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DAY 2 



WIKI REFERENCES… 

These lecture notes contain hyperlinks to the CCRMA Wiki.   
 
On these pages, you can find supplemental material for lectures - providing extra tutorials, 
support, references for further reading, or demonstration code snippets for those 
interested in a given topic .   
 
Click on the         symbol on the lower-left corner of a slide to access additional resources. 

http://cm-wiki.stanford.edu/wiki/MIR_workshop_2008_notes
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• What are the 3 major components of a MIR system? 
• Name 3 ways of segmenting audio into frames 

 
• What problems did you experience in the lab? 
• Follow-up questions?     
• Did you try other audio files? 
• Did you do the simple instrument recognition?   

 
 

Review from Day 1 



• Simple re-ordering or slices:  
– Slice up loop into segments and sort via features 
– Play audio 
– Play whole song snippet 

 

FEATURE DEMOS 



Segmentation 

(Frames, Onsets, 
Beats, Bars, Chord 

Changes, etc) 

Feature 
Extraction 

(Time-based, 
spectral energy, 

MFCC, etc) 

Analysis / 
Decision 
Making 

(Classification, 
Clustering, etc) 

Basic system overview 



FEATURE EXTRACTION 



• Rise time or Attack time- time interval between the 
onset and instant of maximal amplitude 

• Attack slope 
 
 

Temporal Information 

Picture courtesy: Olivier Lartillot 
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• Temporal Centroid 

Temporal Information 
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Frame ZC
R 

Centroid BW Skew Kurtosis E1 E2 E3 E4 E5 E6 E7 E8 E9 

1 9 2.8kHz 5kHz 2.2 6.7 4000 10100 545 187 77 35 18 9 6 

Features – Frame 1 
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Frame ZC
R 

Centroid BW Skew Kurtosis E1 E2 E3 E4 E5 E6 E7 E8 E9 

1 9 2.8kHz 5kHz 2.2 6.7 4000 10100 545 187 77 35 18 9 6 

2 423 3.1kHz 4kHz 2 7.2 24 33 5300 1366 360 180 194 68 5 

Features : SimpleLoop.wav 



MFCCs 

The idea of MFCCs is to 
capture spectrum in 
accordance with human 
perception. 

 
 

1. STFT 
2. log(STFT) 
3. Perform mel-scaling to group 

and smooth coefficients.  
(perceptual weighting) 

4. Decorrelate with DCT 
 

 
[…continued…] 
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• Δ and Δ Δ 
– Change between frames  
– How quickly the change is occurring 

 
• Spectral flux is the distance between the spectrum 

of successive frames 

Features: Measuring changes 



• Spectral Flatness Measure 
• Spectral Crest Factor 
• Spectral Flux 

 

Spectral Features  
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Feature extraction 

• Feature design and creation uses one’s domain 
knowledge. 

• Choosing discriminating features is critical 
• Smaller feature space yields smaller, simpler 

models, faster training, often less training data 
needed 



 

Spectral Bands 



 

Log Spectrogram 
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Chroma Bins 
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video/HotelCalifornia-Descriptors.avi


• http://www.chordpickout.com/index.html 



Decision stumps 

• An example dataset: 

This section contains slides adapted from Rob Schapire @ Princeton. 



A decision threshold 

• Single threshold: e.g., “output ‘+’ iff x < .2”  

• Decision stump: 1 threshold decision 



Many thresholds: Decision trees 

• Consists of many decisions in succession (like a 
flowchart) 

• General approach: 
– Recursively split training data into subsets based on 

simple thresholds 
– Optionally prune to avoid overfitting 

• Common algorithms: CART, ID3 => C4.5 (J48) 



Decision Trees 

• Advantages: 
– Easy to interpret 
– Decision boundary is explicit and straightforward 

• Disadvantages: 
– Can take a long time to learn 

• Finding optimal tree can be NP-complete 
– Prone to overfitting 
– Inherently heuristic 
– Slight perturbations of data can lead to very different 

trees 



Boosting 

• A “meta-algorithm” for creating a “strong” learner 
from many “weak” learners 

• Iteratively train weak learners on variations of the 
dataset and combine in a principled way to produce 
classification outputs. 



AdaBoost 

• A popular boosting algorithm from Freund and 
Schapire 

• Robust to overfitting: emphasis on maximizing the 
margin 



Back to stumps 

• Single threshold: e.g., “output ‘+’ iff x < .2”  

• Makes a nice weak learner! 



The AdaBoost algorithm 

• Initialize D1 to be the dataset with each example 
equally weighted. 

• for round t in 1 to T: 
– Train a weak learner, ht, on the dataset Dt 
– If ht can’t achieve 50% accuracy, stop. 
– Choose alphat according to error rate of ht on Dt (better ht 

=> higher alphat) 
– Update data weights Dt+1 to increase weight of examples 

ht got wrong, and decrease weight of examples ht got 
right. 

• To classify new data, take a weighted majority vote 
of all weak learners, each ht weighted by its alphat.  

 
 



AdaBoost illustrated 

• Initial data: 



Round 1 



Round 2 



Round 3 



Final classifier 



Final classifier: decision boundary 



A typical AdaBoost run 

• Test error does not increase, even after 1000 rounds 
• Test error continues to drop, even after training 

error = 0. 



The margin 

• Narrow margin • Wide margin 
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Margin distribution after N rounds 



AdaBoost pro & con 

• Advantages: 
– Robust to overfitting 
– Conceptually simple 
– Statistically very nice: maximizing the margin, game-

theoretic understanding 
– Can work with any base learner 
– No parameters to tune 

• Disadvantages: 
– Weak learner must achieve >50% or failure 
– Original formulation binary only 

• AdaBoost.M1 handles multi-class, but more required 
of weak learner 



EVALUATION 



Our classifier accuracy is 83.4%  



Cross-validation 

• Say, 10-fold cross validation 
• Divide test set into 10 random subsets. 
• 1 test set is tested using the classifier trained on the 

remaining 9. 
• We then do test/train on all of the other sets and 

average the percentages.  Helps prevent over fitting. 
• Do not optimize too much on cross validation – you 

can severely overfit.  Sanity check with a test set. 
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Cross-validation 



Cross-validation 

TEST 

 
 

TRAINING SET 

Fold 1: 70% 



Cross-validation 

TEST 

 
 

TRAINING SET 

Fold 1: 70% 

Fold 2: 80% 



Cross-validation 

Fold 1: 76% 
Fold 2: 80% 
Fold 3: 77% 
Fold 4: 83% 
Fold 5: 72% 
Fold 6: 82% 
Fold 7: 81% 
Fold 8: 71% 
Fold 9: 90% 
Fold 10: 82% 
Mean = 79.4% 



Stratified Cross-Validation 

• Same as cross-validation, except that the folds are 
chosen so that they contain equal proportions of 
labels. 

 



 

> End Day 2 


