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Characterizing temporal events
in music signals

Definitions

• The attack refers to the time interval
during which the amplitude envelope
increases

• The transients refer to short intervals in
which the signal evolves quickly in a non-
trivial and unpredictable way

• The onset is the single instant chosen to
mark the temporally extended transient.
Usually it will coincide with the start of
the transient
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Detecting onsets
We can exploit some of the most common features of transients to
characterize them and estimate their corresponding onsets.

Detecting onsets
• Onset detection is useful for a number of applications

including:
1. Audio editing tools
2. Digital audio effects (e.g. time scaling)
3. Audio coding
4. Synthesis
5. Segmentation for analysis tools (e.g. transcription)

• Onset detection, i.e. characterizing the temporal location of
events in the music signal, is the first step towards
understanding the underlying periodicities and accentuations
in the signal, i.e. rhythm.

• There are many techniques for onset detection, which
perform differently for different types of onsets:

a. Hard onsets: related to a percussive event
b. Soft onsets: related to a light tonal change (e.g.

glissando, legato)
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Onset detection

• It is not possible to look for
changes in time-domain
waveform as they are both
additive and oscillatory.

• This is even more so for common
musical signals (polyphonic and
multi-instrumental)

• It is thus necessary to use an
intermediate representation, i.e.
detection or novelty function

Time-domain

• The temporal evolution of music signals usually shows that the
occurrence of an onset is often accompanied by an amplitude
increase

• Thus using a simple envelope follower (rectifying + smoothing) is
an obvious choice:

• Where w(m) is an N-length smoothing window and x(n) is the
signal.

• Alternatively we can square the signal rather than rectify it to
obtain the local energy
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Time-domain

• A further refinement is to use the derivative of energy w.r.t. time,
thus converting sudden rises in energy into narrow peaks in the
derivative

• Furthermore, the study of psychoacoustics indicate that loudness
is perceived logarithmically.

• For humans, the smallest detectable change in loudness is
approximately proportional to the overall loudness of the signal
(smaller changes are equally relevant in quieter signals), thus:

• Calculating the first difference of logE(n) w.r.t. time simulates the
ear’s perception of loudness (Klapuri, 1999)
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Time-domain
Based on the analysis of the signal’s energy:
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Frequency-domain
• Many approaches exploit the behavior of the signal in the

frequency-domain to characterize onsets.
• If Xk(n) is the STFT of the signal x(n) times the N-length

smoothing window w(m), then the local energy in the frequency
domain is defined as:

• In the spectral domain, energy increases related to transients tend
to appear as wide-band noise. This is more noticeable at high
frequencies. We can emphasize that by using linear weighting
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Frequency-domain
• As with the time-domain estimations, it is more robust to

characterize changes in the spectrum than rely on instantaneous
measures.

• The goal is to formulate the detection function as a distance metric
between neighboring STFT frames.

• E.g. HFC differences, spectral differences (flux).
• An example is the L2 norm on the rectified difference:

• where:

is zero for negative arguments (so only energy increases are
taking into account)
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Frequency-domain

Time
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Energy-based detection

All studied methods are based on
the energy content of the signal.

Energy-based detection is effective
for percussive signals.

However it is not as effective when
energy profiles of weaker notes are
masked by those of stronger notes
as is the case in polyphonic mixtures.

It also has troubles identifying softer
onsets (e.g. bowed strings,
woodwinds) V
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Phase-based detection
• An Alternative is to use phase information, as phase carries all

timing information from the signal.
• Captures tonal changes (good for soft onsets)

• The deviation of the phase prediction for a given bin k is:

1!"#"
tt

$$

Δϕt-1

Δϕt

( )212arg !! +!= tttprincd """"

Phase-based detection

If we analyze the distributions of
these phase deviations for all k
along the time axis, we obtain a
sequence of distributions that are:

Spread with a low central lobe
during transients

Sharp with a high central lobe during
steady-state

By quantifying these observations
we can produce an onset detection
function
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Phase-based detection
• Several approaches have been proposed to quantify this behavior

(standard deviation, inter-quartile range, kurtosis)

• Perhaps the most efficient and easy to implement is the mean
absolute phase deviation:
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Further improvements
• It has been shown that sub-band decompositions bring benefits

as events from independent bands do not mask each other
• A good example is the work by Klapuri et al. (1999)

36 triangular windows, equally
distributed in the mel-frequency scale

Why sub-bands?

• High sub-bands (better
localization, prone to
noise and miss-detection
of tonal onsets)

• Low sub-bands (robust to
noise, high accuracy, poor
resolution, poor
localization)
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Post-processing and peak-picking

• Post-processing facilitates peak-picking
• Examples include smoothing, normalization, DC-removal,

differentiation, etc

• Peaks above a threshold are considered as onsets.
• This threshold can be fixed, however it is hard to choose a value

that will operate in all signals (or even just in a whole song)

Post-processing and peak-picking
• Adaptive thresholding is a more realistic option for real signals.
• Methods include LPF, non-linear functions and percentiles (e.g.

the median)
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Understanding rhythm
• Goal: to detect moments of musical stress and process them as

to uncover the underlying temporal regularities of the signal.
• It is hierarchical in structure, related to the perception of pulses

at different time scales (From Gouyon, 2005):
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Tempo

• Tempo refers to the pace of a piece of music and is usually given
in beats per minutes (BPM)

• We can think of it as a global quality but more realistically it is an
evolving characteristic of musical performances.

• Thus, in computational terms we differentiate between tempo
estimation and tempo (beat) tracking.

• In tracking, beats are not only described by their rate (frequency)
but by their phase (time location).

• Many approaches have been proposed: Goto 97, Scheirer 98,
Dixon 01, Tzanetakis 01, Gouyon 02, Klapuri 03, Davies 05, etc.
(see MIREX 2004, 2005)

• They roughly divide between those that simultaneously estimate
periodicity and phase and those that do it sequentially
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Simultaneous tracking
• Scheirer (1998)
• Operates on detection functions
• Comb filter resonators

Sub-band
detection functions

• Klapuri (2003)
• Larger framework for rhythm understanding (up to measure level)

• Simultaneous tracking provides an elegant solution.
• Inefficient as too many filtering operations are needed for an

instantaneous estimation

Simultaneous tracking
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Sequential tracking

• Periodicity and phase estimation are performed sequentially, thus
separating tempo estimation from tracking

• Examples include Dixon (2001), Gouyon (2002) and Davies (2005)

• Feature sets differ: onsets, inter-onset intervals, low-level features
within segments, detection functions, etc

• Separating the tasks allow you to select different feature sets that
maximize results

Sequential tracking

• For example, the
autocorrelation
sequence of the
detection function is
better at
characterizing
periodicities

• However simple peak-
picking in the ACF is
not enough for tempo
estimation

ACF

tempo = 260 bpm

tempo = 130 bpm

tempo = 65 bpm

DF
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Sequential tracking
• Davies (2005) performs the dot multiplication of the ACF of the DF

with a weighted comb filterbank.
• The filter that maximizes the multiplication is then correlated with

the DF to obtain phase
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