Feature Vectors

Spectral low-level features

e Spectral low-level features aim at describing the structure of
(frame or) sound spectra using a single quantity.

* They can be extracted in linear or logarithmic frequency domain,
using spectral amplitudes, power values, logarithmic values, etc.
* The most common of these features is the spectral centroid (SC):
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» It characterizes the centre of gravity of the (power) spectra.

« It is usually associated to the timbral sharpness of the sound and
even to the concept of brightness.




Spectral Centroid
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Temporal evolution of the Spectral Centroid for 2 instrumental sounds

Spectral Spread

» It is a measure of the average spread of the spectrum in relation
to its centroid
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» For noisy sounds you would expect SS to be high, while tonal,
less broadband, sounds will show a lower SS




Spectral flatness

It reflects the flatness properties of the power spectrum
It is calculated as the ratio between the geometric and arithmetic

mean
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It is calculated per spectral band, so that £, in the above formula
goes from the lower (k) to the upper (k,) edge of the band, and

N, =k, - k,+ 1. The flatness for the whole spectrum (SF) is thus
the average of the sub-band flatness values

Using harmonic data

Since SMS and its variations provide methods for harmonic peak
information and fundamental frequency to be known, we can also
use these low-level descriptors to characterize harmonic spectra.
Assuming the frequency and amplitude of harmonic peaks to be
known, we can (for example) calculate the harmonic spectral
centroid (HSC) as the amplitude-weighted mean of the harmonic
peaks of the spectrum:
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Where f, and A4, are, respectively, the frequency and amplitude of

the 4" harmonic. The average of HSC over the duration of the

signal results in a single summarizing quantity describing this
property for the whole sound.




The human speech system

e The vocal chords act as
an oscillator

e The mouth cavity,
tongue and throat act
as filters

e We can shape a tonal
sound (‘oooh’ vs ‘aaah’)

e We can whiten the
signal (*sssshhh”)

¢ We can produce pink
noise by removing high
frequencies

Vocal cords

Mouth cavity

Tongue

What is the spectral envelope?

« Itis a smoothing of the spectrum that preserves its general
form while neglecting its spectral line structure
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Estimation of the spectral envelope

There are a number of possible techniques:

1. The channel vocoder: estimates the amplitude of the signal
inside a few frequency bands

2. Linear prediction: estimates the parameters of a filter that
matches the spectrum of the sound.

3. Cepstrum analysis: smoothes the logarithm of the spectrum
and low-pass filters it to obtain the envelope.

Channel Vocoder (1)

 Filters the sound with a bank of BP filters
e Calculates RMS for each bandpass signal

e The more filters we use, the more frequency points of the spectrum
we estimate
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Channel Vocoder (2)

In the frequency domain: square root of the sum of the
multiplication between FFT bin energies with the filter’s frequency

response.
Octave-spaced channel stacking
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The filter bank can be defined on a logarithmic scale (e.g. constant-
Q filter bank)

Can be defined on a linear scale (equal bandwidth)

Channel Vocoder (3)

For a linearly spaced filterbank we can perform a circular

convolution: 3
Y (k) = | X (k)| * w(k)

A very quick implementation uses FFT/IFFT to perform the
circular convolution

Y(k) = \/m(IFFT(FFT(X(k)Z) : FFT(w(k))))
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Linear Predictive Coding

« Linear predictive coding (LPC) is a source-filter analysis-synthesis
methodology that approximates sound generation as an excitation
(a pulse train or noise) passing through an all-pole resonant filter.
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» Extensively used in speech and music applications.
» It reduces the amount of data to a few filter coefficients.

» It derives its name from the fact that output samples are predicted
as a linear combination of filter coefficients and previous samples.

Linear Predictive Coding (2)

« The input sample x(n) is extrapolated, i.e. approximated by a
linear combination of past samples of the input signal:

x(n) = x(n) = iakx(n -k)

» Because this is a prediction we always have a residual error:
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Linear Predictive Coding (3)

e The IIR filter H(z) is known as the LPC filter and represents the
spectral model of x(n).

» With optimal coefficients -> residual energy is minimised

« The higher the coefficient order p, the closer the approximation is
to |X(k)|

magnitude spectra |X(f)] and [H(f)| in dB
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Cepstrum

» Is the result of taking the Fourier Transform of the log Spectrum as
if it were a signal

» It measures the rate of change in the different spectral bands

* The name cepstrum, first introduced by Bogert et al (1963) is an
anagram of spectrum (they also introduced the terms quefrency,
liftering, saphe, alanysis, etc)

» For a real signal x(n), the Cepstrum is calculated as:
c(n)=IFFT(log|X(n,k)| ) p(k)
e The real spectrum ignores the complex component and is therefore:

c,(n)=IFFT(log|X(n,k)|)
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Cepstrum

* The real cepstrum can be weighted using a low-pass window

of the form:
1 n=0,N,

w,,(n)=42 l=ns<N,
0 N<n=sN-1

e With N; = N/2, such that the low-pass liftered spectrum and
the spectral envelope can be obtained by:

c,p(n)=c,(n) w,,(n)
C,p(k)=FFT[c,,(n)]
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MFCC

Waveform
* Mel-Frequency Cepstral Coefficients '
are an interesting variation on the
linear cepstrum, which are widely used Convert to Frames
in speech and music analysis. T
Take discrete
+ They are the most widely used Fourter transform
features in speech recognition, mainly L
due to their ability to compactly Take Log of
represent the audio spectrum (only amplitude spectrum
~13 coefficients) !
Mel-scaling and
smoothing

* The steps performed on their
computation are motivated by
perceptual or computational Discrete cosine transform
considerations (Logan, 2000)

T
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MFCC Features

MFCC

* The Mel scale is a non-linear perceptual scale of pitches
judged to be equidistant.

* The scale is approximately linear below 1kHz and logarithmic
above, the reference point is a 1kHz tone, which is equated
to 1000 Mel

» A tone perceived to be half as high is defined to have 500
Mel, while a tone twice as high is defined to have 2000 Mel

m=1127.010481log(1+ f/700)
f — 700(eln/1127.01048 _ 1)
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MFCC

* To convert a linear spectrum to Mel we can use a filterbank of
overlapping triangular windows:
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e Such that the width d of each window increases according to
the Mel scale, and the height of each triangle is 2/d
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MFCC

* The resulting Mel spectral vectors are highly correlated with
each other, i.e. highly redundant

e Thus a more efficient representation of the log-spectrum can
be obtained by applying a transform that decorrelates those
vectors (see Rabiner and Juang, 93).

* This decorrelation, which can be achieved using Principal
Component Analysis (PCA) is commonly approximated by
means of the Discrete Cosine Transform (DCT).

» The DCT is similar to a DFT but only for real numbers. It has
the property that most of its energy is concentrated on a few
initial coefficients (thus effectively compressing the spectral

info)
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MFCC
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e MFCC roughly model certain characteristics of human
audition: the non-linear perception of loudness and frequency
and spectral masking (Pampalk, 2006)
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7.htm
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* Good read, Chapter 2: Dutilleux, P. and Z6lzer, U. “Filters”
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Austria (2006). PDF available at: http://staff.aist.go.jp/elias.pampalk/mir-phds

* Logan, B. “Mel Frequency Cepstral Coefficients for Music Modeling”, Proceedings of
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(2000).
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