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Characterizing harmony from
audio

Pitch Helix
• The pitch helix is a pitch space where linear pitch is wrapped

around a cylinder, thus modeling the special relationship that
exists between octave intervals

• The model is a function of 2-dimensions:
• Height: naturally organizes pitches from low to high
• Chroma: represents the inherent circularity of pitch
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• Sound made out of a superposition of octave-related sinusoids
• Uses only even partials weighted by a bell-shaped envelope

• A Shepard scale is created when the f0 of the sound is
progressively changed, thus creating the illusion of constantly
rising/falling tones

• Shepard/Tenney and Risset’s continuous glissandi

Shepard Tones

• Chroma describes the angle of the pitch rotation as it travels the
helix

• Two octave-related pitches will share the same angle in the
chroma circle.

• In the western tonal scale this angle can only take one of 12
possible values or pitch classes, thus the chroma can be seen as a
pitch class profile.

• A chord can be described as a function of its pitch classes
• Chroma representation is usually considered to be well suited for

modelling harmony

Chroma: Pitch Class Profile
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a) Calculate the FFT of a signal segment
b) Each FFT bin is mapped to its closest note, according to:

where p is the note number. This is equivalent to segmenting the
spectrum into note regions (± 1/4 tone from note center)

c) The average amplitude within regions is calculated
d) Resulting histogram is folded, collapsing bins belonging to the

same pitch class into one.

Calculating chromas (1)
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• This process is equivalent to using a Constant-Q filterbank where
the filters’ center frequencies are defined as:

• With fmin as the minimum (or reference) frequency, and β as the
analysis resolution (number of bins per octave)

• The bandwidth (BW) of each filter changes to maintain the fk/BW
ratio (Q) constant.

• The shape of the filter frequency response is important to weight
according to the distance to the note’s frequency

Calculating chromas (2)
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Calculating chromas (3)

• Linear vs Logarithmic Spectral Analysis for Music:

• The previous approach to chroma calculation relies on the linear
resolution of the FFT for its information gathering

• An alternative to this is the Constant-Q transform

• That uses a variable window length to obtain more resolution at
lower frequencies and less at higher (logarithmic distribution of
bins in frequency)

Calculating chromas (4)
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Calculating chromas (5)

• Xcq -> Constant-Q transform

• M -> total numbers of octaves

• Xcq can be fold into a chroma:

• b in [1,β] -> chroma bin number
• The sequence of chroma vectors is

known as a chromagram
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Estimating key (1)
• During the 1980s Krumhansl and her colleagues performed a

number of subjective studies measuring the expectation of each
tone in the chromatic scale in a certain key context

• As a result they proposed a probe tone model of key profiles
characterizing tone likelihoods for major and minor keys
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Estimating key (2)

• A number of researchers have used (versions of) those profiles to
estimate the key of a musical piece, e.g. Gomez and Herrera
(2004), Pauws (2004)

• The idea is that there is strong cross-correlation between the
information on those profiles and the chromas (for segment key)
or mean chromas (for entire songs) extracted from the signal

Estimating key (3)

Gomez and Herrera, ISMIR 2004
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Chord Estimation (1)

• Chords can be estimated by post-processing the chroma and
matching with simple chord templates, e.g. Harte and Sandler
(2005)

Chord Estimation (2)

• Chromagram tuning
• β = 36 bins per octave -> 3 bins per note

Peak picking

Tuning deviation

flat    ← 0 →  sharp
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Chord Estimation (3)
• We can create simple chord templates for common chords:
• E.g. Triads have a simple formulation of the form:

• Major: n, n + 4, n + 7 (e.g. G = [g, b, d])
• Minor: n, n + 3, n + 7 (e.g. g = [g, bb, d])

• Use simple patterns with 1 on composing notes, 0 elsewhere

Chord Estimation (4)
• The maximum of the correlation between chord templates and 12-

bin chromas represents the instantaneous chord value
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Chord Estimation (5)
• We can think of chords as the states of a process (x3) and chromas as the

result of that process (y3).

• We can calculate the probability of observing certain chroma values for a
given chord (b3)

• Furthermore, states are not independent, but the occurrence of a certain
state depends on the previous occurrence of other states

• The simpler of such probabilistic processes, a Markov process, is a
random process where the probability of the occurrence of the current
state (a23) depends only on the occurrence of the previous one

• Moreover, my states are not directly observable: are hidden from me.

Chord Estimation (6)

Tuned and Beat-
synchronous chroma

Viterbi algorithm • Ergodic HMM
• Chord space: e.g. major and

minor triads
• Standard algorithms for the

calculation of parameters
• Decoded using the Viterbi

algorithm

Bello and Pickens, 2005
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Chord Estimation (7)

Minor triads
Major
triads

Relative
minor

• xn are defined as a set of chords (e.g. 24 major and minor triads)

• yn are the chroma vectors out of our analysis of the signal

• bn can be initialized as simple chord templates (like before)

• amn can be initialized using our musical intuition

• All parameters can be efficiently estimated using the Baum-Welch method

• Eight days a week – The Beatles

Bello and Pickens (2005)

Chord Estimation (8)

Annotated

Recognised
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Chord Estimation (9)

Start from here!!!
Melisma Music Analyzer
(Temperley 2001) Timidity++, GUS sound font

• Fully-connected ergodic HMM
• 36 output states (12xmaj/min/dim)
• Each state modeled as a single
  Gaussian

• Use symbolic files
(e.g. MIDI) to generate
a large amount of labeled
training data

Lee and Slaney (2006 a,b)
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