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Abstract - This paper describes methods for automatically 
locating points of significant change in music or audio, by 
analyzing local self-similarity. This method can find individ- 
ual note boundaries or even natural segment boundaries such 
as verse/chorus or speech/music transitions, even in the 
absence of cues such as silence. This approach uses the signal 
to model itself, and thus does not rely on particular acoustic 
cues nor requires training. We present a wide variety of appli- 
cations, including indexing, segmenting, and beat tracking of 
music and audio. The method works well on a wide variety of 
audio sources. 

I. INTRODUCTION 
In video, the frame-to-frame difference is often used as a measure 
of novelty, which is highly useful for automatic segmentation and 
key frame extraction. A similar measure for audio would have 
many useful applications, however, computing audio novelty is 
significantly more difficult than video. Straightforward spectral 
differences are not often useful because they typically give too 
many false alarms. Typical speech and music spectra constantly 
fluctuate, and it is not a simple task to discriminate significant 
changes from ordinary variation. 
We present methods of estimating the instantaneous audio novelty 
by analyzing self-similarity. At each instant, the self-similarity for 
past and future regions is computed, as well as the cross-similar- 
ity between the past and future. A significantly novel point will 
have high self-similarity in the past and future and low cross-sim- 
ilarity. The extent of the “past” and “future” can be varied to 
change the scale of the analysis. Using a short time extent allows 
individual notes to be found, while longer events, such as musical 
passages, can be found by considering wider windows. The result 
is a measure of how novel the source audio is at any time. 

11. TECHNICAL DETAILS 
The audio is parameterized using standard spectral analysis. Each 
analysis frame is tapered with a Hamming window and trans- 
formed into the frequency domain using a fast Fourier transform 
(FFT). The logarithm of the magnitude of the FFT is used as an 
estimate of the power spectrum of the signal in the window. High 
frequency components above Fs/4 are discarded as they are not as 
useful for the similarity calculation. The resulting vector charac- 
terizes the spectral content of a window. 
Note that the actual parametrization is not crucial as long as “sim- 
ilar’’ sounds yield similar parameters. Different parameterizations 
may be very useful for different applications; for example experi- 
ments have shown that the MFCC representation, which pre- 
serves the coarse spectral shape while discarding fine harmonic 

structure due to pitch, may be particularly appropriate for certain 
applications. Psychoacoustically motivated parameterizations, 
like those described by Slaney in [ 11, may be especially appropri- 
ate, particularly if they better reproduce the similarity judgments 
of human listeners. 

A. Distance Matrix Embedding 

Once the audio has been parameterized, it is then embedded in a 
2-dimensional representation. The key is a measure D of the 
(dis)similarity between feature vectors v i  and vj calculated 
between audio frames i andj.  A simple distance measure is the 
Euclidean distance in the parameter space; another usefid metric 
is the cosine of the angle between the parameter vectors. 

v . . v  

This has the property that it can yield a large similarity score even 
if the vectors are small in magnitude. This is generally desirable 
so that similar regions with low energy will be judged highly sim- 
ilar. For most applications, subtracting the spectral mean from 
each vector produces a more pronounced similarity score. 

The distance measure is a function of two frames, hence instants 
in the source signal. It is convenient to consider the similarity 
between all possible instants in a signal. This is done by embed- 
ding the distance measure in a two-dimensional representation. 
The matrix S contains the similarity metric calculated for all 
frame combinations, hence time indexes i and j  such that the i, jth 
element of S is D(i,j). In general, S will have maximum values on 
the diagonal (because every window will be maximally similar to 
itself); furthermore if D is symmetric then S will be symmetric as 
well. To simplify computation, the similarity can be represented 
in the “slanted” domain L(i,l) where 1 = i - j is the lag. This is 
particularly true in for the applications presented later, where the 
similarity is only required for relatively small lags and not all 
combinations of i andj. Computing L only for small, non-nega- 
tive values of 1 can result in substantial reductions in computation 
and storage over the full S matrix. 

Scan  be visualized as a square image [2]. Each pixel i ,  j is colored 
with a gray scale value proportional to the similarity measure 
D(ij). These visualizations let us clearly see the structure of an 
audio file. Regions of high audio similarity, such as silence or 
long sustained notes, appear as bright squares on the diagonal. 
Repeated notes are visible as bright off-diagonal rectangles. If the 
music has a high degree of repetition, this will be visible as diago- 
nal stripes or checkerboards, offset from the main diagonal by the 
repetition time. 
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Figure 3. 64 x 64 checkerboard kemel with Gaussian taper 
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Figure 2. Gould performance showing note boundaries 

Figure 2 shows the first seconds of Bach’s Prelude No. I in C 
Major, from The Well-Tempered Clavier, BVW 846. The image 
visualizes a 1963 piano performance by Glenn Gould. (In this 
image, the origin is at the lower left and time increases both with 
height and to the right.) The musical structure is clear from the 
repetitive motifs; multiples of the repetition time can be seen in 
the off-diagonal stripes parallel to the main diagonal. Figure 1 
shows the first few bars of the score: the repetitive nature of the 
piece should be clear even to those unfamiliar with musical nota- 
tion. The visualization makes both the structure of the piece and 
details of performance visible. 34 notes can be seen as squares 
along the diagonal. The repetition time is visible in the off-diago- 
nal stripes parallel to the main diagonal, as well as the initial C 
note which is repeated at 2,4, and 6 seconds. 

B. Kernel Correlation 

The structure of S is key to the novelty measure. Consider a sim- 
ple “song” having two successive notes of different pitch, for 
example a cuckoo call. When visualized, S for this example will 
look like a 2 x 2 checkerboard. White squares on the diagonal cor- 
respond to the notes, which have high self-similarity; black 
squares on the off-diagonals correspond to regions of low cross- 
similarity. Using the cosine metric, similar regions will be close to 
1 while dissimilar regions will be closer to -1. Finding the instant 
when the notes change is as simple as finding the crux of the 

checkerboard. This can be done by correlatingS with a kemel that 
itself looks like a checkerboard. (For obvious reasons, we call this 
class “checkerboard” kernels.) Perhaps the simplest is the 2x2 
unit kemel which can be decomposed into “coherence” and “anti- 
coherence” kernels as shown 

c= L‘ -1 -lJ 1 = [;!-El 
The first term measures the self-similarity on either side of the 
center point; this will be high when both regions are self-similar. 
The second term measures the cross-similarity between the two 
regions; this will be high when the regions are substantially simi- 
lar, thus with little difference across the center point. The differ- 
ence of the two values estimates the novelty of the signal at the 
center point; this will have a high value when the two regions are 
self-similar but different from each other. Larger kemels are eas- 
ily constructed by forming the Kronecker product of C with a 
matrix of ones, for example,. 

[ l  1 -1  -11 

1-1 -1 1 i J  
Kemels can be smoothed to avoid edge effects using windows 
that taper towards zero at the edges. For the experiments pre- 
sented here, a radially-symmetric Gaussian function is used. Fig- 
ure 3 shows a 3-dimensional plot of a 64 x 64 checkerboard 
kernel with a radial Gaussian taper having 6 = 32 . 
Correlating a checkerboard kemel with the similarity matrix S 
results in a measure of novelty. Imagine sliding C along the diag- 
onal of our example, and summing the element-by-element prod- 
uct of C and S. When C is over a relatively uniform region the 

Figure 1. First bars of Bach’s Prelude No. 1 in C Major, BVW 846, from The Well-Tempered Clavier 
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positive and negative regions will tend to sum to zero. Con- 
versely, when C is positioned exactly at the crux of the checker- 
board, the negative regions will multiply the negative regions of 
low cross-similarity, and the overall sum will be large. Thus cal- 
culating this correlation along the diagonal of S gives a time- 
aligned measure of audio novelty Ne),  where i is the frame num- 
ber, hence time index corresponding to the original source audio. 

N ( i ) =  C C C(m, n)S(i  + m, i + n )  
L / 2  L / 2  

m = - L / 2  n = - L / 2  

By convention, the kemel has a width (lag) of L and is centered 
on 0,O. For computation, S can be zero-padded to avoid undefined 
values, or, as in the present examples, only computed for the inte- 
rior of the signal where the kernel overlaps S completely. Note 
that only regions of S with a lag of L or smaller are used; thus the 
slant representation is particularly helpful. Also, only one-half of 
the values under the double summation (those for m 2 n ) need be 
computed because typically both S and C are symmetric. 

The width of the kemel L directly affects the properties of the 
novelty measure. A small kemel detects novelty on a short time 
scale. Larger kemels average over short-time novelty and detect 
longer structure, such as musical transitions, key modulations, or 
symphonic movements. Figure 5 shows the novelty score N ,  com- 
puted on the similarity matrix of Figure 2. Results using two ker- 
nel widths are shown (the 2 s  kernel plot was offset slightly 
upwards for clarity). The shorter kemel clearly picks out the indi- 
vidual note events, though some notes are slurred and are not as 
distinct. This method clearly identifies the onset of each note, 
without analyzing explicit features such as pitch, energy, or 
silence. The the longer kemel yields peaks at the boundaries of 8- 
note phrases (at 2,4,  and 6 seconds). Each peak occurs exactly at 
the downbeat of the first note in each phrase. Note that this 
method has no a-priori knowledge of pitch, notes, or musical 
phrases, but is finding perceptually and musically significant 
points. 

C. Extracting Segment Boundaries 

As mentioned above, extrema in the novelty score correspond to 
large changes in the audio. These points often serve as good 
boundaries for segmenting the audio. Finding the segment bound- 
aries is a simple matter of finding the peaks in the novelty score. 
A simple approach is to find points where the score exceeds a 

I I 
a e * 

t h .  (.I 

Figure 4. Novelty score for Gould performance and dif- 
ferent kemel widths 
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Figure 5. Novelty score for video soundtrack 

local or global threshold. The approach used here is to locate the 
maximum wherever the score exceeds the threshold for maximum 
time precision. The score is normalized such that the maximum 
score is one and the minimum is zero. 

A useful way of organizing the index points is in a binary tree 
structure constructed by ranking all the index points by novelty 
score. Figure 2 shows the segment boundaries extracted from the 
1/2 second kemel results of on the first 10 seconds of the Gould 
performance. Boundaries are indicated by CD . Individual notes 
are clearly isolated, save for the fourth note which has been 
slurred with the third. 

D. Speech and Music Segmentation 

Besides music, these methods work for segmenting audio into 
speech and music regions. Figure 5 shows the audio novelty for 
the first minute of Animals Have Young (video V14 from the 
MPEG-7 content set [13]). This segment contains 4 seconds of 
introductory silence, followed by a short musical segment with 
the production logo. At 17 seconds the titles start, and very differ- 
ent theme music commences. At 35 seconds, this fades into a 
short silence, followed by female speech over attenuated back- 
ground music for the remainder of the segment. Figure 5 shows 
the similarity score computed over a 8-second window, which is 
long enough to average out the short-time spectral differences in 
speech. The largest peak occurs directly on the speecNmusic tran- 
sition at 35 seconds. The two other major peaks occur at the tran- 
sitions between silence and music at 4 seconds and between the 
introduction and theme music at 17 seconds. 
Segmentation by novelty score works well for musical notes and 
phases, as well as spoken phrases. Though difficult to qualita- 
tively evaluate (or present in a short paper), experiments using a 
variety of audio, such as TV dramas, yielded subjectively satisfy- 
ing segmentation results. Even the soundtrack of a Warner Broth- 
ers “Looney Tunes” cartoon, containing an near-pathological 
sequence of orchestral sounds, sound effects, and Me1 Blanc 
vocalizations, was segmented with reasonable success. This seg- 
mentation method can’t, however, be expected to segment speech 
into words unless they are spectrally different. This is because 
words are often not well-delineated acoustically, for example, the 
phrase “that’s Steven” would be segmented into “that’s-S” and 
“teven” because there is little acoustic differences in the “s” 
sounds of the two words, even with a glottal stop. Note that this 
would likely be the segmentation that a non-English speaker 
would choose. 
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111. APPLICATIONS 
The ability to reliably segment audio has a large number of useful 
applications. Note that this approach can be used for any time- 
dependent media, such as video, where some measure of point-to- 
point similarity can be determined. 

Audio segmentation and indexing 

As demonstrated above, these methods give good estimates of 
audio segment boundaries. This is useful for applications where 
one might wish to access only a portion of an audio file. For 
example, in an audio editing tool, selection operations can be con- 
strained to segment boundaries so that the selection region does 
not contain fractional notes or spoken phrases. This would be 
similar to “smart cut and paste” in a text editor that constrains 
selection regions to entire units such as words or sentences. The 
segment size can be adjusted to the degree of zoom so that the 
appropriate time resolution is available. When zoomed in, higher 
resolution (from smaller kernels) would allow note-by-note selec- 
tion, while a zoomed-out view would allow selection by phrase or 
section. Similarly, segmenting audio greatly facilitates audio 
browsing: a “jump-to-next-segment” h c t i o n  allows audio to be 
browsed more rapidly than real-time. Because segments will be 
reasonably self-similar, listening to a small portion will give a 
good idea of the entire segment. This would be especially appro- 
priate when combined with a video shot detection system: shots 
having to have a significant audio novelty as well as video differ- 
ence are more likely to be meaningful transitions. Another appli- 
cation might be to play back an audio piece synchronized with 
unpredictably timed events (such as progress through a video 
game). Longer segments could be associated with particular 
stages, such as a game level or virtual environment location. As 
long as the user stayed at that stage, the segment would be looped. 
Moving to a different stage would cause another segment to start 
playing. 
Audio summarization and gisting 

This approach can be extended to automatic audio summariza- 
tion, for example, by playing only the start of each segment as in 
the “scan” feature on a CD player. In fact, segments can be clus- 
tered so that only significantly novel segments are included in the 
summary. Segments too similar to a segment already in the sum- 
mary could be skipped without losing too much information. For 
example, when summarizing a popular song, repeated instances 
of the chorus could be excluded from the summary as they would 
be redundant. Reliably segmenting music by note or phrase 
allows substantial compression. For example, a repeated series of 
notes can be represented by the first note and the repetition times. 
The MPEG-4 structured audio standard supports exactly this kind 
of representation, but heretofore there have been few reliable 
methods to analyze the structure of existing audio. 

IV. RELATED WORK 
Much prior work in audio segmentation has been based on detect- 
ing significant silences [3]. Though this works satisfactorily for 
clean speech, much common audio, such as popular music or 
reverberant sources, may contain no silences at all. The difference 

between a running spectral average and a new spectral window is 
used to find “audio cuts” in [4], though no results are presented to 
indicate how well this works. Another approach uses speaker 
identification to segment audio by speaker turns [SI. Though the 
latter approach could be used to segment music, it relies on statis- 
tical models that must be trained from a corpus of labeled data, or 
estimated by clustering audio segments [6]. Another approach 
segments audio using heuristically-determined thresholds on fea- 
tures such as zero-crossing rate [8,9]. A more robust approach 
trains Gaussian models on particular acoustic features [10,11]. 
The approach presented here is significantly different as it works 
for any audio source regardless of complexity, does not rely on 
particular acoustic features such as silence, pitch, or zero-crossing 
rate, and needs no clustering, modeling, or training. 
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