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Analyzing structure:
segmenting musical audio

Musical form (1)
• Can refer to the type of composition (as in multi-movement form), e.g.

symphony, concerto, etc

• Of more relevance to this class, it refers to the structure of a given piece
(as in single-movement form), e.g. strophic, binary, sonata, fugue

• We can differentiate between sectional and developmental form

• “In a sectional form, the piece is built by combining small clear-cut units,
sort of like stacking legos” (DeLone, 1975). This is the case with most
popular music.

• In developmental form the piece is built from a number of evolving
presentations and combinations of small musical units (e.g. motifs,
themes)

• Music with continuous non-sectional, non-repetitive form is called through
composed
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Musical form (2)
• Each unit can be labeled with a letter (e.g. A, B, C) or a generic

name (e.g. intro, verse, chorus, bridge, interlude, coda, etc)
• Strophic form: repeats the same tune in different verses, e.g.

AA…
• Binary form: alternates two sections, which are often repeated,

e.g. ABAB or AABB
• Ternary form: has three parts, third section is often a recap or a

variation of the first one, e.g. AABA, AABA’, AA’BA’
• Arch form: it is a symmetric form, based on the repetition of

sections around a center, e.g. ABCBA
• Rondo: a main theme is alternated with sub-themes, but it

always comes back (returns), e.g. ABACADA…..
• Variations: theme plus variations, e.g. AAiAiiAAiii

• Sonata: more complex form showing intro, exposition,
development, recapitulation, coda.

Musical form (3)
• What is at the core of structure analysis is the idea of repetition.
• Music tends to be highly repetitive, thus by identifying those

repetitions we can characterize long-term structure
• But, what type of repetitions? Melodic? Harmonic? Rhythmic?
• Mr. Arthur G. Lintgen is able to identify unlabeled recorded

orchestral works by observing the patterns of grooves in an LP
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• We need representations of musical features (e.g. pitch) where
these repetitions can be characterized

• Martin Wattenberg: http://www.bewitched.com/match/music.html

Visualizing structure (1)

Visualizing structure (2)

• Bach’s Minuet in G Major
• Binary form: AABB
• A and B overlap and are related (thin arcs)
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Audio-based analysis

• This representation relies on high-level musical info (pitch) and
can only characterize repetitions of the exact same events.

• However, from audio we cannot obtain such high-level info
without tolerating error

• The only reliable calculations are of low-level features such as
spectral features (centroid, spread), MFCCs, LPCs, chroma, etc

• Thus we need to be able to find low-level feature sets that are
able to characterize “repetitions”, and we need to be able to
identify soft (approximate) repetitions.

Feature sets

• Let us consider two feature vectors, a and b, each representing a
distinct segment of an audio signal:

• We can calculate how different these two vectors are.

audio signal

Feature vector a Feature vector b

Segment 1 Segment 2
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Feature sets

• Each feature set represents a vector in the Euclidean space defined by the
different features (e.g. 12-D chroma vectors, 15-D MFCCs, centroid):

• These vectors have lengths (magnitudes) and angles, and we can
calculate the distance between them

Parameter 1

Parameter 2

Parameter 3

vector a

vector b

• In this space the simplest distance we can calculate between two
points is that described by a straight line between them.

• That distance is known as an Euclidean distance and is defined
(in 2D) as:

• In n-dimensional (Euclidean) spaces, for two points a and b, it is
defined as:

Distance metrics (1)
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Distance metrics (2)
• In the Euclidean space, other distances (related to norms) can

also be used
• The general case, the Lp-distance in n dimensions, is defined as:

• It can be seen that the Euclidean distance is the L2-distance.
• The L1-distance is also known as the city-block or Manhattan

distance.

• When p tends to infinity we obtain the Chebyshev distance
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Distance metrics (3)
• Alternatively we can use the dot product between two n-

dimensional vectors (a and b) which is defined as:

• Geometrically it can be interpreted as the product between the
length of B (||B||=B·B=(∑(bi)2)1/2) and the scalar projection of A into
B:

where θ is the angle between the two vectors
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Distance metrics (4)
• The dot product will be large if both vectors are large and

similarly oriented
• However, in some cases, we may want to make this operation

independent of magnitude (of the vector lengths), thus we
normalize the dot product such that:

• The resulting metric, the cosine of the angle between both
vectors is know as the cosine distance

• If a and b have zero mean (which can be done by subtracting the
mean from all values in the vector) then the cosine distance
measures also the correlation between vectors.

• There are many other distance/correlation metrics: Mahalanobis,
Earth-Mover’s distance, KL divergence, etc
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Self-similarity matrix (1)

• We can recursively calculate
the distance that separates
the frame-by-frame feature
vectors of an audio stream

• The resulting representation
is known as a self-similarity
measure, and depending on
the actual metric it
measures the (di)similarity
between vectors.

• This is suited to represent
repetitions, thus long-term
structure in music
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Self-similarity matrix (2)
• What to look for on a self-similarity matrix?
• Synthetic example (3 pure tones on the frequency domain)
• The main diagonal of the matrix is always the area of strongest

self-similarity, corresponding to the autocorrelation of each vector

Self-similarity matrix (3)
• Other diagonals (and bright-colored blocks) are telling about

possible repetitions and their location
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Self-similarity matrix (4)
• Some examples (Cooper and Foote, 2002): Vivaldi’s Spring and

The Magical Mystery Tour by The Beatles.
• Features: MFCCs ; metric: cosine distance

Self-similarity matrix (5)
• The process of extracting structural information (identifying

segment boundaries) from a self-similarity matrix is not trivial

• There is no standard approach. Strategies are driven by
application and feature set (see following examples)
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Novelty function
• Foote (2000) uses the cosine distance on STFT coefficients
• A checkered kernel is thus passed through the diagonal of the

matrix to quantify changes in a novelty function
• Small kernels work for onset detection, while large kernels

characterize longer segments on the signal

Thumbnailing (Summarization)
• Bartsch and Wakefield (2001) use beat-synchronous chroma vectors and

cosine distance to generate S.
• Then they filter along the diagonals of the matrix with a moving-average

filter to identify regions of extended similarity (characterized by lines of
constant lag in the direction of the columns)

• Thumbnails are selected by locating the area of similarity that carries the
most energy


