
1

Classification of Music Signals:
Feature extraction and selection

Statistical classification

• Is a statistical procedure in which an individual item is
characterized into one of a number of categories or classes.

• In our case, the items are audio signals (songs, sound files), their
characteristics are features extracted from the signals, and the
classes depend on the problem definition.

• The issue of classification becomes finding (or learning) an
appropriate mapping between the features and the classes.

• This can be thought of as dividing the feature space into regions,
each corresponding to a given class.

• We can distinguish two cases:
• Supervised: when the mapping between features and a pre-

defined taxonomy is learned by example.
• Unsupervised: when the algorithm is left to find its own

organization of the data (clustering) and the resulting classes
are labeled a posteriori.

2

Classification of music signals

• Statistical classification is relevant to a number of MIR-related
tasks:
• Musical instrument identification
• Artist identification
• Genre classification
• Music/Speech discrimination
• Video segmentation based on audio
• Transcription of percussive instruments
• And more…

• Research on computer music classification largely re-implements
knowledge from other closely-related fields, such as speech
analysis.

An example: Instrument ID
• Different properties of musical instruments make them

recognizable.
• Humans are very good at focusing on them and on identifying

families in complex situations (superimpositions). However,
trained listeners are usually better at recognizing them

• Instrumental sounds change considerably within families (see
flute vs. clarinet below) and even within the same instrument

• What are the invariants that define an instrument’s sound?,

3

A music classifier

Segment 1 Segment 2

Training Classification

Model

• Feature extraction:

1. Segmentation (Optional)

2. Calculation of feature
vectors

• Classification:

1. Learn models of feature
distribution from
examples

2. Classification of new
events based on these
models

Feature extraction revisited (1)
• Feature extraction is necessary as audio signals carry too much

information, and that information is mostly irrelevant to our
analysis

• Good features are a must for classification

• They should emphasize the differences between classes and the
similarities within

• They can be estimated on a frame by frame basis or within
segments, sounds or songs.

• As we have seen they are many possible features: spectral,
temporal, pitch, chroma, etc.

4

Feature extraction revisited (2)
• Spectral features, include the low order spectral moments:

centroid and spread:

• Their mean (µ) and variance (σ2) as ways of characterizing a
segment or sound

!

SC =

fk X(k)
2

k=0

N / 2

"

X(k)
2

k=0

N / 2

"

!

SS =

fk " SC()
2
X(k)

2

k= 0

N / 2

#

X(k)
2

k= 0

N / 2

#

Feature extraction revisited (3)
• The mean and variance of the spectral flatness:

• (Log) Power of first few partials
• Harmonicity, Harmonic spectral deviation
• Relative energy in odd and even partials
• Spectral Smoothness
• …

!

SF
b

=

"
k

X(k)
2

k

1

N
b

X(k)
2

k

#

5

• µ and σ2 of the first cepstral coefficients: cr(n)=IFFT(log|X(n,k)|)

• And of their log-amplitude, log-frequency and uncorrelated
version, the MFCCs (+ other spectral envelope features):

Feature extraction revisited (4)

Feature extraction revisited (5)
• Pitch can also be used as a feature for classification:

6

Feature extraction revisited (6)
• Rate and depth of amplitude and frequency modulations.
• Also applies to modulations of other features (e.g. centroid)

Feature extraction revisited (7)
• Temporal features include the shape of the onset detection function, rise

time (time between onset and attack maximum), onset asynchrony
(between subbands, partials), feature flux (Δfeatures), ZCR, etc

7

Feature variations
• Feature changes within classes for a number of reasons: pitch,

loudness, playing style, articulation, recording conditions, the
instrument itself, ambient noise, etc

• For example, spectral centroid changes on the violin sample
according to loudness and pitch.

• The classifier must be trained on many sounds/songs to account
for these variations (selection of an appropriate training database)

• The class is not defined by a point in the feature space but by a
distribution with a certain mean and a certain variance

Feature independence
• The features are not necessarily independent from each other

(strong correlation), e.g. centroid and zero-crossing rate (ZCR)

• This matters because the quantity of training data increases
exponentially with the number of parameters (+ complex model)

!

ZCR =
1

N
sign(x(n))" sign(x(n "1))

n= 2

N

#

!

sign(x) =

1 x > 0

0 x = 0

"1 x < 0

$
%

&
%

8

Feature reliability
• Good features result in large distances between classes and small

distances within classes
• Features might be unreliable because they are irrelevant (e.g. chroma for

instrument recognition), because they are difficult to calculate (e.g. onset
rise times in polyphonies) or because they are not well represented on
the feature set.

• All this leads to overfitting: the feature only covers a sub-region of its
natural range on the training set, thus underperforming on the test set.

• We want to select the smallest reliable feature set, but how?

Feature distribution

• A Normal or Gaussian distribution is a bell-shaped probability
density function defined by two parameters, its mean (µ) and
variance (σ2):

!

"(x;µ,#) =
1

2$
e

%
(x%µ)2

2# 2

&

'
(

)

*
+

!

µ =
1

N
x(n)

n=1

N

"

!

" 2 =
1

N
(x(n) #µ)2

n=1

N

$

9

µ

Feature distribution

• In D-dimensions, every pair of features generates a 2-d space
where the distribution becomes an ellipse:

• The mean becomes a D-dimensional vector µ, and the variance
becomes a DxD co-variance matrix defined as:

• Strong correlation between features results on a narrow ellipse

!

C
x

=
1

N
(x "µ)(x "µ)T

n=1

N

#

Feature selection (1)

• To avoid bias towards
larger features, we can
normalize them to have
zero mean and unit
variance:

• Alternatively we can apply
Principal Component
Analysis (PCA):

• The resulting features are
normalized and
uncorrelated

!

ˆ x = (x "µ) /#

!

ˆ x = C
x

"1/ 2
(x "µ)

10

Feature selection (2)
• Furthermore, PCA can be used to reduce the number of features:

• The covariance matrix Cx can be re-ordered such that the first row
corresponds to the feature with the highest variance (largest eigenvalue
λi) and the last row to the feature showing the least variance (smallest
eigenvalue).

• We can then use an MxD subset of this reordered matrix for PCA, such
that the result corresponds to an approximation using the M most
relevant feature vectors

• This is equivalent to projecting the data into a few directions that
maximize the variance.

• We do not need to choose between correlating (redundant) features, PCA
chooses for us.

• It can also be used for projecting onto low-dimensional spaces (e.g. for
visualization).

Classification
• What we (should) have:

• a taxonomy;
• a training dataset consisting of labeled, representative

samples of the sounds to be classified and the classes
themselves;

• and the optimal set of parameters (that guarantees the best
discrimination).

• What now? The goal is to classify new instances from the
knowledge gathered during training

• We can use algorithms where data is clustered into a group of
unknown classes which are latter tagged (unsupervised).

• We will concentrate instead on the case when the classes of
training instances are given (supervised training)

11

Distance-based classification (1)

• As with segmentation, we can calculate the distance between
samples in the feature space

• This is at the core of most simple classification schemes

• Minimum distance classification:
• Calculates the distance (e.g. Euclidean, cosine) between the

new sample and all samples in the training set
• Selects the class of the closest training sample

• k-nearest neighbor (k-NN) classifier:
• Calculates the distance between the new sample and all

samples in the training set
• Picks the k nearest neighbors
• Selects the class that was more often picked.

Distance-based classification (2)

• In both these cases, training is trivial (just store the labeled
training instances for comparison)

• These classifiers are known as “lazy” classifiers as they do not
entice any parameterization of the problem

• The complexity of the classification and the computational cost
increases as the number of training instances increase (because
we need to measure the distance from the new instance to all
existing ones).

• We can improve the computational complexity by storing only a
few class prototypes/models (e.g. class centroids)

12

Distance-based classification (3)
• k-nearest neighbor results on good discrimination between classes with a

very simple implementation (at the expense of computational cost)
• It depends on the choice of distance metric (Manhattan, Euclidean, etc).
• A good metric is the Mahalanobis distance (normalizes and decorrelates

features): dM = (x-y)TCx
-1(x-y)

• Also, we need to choose k to avoid overfitting. A standard approximation
is k = √N where N is the number of training samples

Probabilistic Classifiers (1)
• The idea is to interpret the feature vector x as a random variable whose

probability distribution depends on the current class, thus the class can
be inferred from the observation of the feature vector.

• Probabilistic classifiers are defined in terms of Bayes’ rule:

!

P(class
i
| x) =

P(x | class
i
)P(class

i
)

P(x)

Posterior:
Probability of class i
given a feature
vector x

Likelihood: Probability
of a feature vector x,
given class i (can be
estimated from
training)

Prior Probability of
class i

!

P(x) = P(x | class
i
)P(class

i
)

i

"
Marginal Likelihood:
Normalizing constant (same
for all classes) that ensures
posterior adds to 1

13

Probabilistic Classifiers (2)

• Note that classification becomes the task of finding the class with
the highest probability of occurring given the observation x

• Thus, what we want to know (but don’t know) is the posterior
probability P(classi|x) for every class i, so that we can pick the
maximum.

• Furthermore, since P(x) is the same for all classes, maximizing
P(classi|x) is equivalent to maximizing the numerator of the rule:
P(x|classi)P(classi)

• This is known as Maximum A Posteriori (MAP) classification:

• Happily, from the training data we can learn the likelihood
P(x|classi) and define (or learn) the prior P(classi)

• But how?!

class
i
= argmax

i
P(x | class

i
)P(class

i
){ }

Gaussian Mixture Model (1)
• We can model (parameterize) the likelihood using a Gaussian

Mixture Model (GMM)

• The model approximates P(x|classi) as the weighted sum of K
multidimensional Gaussian distributions:

• Where wik are the weights and N(x;µ,Cx) is a Gaussian distribution

!

P(x | class
i
) = w

ik
N(x;µ

ik
,C

ik
)

k=1

K

"

!

"(x;µ,C
x
) =

1

(2#)D |C
x
|
e

$
1

2
(x$µ)C

x

$1
(x$µ)T

%

&
'

(

)
*

!

C
x

=
1

N
(x "µ)(x "µ)T

n=1

N

#

14

Gaussian Mixture Model (2)

• 1-D GMM (Heittola, 2004)

• With a sufficiently large K a GMM can approximate any distribution
• However, increasing K increases the complexity of the model and

compromises its ability to generalize

Gaussian Mixture Model (3)

• The model is parametric, consisting of K weights, mean vectors
and covariance matrices for every class.

• If features are uncorrelated, then we can use diagonal covariance
matrices, thus considerably reducing the number of parameters
to be estimated (common approximation)

• Parameters can be estimated using the Expectation-Maximization
algorithm (Dempster et al, 1977).

• EM is an iterative algorithm whose objective is to find the set of
parameters that maximizes the likelihood P(x|classi) for a class.
It is also able to learn the prior.

• Alternatively, parameters for all classes can be estimated
simultaneously using a Maximum discrimination objective using a
standard non-linear optimization algorithm

15

MAP classification
• After learning the likelihood and the prior during training, we can

classify new instances based on MAP classification:

• Commonly we won’t have a single feature vector x describing a
new instance, but a sequence of vectors x1..T such that the
probabilities get multiplied:

• Because the log is order preserving, this maximization is
equivalent to:

!

class
i
= argmax

i
P(x | class

i
)P(class

i
){ }

!

class
i
= argmax

i
P(x

t
| class

i
)P(class

i
)

t=1

T

"

$
%

&
'
(

!

class
i
= argmax

i
log P(x

t
| class

i
)P(class

i
)

t=1

T

"

$
%

&

'
(

)
*
+

,
-
.

!

class
i
= argmax

i
log P(x

t
| class

i
)P(class

i
)()

t=1

T

"

$
%

&
'
(

HMM (1)

• When the temporal evolution of features is relevant for the
classification it can be convenient to use a Hidden Markov Model

• For a given state, the HMM models the probability of observing a
feature vector x as a Gaussian Mixture Model.

• However, the HMM also takes into consideration the transition
probabilities between states aij = P(St = i|St-1 = j)

• Thus, we can train a HMM for each class, such that for a feature
vector sequence x1..T we can obtain:

!

P(class
i
| x1..T) =

P(x1..T | classi)P(classi)

P(x1..T)

16

HMM (2)

• HMMs can also be trained using the Expectation-Maximization
algorithm (in its Baum-Welch implementation)

• The hidden states are usually not important for classification
• HMMs are a generalization of GMMs for more than one state
• It is only useful to use HMMs if the temporal structure can be

learned by the state-transition probability matrix
• If not, HMMs do not perform better classification than GMMs.

An end note about similarity (1)

• Perception of similarity is subjective and context-dependent and
can happen on a number of different dimensions:

17

An end note about similarity (2)
• The distance-based organization of data models on a feature space is at

the core of music similarity (and visualization) tools
• Similarity is not necessarily attached to labels, thus supervised training is

not a requirement. Instead what we want is to discover the hidden
structure of sound organization

• See Elias Pampalk’s work (http://www.ofai.at/~elias.pampalk/)

