Analyzing structure:
segmenting musical audio

Musical form (1)

e Can refer to the type of composition (as in multi-movement form), e.g.
symphony, concerto, etc

* Of more relevance to this class, it refers to the structure of a given piece
(as in single-movement form), e.g. strophic, binary, sonata, fugue

* We can differentiate between sectional and developmental form

« "In a sectional form, the piece is built by combining small clear-cut units,
sort of like stacking legos” (DelLone, 1975). This is the case with most
popular music.

« In developmental form the piece is built from a nhumber of evolving
presentations and combinations of small musical units (e.g. motifs,
themes)

* Music with continuous non-sectional, non-repetitive form is called through
composed




Musical form (2)

Each unit can be labeled with a letter (e.g. A, B, C) or a generic
name (e.g. intro, verse, chorus, bridge, interlude, coda, etc)

Strophic form: repeats the same tune in different verses, e.g.
AA...

Binary form: alternates two sections, which are often repeated,
e.g. ABAB or AABB

Ternary form: has three parts, third section is often a recap or a
variation of the first one, e.g. AABA, AABA’, AA'BA’

Arch form: it is a symmetric form, based on the repetition of
sections around a center, e.g. ABCBA

Rondo: a main theme is alternated with sub-themes, but it
always comes back (returns), e.g. ABACADA.....

Variations: theme plus variations, e.g. AAAiAATi

Sonata: more complex form showing intro, exposition,
development, recapitulation, coda.

Musical form (3)

What is at the core of structure analysis is the idea of repetition.

Music tends to be highly repetitive, thus by identifying those
repetitions we can characterize long-term structure

But, what type of repetitions? Melodic? Harmonic? Rhythmic?

Mr. Arthur G. Lintgen is able to identify unlabeled recorded
orchestral works by observing the patterns of grooves in an LP

Figure 1. Arthur G. Lintgen identifying a phono-
graph record by examining the grooves




Visualizing structure (1)

* We need representations of musical features (e.g. pitch) where
these repetitions can be characterized
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* Martin Wattenberg: http://www.bewitched.com/match/music.html

Visualizing structure (2)

* Bach’s Minuet in G Major
« Binary form: AABB
* A and B overlap and are related (thin arcs)




Audio-based analysis

« This representation relies on high-level musical info (pitch) and
can only characterize repetitions of the exact same events.

« However, from audio we cannot obtain such high-level info
without tolerating error

e The only reliable calculations are of low-level features such as
spectral features (centroid, spread), MFCCs, LPCs, chroma, etc

* Thus we need to be able to find low-level feature sets that are
able to characterize “repetitions”, and we need to be able to
identify soft (approximate) repetitions.

Feature sets

» Let us consider two feature vectors, a and b, each representing a
distinct segment of an audio signal:

audio signal

Segment 1 Segment 2
JATASN /kV\

Feature vector a Feature vector b

« We can calculate how different these two vectors are.




Feature sets

Each feature set represents a vector in the Euclidean space defined by the
different features (e.g. 12-D chroma vectors, 15-D MFCCs, centroid):
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These vectors have lengths (magnitudes) and angles, and we can
calculate the distance between them

Distance metrics (1)

In this space the simplest distance we can calculate between two
points is that described by a straight line between them.
That distance is known as an Euclidean distance and is defined

(in 2D) as:
d= \/(y1 - x1)2 +(y, _xz)z
X Yi
* In n-dimensional (Euclidean) spaces, for two points a and b, it is
defined as:




Distance metrics (2)

+ In the Euclidean space, other distances (related to norms) can
also be used

+ The general case, the L,-distance in n dimensions, is defined as:
n 1/p
L, —distance = (2 X, =, p)
i=1

« It can be seen that the Euclidean distance is the L,-distance.

* The L,-distance is also known as the city-bf[ock or Manhattan
distance. I
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* When p tends t6 infinity we obtain the Chebyshev distance

Distance metrics (3)

« Alternatively we can use the dot product between two n-
dimensional vectors (a and b) which is defined as:

ab= Eaibi = [b]ja|cos6
i=1

* Geometrically it can be interpreted as the product between the
length of B (||B|[=B-B=(3.(b;,)*)!'?) and the scalar projection of A into
B:

A

" IAlcoso

where 6 is the angle between the two vectors




Distance metrics (4)

The dot product will be large if both vectors are large and

similarly oriented

However, in some cases, we may want to make this operation
independent of magnitude (of the vector lengths), thus we
normalize the dot product such that:

cosfO =

ab
[lal

The resulting metric, the cosine of the angle between both
vectors is know as the cosine distance

If a and b have zero mean (which can be done by subtracting the
mean from all values in the vector) then the cosine distance
measures also the correlation between vectors.

There are many other distance/correlation metrics: Mahalanobis,
Earth-Mover’s distance, KL divergence, etc

Self-similarity matrix (1)

We can recursively calculate
the distance that separates
the frame-by-frame feature
vectors of an audio stream

The resulting representation
is known as a self-similarity
measure, and depending on
the actual metric it
measures the (di)similarity
between vectors.

This is suited to represent
repetitions, thus long-term
structure in music
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Self-similarity matrix (2)

* What to look for on a self-similarity matrix?
* Synthetic example (3 pure tones on the frequency domain)

+ The main diagonal of the matrix is always the area of strongest
self-similarity, corresponding to the autocorrelation of each vector
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Self-similarity matrix (3)

» Other diagonals (and bright-colored blocks) are telling about
possible repetitions and their location

Stucture Map of 04-march of the pigs by nine inch nails

Seconds




Self-similarity matrix (4)

* Some examples (Cooper and Foote, 2002): Vivaldi's Spring and
The Magical Mystery Tour by The Beatles.
» Features: MFCCs ; metric: cosine distance
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Self-similarity matrix (5)

e The process of extracting structural information (identifying
segment boundaries) from a self-similarity matrix is not trivial
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* There is no standard approach. Strategies are driven by
application and feature set (see following examples)




Novelty function

» Foote (2000) uses the cosine distance on STFT coefficients

* A checkered kernel is thus passed through the diagonal of the
matrix to quantify changes in a novelty function

« Small kernels work for onset detection, while large kernels
characterize longer segments on the signal
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Thumbnalllng (Summarization)

Bartsch and Wakefield (2001) use beat-synchronous chroma vectors and
cosine distance to generate S.

e Then they filter along the diagonals of the matrix with a moving-average
filter to identify regions of extended similarity (characterized by lines of
constant lag in the direction of the columns)

* Thumbnails are selected by locating the area of similarity that carries the
most energy
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