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These lecture notes contain hyperlinks to the CCRMA Wiki.

On these pages, you can find supplemental material for lectures - providing extra tutorials,
support, references for further reading, or demonstration code snippets for those
interested in a given topic.

Click on the@symbol on the lower-left corner of a slide to access additional resources.

WIKI REFERENCES...


http://cm-wiki.stanford.edu/wiki/MIR_workshop_2008_notes
http://cm-wiki.stanford.edu/wiki/MIR_workshop_2008

Review from Day 1

e What are the 3 major components of a MIR system?
 Name 3 ways of segmenting audio into frames

e What problems did you experience in the lab?
e Follow-up questions?

e Did you try other audio files?

e Did you do the simple instrument recognition?




FEATURE DEMOS

e Simple re-ordering or slices:
— Slice up loop into segments and sort via features
— Play audio
— Play whole song snippet



Segmentation

(Frames, Onsets,
Beats, Bars, Chord
Changes, etc)

Feature
Extraction

(Time-based,
spectral energy,
MFCC, etc)

Analysis /
Decision
Making

(Classification,
Clustering, etc)
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amplitude

Temporal Information

e Rise time or Attack time- time interval between the
onset and instant of maximal amplitude
e Attacksslope

Envelope (centered)
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Temporal Information

e Temporal Centroid i
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Features — Frame 1

2.8kHz ckHz 2.2 4000 10100 18 g9



Frame 2

Energy
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Features : SimpIeLoop.wav

2.8kHz skHz 2.2 4000 10100

2 423  3.1kHz tkHz 2 7.2 24 33 5300 1366 360 180 194 68



MFCCs

The idea of MFCCs is to
capture spectrum in
accordance with human

perception.
1. STFT g
2. log(STFT)

3.  Perform mel-scaling to group
and smooth coefficients.
(perceptual weighting)

4.  Decorrelate with DCT
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MFCC of Music

(Petruncio, 2003)
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Features: Measuring changes
e Aand A A

— Change between frames
— How quickly the change is occurring

e Spectral fluxis the distance between the spectrum
of successive frames



Spectra

e S

S
e S

pectra
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Feature extraction

e Feature design and creation uses one’s domain
knowledge.

e Choosing discriminating features is critical

e Smaller feature space yields smaller, simpler
models, faster training, often less training data
needed



Spectral Bands




Log Spectrogram
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" Chroma Bins


http://cm-wiki.stanford.edu/wiki/MIR_workshop_2008_notes

magnitude

20

18

16

14

12

10

Spectrum

L1

|
500

1000

1500

2000

2500
frequency (Hz)

|
3000

|
3500

4000

4500

5000



magnitude
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EXAMPLE

chroma class
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C major C minor
C# major C# minor
D major D minor
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The resulting graph indicate the cross-correlation score for each different tonality candidate.
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video/HotelCalifornia-Descriptors.avi

File View Help
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[Z Sample - Chord Pickout ===
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Registered to John Doe

e http://www.chordpickout.com/index.htm|




Decision stumps

e An example dataset:

This section contains slides adapted from Rob Schapire @ Princeton.



A decision threshold
e Single threshold: e.g., "output '+" iff x < .2"

* Decision stump: 1 threshold decision



Many thresholds: Decision trees

e Consists of many decisions in succession (like a
flowchart)

e General approach:
— Recursively split training data into subsets based on
simple thresholds
— Optionally prune to avoid overfitting

e Common algorithms: CART, ID3 => C4.5 (J48)



Decision Trees

e Advantages:
— Easy to interpret
— Decision boundary is explicit and straightforward

e Disadvantages:
— Cantake along time to learn
e Finding optimal tree can be NP-complete
— Prone to overfitting
— Inherently heuristic
— Slight perturbations of data can lead to very different
trees



Boosting

e A "meta-algorithm” for creating a “strong” learner
from many “weak” learners

e |teratively train weak learners on variations of the
dataset and combine in a principled way to produce
classification outputs.



AdaBoost

e A popular boosting algorithm from Freund and
Schapire

e Robust to overfitting: emphasis on maximizing the
margin



Back to stumps

* Single threshold: e.g., "output '+ iff x < .2"

* Makes a nice weak learner!



The AdaBoost algorithm

e |nitialize D, to be the dataset with each example
equally weighted.

e forroundtin1toT:

— Train a weak learner, h,, on the dataset D,

— If h, cant achieve 50% accuracy, stop.

— Choose alpha, according to error rate of ht on D, (better ht
=> higher alpha,)

— Update data weights D,,, to increase weight of examples
ht got wrong, and decrease weight of examples h, got
right.

e To classify new data, take a weighted majority vote
of all weak learners, each h, weighted by its alpha,..




AdaBoost illustrated

e |nitial data:
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Final classifier: decision boundary
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A typical AdaBoost run

(boosting C4.5 on
test “letter” dataset)

© |\ train
10 100 1000
# of rounds (/)

0

e Test error does not increase, even after 1000 rounds
e Test error continues to drop, even after training
error = o.



The margin

e Wide margin

 Narrow margin
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AdaBoost pro & con

e Advantages:
— Robust to overfitting
— Conceptually simple
— Statistically very nice: maximizing the margin, game-
theoretic understanding
— Can work with any base learner
— No parameters to tune

e Disadvantages:
— Weak learner must achieve >50% or failure
— Original formulation binary only
e AdaBoost.M1 handles multi-class, but more required
of weak learner
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EVALUATION



Our classifier accuracy is 83.4%



Cross-validation

e Say, 10-fold cross validation

e Divide test set into 20 random subsets.

e 1testsetis tested using the classifier trained on the
remaining g.

e We then do test/train on all of the other sets and
average the percentages. Helps prevent over fitting.

e Do not optimize too much on cross validation —you
can severely overfit. Sanity check with a test set.
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ross-validation

Fold 1: 70%



Cross-validation

Fold 1: 70%
Fold 2: 80%



Cross-validation

Fold 1: 76%
Fold 2: 80%
Fold 3: 77%
Fold 4: 83%
Fold 5: 72%
Fold 6: 82%
Fold 7: 81%
Fold 8: 71%
Fold 9: 90%
Fold 10: 82%
Mean =79.4%



Stratified Cross-Validation

e Same as cross-validation, except that the folds are
chosen so that they contain equal proportions of
labels.
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>End Day 2



