DAY 2

Intelligent Audio Systems:

A review of the foundations and applications of semantic audio analysis and music information retrieval

Jay LeBoeuf Imagine Research jay{at}imagine-research.com

> Rebecca Fiebrink Princeton University rfiebrink{at}princeton.edu

> > July 2010

These lecture notes contain hyperlinks to the CCRMA Wiki.

On these pages, you can find supplemental material for lectures - providing extra tutorials, support, references for further reading, or demonstration code snippets for those interested in a given topic .

Click on the symbol on the lower-left corner of a slide to access additional resources.

WIKI REFERENCES...

Review from Day 1

- What are the 3 major components of a MIR system?
- Name 3 ways of segmenting audio into frames
- What problems did you experience in the lab?
- Follow-up questions?
- Did you try other audio files?
- Did you do the simple instrument recognition?

FEATURE DEMOS

- Simple re-ordering or slices:
 - Slice up loop into segments and sort via features
 - Play audio
 - Play whole song snippet

Basic system overview

Segmentation

(Frames, Onsets, Beats, Bars, Chord Changes, etc)

Feature Extraction

(Time-based, spectral energy, MFCC, etc)

Analysis / Decision Making

(Classification, Clustering, etc)

FEATURE EXTRACTION

Temporal Information

- Rise time or Attack time- time interval between the onset and instant of maximal amplitude
- Attack slope

Picture courtesy: Olivier Lartillot

Temporal Information

Temporal Centroid

Frame 1

Features – Frame 1

Frame	ZC R	Centroid	BW	Skew	Kurtosis	E1	E2	E3	E4	E ₅	E6	E ₇	E8	E 9
1	9	2.8kHz	5kHz	2.2	6.7	4000	10100	545	187	77	35	18	9	6

Frame 2

Features: SimpleLoop.wav

Frame	ZC R	Centroid	BW	Skew	Kurtosis	E1	E2	E3	E4	E ₅	E 6	E ₇	E8
1	9	2.8kHz	5kHz	2.2	6.7	4000	10100	545	187	77	35	18	9
2	423	3.1kHz	4kHz	2	7.2	24	33	5300	1366	360	180	194	68

MFCCs

The idea of MFCCs is to capture spectrum in accordance with human perception.

- STFT
- 2. log(STFT)
- Perform mel-scaling to group and smooth coefficients.(perceptual weighting)
- 4. Decorrelate with DCT

[...continued...]

MFCC of Music

(Petruncio, 2003)

Piano

Saxophone

Tenor Opera Singer

Drums

Features: Measuring changes

- \triangle and \triangle \triangle
 - Change between frames
 - How quickly the change is occurring
- Spectral flux is the distance between the spectrum of successive frames

Spectral Features

- Spectral Flatness Measure
- Spectral Crest Factor
- Spectral Flux

Feature extraction

- Feature design and creation uses one's domain knowledge.
- Choosing discriminating features is critical
- Smaller feature space yields smaller, simpler models, faster training, often less training data needed

Spectral Bands

Log Spectrogram

Chroma Bins

EXAMPLE

Picture courtesy: Olivier Lartillot

The resulting graph indicate the cross-correlation score for each different tonality candidate.

http://www.chordpickout.com/index.html

Decision stumps

• An example dataset:

This section contains slides adapted from Rob Schapire @ Princeton.

A decision threshold

• Single threshold: e.g., "output '+' iff x < .2"

Decision stump: 1 threshold decision

Many thresholds: Decision trees

- Consists of many decisions in succession (like a flowchart)
- General approach:
 - Recursively split training data into subsets based on simple thresholds
 - Optionally prune to avoid overfitting
- Common algorithms: CART, ID₃ => C_{4.5} (J₄8)

Decision Trees

- Advantages:
 - Easy to interpret
 - Decision boundary is explicit and straightforward
- Disadvantages:
 - Can take a long time to learn
 - Finding optimal tree can be NP-complete
 - Prone to overfitting
 - Inherently heuristic
 - Slight perturbations of data can lead to very different trees

Boosting

- A "meta-algorithm" for creating a "strong" learner from many "weak" learners
- Iteratively train weak learners on variations of the dataset and combine in a principled way to produce classification outputs.

AdaBoost

- A popular boosting algorithm from Freund and Schapire
- Robust to overfitting: emphasis on maximizing the margin

Back to stumps

• Single threshold: e.g., "output '+' iff x < .2"

Makes a nice weak learner!

The AdaBoost algorithm

- Initialize D₁ to be the dataset with each example equally weighted.
- for round t in 1 to T:
 - Train a weak learner, h_t, on the dataset D_t
 - If h_t can't achieve 50% accuracy, stop.
 - Choose alpha_t according to error rate of ht on D_t (better ht => higher alpha_t)
 - Update data weights D_{t+1} to **increase** weight of examples ht got wrong, and **decrease** weight of examples h_t got right.
- To classify new data, take a weighted majority vote of all weak learners, each h_t weighted by its alpha_t.

AdaBoost illustrated

• Initial data:

Round 1

Round 2

Round 3

Final classifier

Final classifier: decision boundary

A typical AdaBoost run

- Test error does not increase, even after 1000 rounds
- Test error continues to drop, even after training error = o.

The margin

Narrow margin

• Wide margin

Margin distribution after N rounds

	# rounds		
	5	100	1000
train error	0.0	0.0	0.0
test error	8.4	3.3	3.1
$\%$ margins ≤ 0.5	7.7	0.0	0.0
minimum margin	0.14	0.52	0.55

AdaBoost pro & con

- Advantages:
 - Robust to overfitting
 - Conceptually simple
 - Statistically very nice: maximizing the margin, gametheoretic understanding
 - Can work with any base learner
 - No parameters to tune
- Disadvantages:
 - Weak learner must achieve >50% or failure
 - Original formulation binary only
 - AdaBoost.M1 handles multi-class, but more required of weak learner

EVALUATION

Our classifier accuracy is 83.4%

- Say, 10-fold cross validation
- Divide test set into 10 random subsets.
- 1 test set is tested using the classifier trained on the remaining 9.
- We then do test/train on all of the other sets and average the percentages. Helps prevent over fitting.
- Do not optimize too much on cross validation you can severely overfit. Sanity check with a test set.

Fold 1: 70%

Fold 1: 70% Fold 2: 80%

Fold 1: 76%

Fold 2: 80%

Fold 3: 77%

Fold 4: 83%

Fold 5: 72%

Fold 6: 82%

Fold 7: 81%

Fold 8: 71%

Fold 9: 90%

Fold 10: 82%

Mean = 79.4%

Stratified Cross-Validation

 Same as cross-validation, except that the folds are chosen so that they contain equal proportions of labels.

> End Day 2