(Z < 68) = 0.841
- Common distributions in the literature: Gaussian/Normal, binomial, beta, gamma, multinomial, Bernoulli, Dirichlet, uniform
- For a particular problem, the distribution is specified by the distribution type and its parameters
 - e.g., mean and variance for Gaussian
 - In Bayesian framework, there may be a **prior** distribution over these parameters (e.g., prior on mean is a uniform distribution over [0, 22.5])

Notation: the distribution and parameters

- The distribution is normally not explicitly represented in the graphical notation, but it will be described in the text.
- Occasionally, you will see parameters of the distribution represented in the notation
- θ or β commonly used for *unknown* parameter values; π for prior distributions
- hat commonly used to represent estimate of a parameter:

$$X \sim \mathcal{N}(\mu, 1.0)$$
 $X \sim \mathcal{N}(\mu, 1.0)$
 $Or \qquad X \leftarrow \mu$

Outcomes / samples

- An sample is an outcome or observation from a probability distribution (typically a number or vector of numbers)
- E.g., $x_i \sim \mathcal{N}(0, 50)$:
 - Each x_i is an **outcome** of sampling from the distribution, typically assumed i.i.d.
 - $-x_i$, i = 1 to 5 might look like: x_1 =-17.5, x_2 =80.31, x_3 =38.49, x_4 =-30.49, x_5 =55.90

Notation: sample

- Specific outcomes **not** represented in model graph
- Outcomes are lower case (X vs. x)
- Be careful: Random variable may take value of a vector
 - is x_i the ith outcome or the ith element?

Conditional distribution

- The conditional distribution P(X | Y = y) is the probability distribution of X when the value of r.v. Y is known to be a particular value, y.
 - e.g., P(X|Y) can be specified as:

$$P(X|Y=.3) = \mathcal{N}(.2, 1.0)$$
 and $P(X|Y!=.3) = \mathcal{N}(.5, 1.0)$

Notation: Conditional relationships

- Distribution of r.v. X is specified conditioned on its parents in the graph
 - Parents of X defined as all nodes P s.t. exists a directed arc from P to X

Independence and dependence

- Conditionally independent events:
 - A = "My favorite color is green"
 - B = "it's going to rain in Bali tomorrow"
 - Knowledge of one != knowledge of probability of the other
 - P(A | B) = P(A), P (B | A) = P(B)
 - P(A and B) = P(A)P(B)
- Conditionally dependent events:
 - A = "It's raining in San Francisco today"
 - B = "Jay's lawn is wet"
 - Knowing A changes our knowledge of likelihood of B, and vice versa
 - $P(A \mid B) != P(A)$

Independence & observation

- Independence may change when events are observed (known & fixed)
- Add a 3rd event:
 - A = "It's raining in San Francisco today"
 - B = "Jay's lawn is wet"
 - C = "Jay turned on his sprinkler before leaving this morning."
 - A and B are independent if we observe C to be true.

Notation: Observation

- Observed variables (whose values are known) are shaded
- NOT restricted to particular locations in graph
- Graphical models provide a way to reason about which variables marginally independent

given the observed data

– e.g., "Bayes Ball" algorithm

Classic example

What do we get from graphical representation?

- Local structure = factorization of full joint distribution = more efficient representation of full joint probability distribution
 - Size of joint is O(2ⁿ) for n binary variables;
 Here only O(n * 2^k) for k max fan-in.
- Ability to simulate drawing from joint distribution (generation)
- A basis for many exact and approximate inference algorithms, using graph theory
 - e.g., infer values of unobserved nodes from observed nodes
 - or infer parameters of the model
- A set of [visually distinguishable] "design patterns" for reasoning about problem structures

```
ABCDP(A,B,C,D)
FFFF
      0.17
FFFT
      0.02
FFTF
      0.11
FFTT
      0.09
FTFF
      0.01
FTFT
       0.04
FTTF
      0.01
       0.08
TFFF
      0.11
TFFT
       0.00
TFTF
       0.15
       0.02
TFTT
TTFF
       0.08
      0.01
TTFT
TTTF
       0.06
      0.04
```

Some common probabilistic models

Naïve Bayes

The Naïve Bayes assumption

- Generative model:
 - Class C drawn from a prior distribution (e.g., Bernoulli for binary classification)
 - Each feature F_i drawn from distribution conditional on C (e.g., a Normal distribution whose parameters depend on c)
- $P(F_1, F_2, ... F_N \mid C) = P(F_1 \mid C)P(F_2 \mid C)...P(F_N \mid C)$
 - Value of each feature independent of other features, given the class.

Naïve Bayes

Plate notation

Plate denotes structural repetitions, e.g. N features

More plates

Can represent D datapoints

Making parameters explicit

 (β_l) is chosen according to document class, c_{d}

Using Naïve Bayes

- Classification: which class is most likely, given the observed features and model parameters?
 - Maximize p(C | F_d , π , β)
- Requires first knowing π , β
 - Training/inference: find the values of π , β that maximize the likelihood of the training data

Gaussian Mixture Models

A mixture of Gaussians

The GMM generative model

• There exist some K "clusters" or "hidden categories"; a prior π assigns probabilities to choosing cluster k

$$-z_i \sim \pi$$

• Once the cluster identity k_i has been chosen, the observed vector \mathbf{x}_i is chosen by sampling from Gaussian k_i

$$-\mathbf{x_i} \sim \mathcal{N}(\mu_{ki}, \Sigma_{ki})$$

Graphical model notation for GMM

Z is a **latent**variable: useful in formulating model but not observed.

Using GMMs

- Could compute "best" cluster ID (Z) for some data
- Could compute likelihood of some data under a GMM
- Classification: Train GMM for each class, then choose GMM that maximizes the likelihood of the observed data
- Vector Quantization (VQ): Represent features with class ID only
- Possible problem: must know or assume an appropriate # of mixture components
 - Non-parametric methods, e.g. latent Dirichlet allocation, allow to infer # of hidden categories

Hidden Markov Models

Hidden Markov Models

- Models a sequence of observations in time
- Assumes an underlying time sequence of hidden states

An HMM

HMM applications

- Infer the most likely hidden sequence
- Predict most likely next observation(s)
- Infer single most likely hidden state at time t
- Generate likely sequences (e.g. Mark V Shaney)
- Choose most likely model for an observed sequence (e.g., word spoken, pitches played)

Inference

Inference: How to estimate model parameters from the data

- Find parameters that maximize the likelihood of the data
 - i.e., find θ to maximize p(D | θ)
 - Often maximize log likelihood (multiplication of terms -> summation of terms)
- Sometimes can compute directly: e.g., Naïve Bayes, HMM
- Sometimes must approximate: e.g., GMMs

Inference algorithms

- Exact and approximate
 - Simple MLE computation for Naïve Bayes
 - Message passing / dynamic programming methods (e.g., forward/backward for HMMs)
 - Expectation-Maximization (EM) for GMMs
 - Variational inference, Gibbs sampling, Markov chain Monte Carlo (MCMC) for other model types
- Challenges
 - If you design a new model architecture, you have to come up with an inference method
 - Certain algorithms can get stuck in local maxima
 - Inference can be computationally intensive

Reading an MIR paper

M. Hoffman, D. Blei, P. Cook, "Easy as CBA: A Simple Probabilistic Model for Tagging Music," in Proceedings of the 10th International Conference on Music Information Retrieval, Kobe, 2009. pdf

Goals

- How to assign semantic tags to audio?
 - Build a binary classifier per tag?
 - Build a GMM for each tag?
 - What does it mean to have multiple tags?
- Hoffman, Blei & Cook: Build a model for joint distribution of tags and audio features
- Use model to compute probability that a tag applies to a song
 - Annotation
 - Retrieval

A compact feature representation

- Start with 39-dimensional MFCC-Deltas
 - CAL500: 10,000 unordered feature vectors per song (!)
- Vector quantize all feature vectors
 - VQ space: K codewords total (K=5 to 2500)
- Represent song as K-dimensional vector of codeword counts (K features, 1 datapoint per song)

Building a model

"All models are wrong, but some are useful." –
 George E. P. Box

Model

 n_{jk} = # times codeword k appears in song j z_{jw} = the w-th codeword in song j, a value 1:K b_{kw} = parameter for Bernoulli for codeword k and tag w y_{iw} = true iff tag w appears in song j

Generative process

For each song:

For each possible tag:

Draw a codeword from song j, from observed codewords Draw y from Bernoulli for that (codeword, tag) pair Apply the tag iff y is true.

Inference

- Find maximum likelihood estimators β for (codeword, tag) Bernoullis
 - i.e., find β to maximize p (y | n, β)
- Use EM algorithm to estimate MLEs
 - Latent variable z comes in handy here

Using the model: Annotation

 Can directly compute probability that tag w applies to new song j, using song features & parameters computed in inference step:

$$p(y_{jw}|\mathbf{n}_{j}, \boldsymbol{\beta}) = \sum_{k} p(z_{jw} = k|\mathbf{n}_{j})p(y_{jw}|z_{jw} = k)$$

$$p(y_{jw} = 1|\mathbf{n}_{j}, \boldsymbol{\beta}) = \frac{1}{N_{j}} \sum_{k} n_{jk} \beta_{kw}$$
(11)

Using the model: Retrieval

- Compute probability of each tag applying to each song in database
 - => rank songs for each tag
- Return first N of ranked list for a tag query

Evaluation

- Compute IR metrics for annotation and retrieval (we'll discuss these tomorrow)
 - Compare to previously published results, "upper bound," and "random"
- Compute for different values of K (5 to 2500)
- Compute VQ, training and classification time
- Comparable to or better than previously published results
 - $P \le .286 \text{ (Upper bound = .712)}$
 - R <= .162 (Upper bound = .375)

Other example applications in MIR

- Raphael: computer accompaniment of a human soloist
- Lanckriet, Turnbull, Barrington (cal @UCSD):
 lots of work, including tagging
- Hoffman @ Princeton: tagging, source separation / transcription
- Many GMM applications
 - e.g., Tzanetakis & Cook 2002

Wrap-up

Probabilistic generative models vs. discriminative classifiers

- Provide full probability model of all variables, not just
 P (class | features)
- Encode your own assumptions about data and "generative" process
- Take advantage of modularity, hierarchy, temporal behavior in data
- Leverage cutting-edge techniques from speech, vision, document analysis research
- Can be less "cookie-cutter" than classification; inference can be long; can require lots of knowledge of probability & statistics to do create new models, BUT it is still possible to read papers and appreciate contributions and assumptions without this.

Good reading

- Intro to graphical models:
 - Short: http://www.cs.ubc.ca/~murphyk/Bayes/bnintro.html by Kevin Murphy
 - Long:
 http://citeseerx.ist.psu.edu/viewdoc/download?
 doi=10.1.1.116.7467&rep=rep1&type=pdf
 by Michael Jordan
 - Video: http://videolectures.net/mlss07_ghahramani_grafm/ by Zoubin Ghahramani
- Graphical models & music:
 - A. T. Cemgil's ISMIR 2006 tutorial:
 http://www-sigproc.eng.cam.ac.uk/~atc27/papers/cemgil-ismir-tutorial.pdf
- EM algorithm for GMMs: <u>http://bengio.abracadoudou.com/lectures/old/tex_gmm.pdf</u> by Samy Bengio
- HMMs:
 - http://www.google.com/url?sa=t&source=web&cd=1&ved=0CBIQFjAA&url=http
 %3A%2F%2Fwww.cs.ubc.ca%2F~murphyk%2FBayes
 %2Frabiner.pdf&ei=U7g2TKX8AYPCsAPkrvGoBQ&usg=AFQjCNHeXLhTHmuKUXKKC
 HYSs58TxVGfZg by Rabiner

Good textbooks

- Pattern Recognition and Machine Learning by Christopher M. Bishop, 2006
 - Excellent and readable machine learning textbook covering both generative and discriminative methods
- Bayesian Data Analysis by Andrew Gelman, 2nd ed, 2003
 - Extremely thorough and lots of information. True to the title.
- Artificial Intelligence: A Modern Approach by Stuart Russell and Peter Norvig, 3rd ed., 2009
 - A standard university textbook on AI, accessible to those without any prior knowledge. Focus is broader than machine learning, but good introductory treatment of several classifiers and HMMs.