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Feature Vectors

Spectral low-level features

• Spectral low-level features aim at describing the structure of
(frame or) sound spectra using a single quantity.

• They can be extracted in linear or logarithmic frequency domain,
using spectral amplitudes, power values, logarithmic values, etc.

• The most common of these features is the spectral centroid (SC):

• It characterizes the centre of gravity of the (power) spectra.
• It is usually associated to the timbral sharpness of the sound and

even to the concept of brightness.! 
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Spectral Centroid

Temporal evolution of the Spectral Centroid for 2 instrumental sounds

Spectral Spread

• It is a measure of the average spread of the spectrum in relation
to its centroid

• For noisy sounds you would expect SS to be high, while tonal,
less broadband, sounds will show a lower SS
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Spectral flatness

• It reflects the flatness properties of the power spectrum
• It is calculated as the ratio between the geometric and arithmetic

mean

• It is calculated per spectral band, so that kb in the above formula
goes from the lower (kl) to the upper (ku) edge of the band, and
Nb = ku - kl + 1. The flatness for the whole spectrum (SF) is thus
the average of the sub-band flatness values! 
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Using harmonic data

• Since SMS and its variations provide methods for harmonic peak
information and fundamental frequency to be known, we can also
use these low-level descriptors to characterize harmonic spectra.

• Assuming the frequency and amplitude of harmonic peaks to be
known, we can (for example) calculate the harmonic spectral
centroid (HSC) as the amplitude-weighted mean of the harmonic
peaks of the spectrum:

• Where fh and Ah are, respectively, the frequency and amplitude of
the hth harmonic. The average of HSC over the duration of the
signal results in a single summarizing quantity describing this
property for the whole sound.
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The human speech system

• The vocal chords act as
an oscillator

• The mouth cavity,
tongue  and throat act
as filters

• We can shape a tonal
sound (‘oooh’ vs ‘aaah’)

• We can whiten the
signal (‘sssshhh’)

• We can produce pink
noise by removing high
frequencies

What is the spectral envelope?
• It is a smoothing of the spectrum that preserves its general

form while neglecting its spectral line structure
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Estimation of the spectral envelope

• There are a number of possible techniques:

1. The channel vocoder: estimates the amplitude of the signal
inside a few frequency bands

2. Linear prediction: estimates the parameters of a filter that
matches the spectrum of the sound.

3. Cepstrum analysis: smoothes the logarithm of the spectrum
and low-pass filters it to obtain the envelope.

Channel Vocoder (1)
• Filters the sound with a bank of BP filters
• Calculates RMS for each bandpass signal
• The more filters we use, the more frequency points of the spectrum

we estimate
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• In the frequency domain: square root of the sum of the
multiplication between FFT bin energies with the filter’s frequency
response.

• The filter bank can be defined on a logarithmic scale (e.g. constant-
Q filter bank)

• Can be defined on a linear scale (equal bandwidth)

Channel Vocoder (2)

Channel Vocoder (3)
• For a linearly spaced filterbank we can perform a circular

convolution:

• A very quick implementation uses FFT/IFFT to perform the
circular convolution
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• Linear predictive coding (LPC) is a source-filter analysis-synthesis
methodology that approximates sound generation as an excitation
(a pulse train or noise) passing through an all-pole resonant filter.

• Extensively used in speech and music applications.
• It reduces the amount of data to a few filter coefficients.
• It derives its name from the fact that output samples are predicted

as a linear combination of filter coefficients and previous samples.

Linear Predictive Coding

Linear Predictive Coding (2)
• The input sample x(n) is extrapolated, i.e. approximated by a

linear combination of past samples of the input signal:

• Because this is a prediction we always have a residual error:
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Linear Predictive Coding (3)
• The IIR filter H(z) is known as the LPC filter and represents the

spectral model of x(n).
• With optimal coefficients -> residual energy is minimised
• The higher the coefficient order p, the closer the approximation is

to |X(k)|

LPC order and residual
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Cepstrum
• Is the result of taking the Fourier Transform of the log Spectrum as

if it were a signal
• It measures the rate of change in the different spectral bands
• The name cepstrum, first introduced by Bogert et al (1963) is an

anagram of spectrum (they also introduced the terms quefrency,
liftering, saphe, alanysis, etc)

• For a real signal x(n), the Cepstrum is calculated as:

c(n)=IFFT(log|X(n,k)|+jϕ(k))

• The real spectrum ignores the complex component and is therefore:

cr(n)=IFFT(log|X(n,k)|)

By low-pass “liftering”
the cepstrum we
obtain the spectral
envelope of the signal
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• The real cepstrum can be weighted using a low-pass window
of the form:

• With N1 ≤ N/2, such that the low-pass liftered spectrum and
the spectral envelope can be obtained by:

Cepstrum
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MFCC
• Mel-Frequency Cepstral Coefficients

are an interesting variation on the
linear cepstrum, which are widely used
in speech and music analysis.

• They are the most widely used
features in speech recognition, mainly
due to their ability to compactly
represent the audio spectrum (only
~13 coefficients)

• The steps performed on their
computation are motivated by
perceptual or computational
considerations (Logan, 2000)

MFCC
• The Mel scale is a non-linear perceptual scale of pitches

judged to be equidistant.
• The scale is approximately linear below 1kHz and logarithmic

above, the reference point is a 1kHz tone, which is equated
to 1000 Mel

• A tone perceived to be half as high is defined to have 500
Mel, while a tone twice as high is defined to have 2000 Mel

! 

m =1127.01048log(1+ f /700)

f = 700(em /1127.01048 "1)
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MFCC
• To convert a linear spectrum to Mel we can use a filterbank of

overlapping triangular windows:

• Such that the width d of each window increases according to
the Mel scale, and the height of each triangle is 2/d

MFCC
• The resulting Mel spectral vectors are highly correlated with

each other, i.e. highly redundant
• Thus a more efficient representation of the log-spectrum can

be obtained by applying a transform that decorrelates those
vectors (see Rabiner and Juang, 93).

• This decorrelation, which can be achieved using Principal
Component Analysis (PCA) is commonly approximated by
means of the Discrete Cosine Transform (DCT).

• The DCT is similar to a DFT but only for real numbers. It has
the property that most of its energy is concentrated on a few
initial coefficients (thus effectively compressing the spectral
info)

! 

X
DCT
(k) =

2

N
x(n)cos[

"

N
(n +

1

2
)k]

N= 0

N#1

$



13

MFCC

• MFCC roughly model certain characteristics of human
audition: the non-linear perception of loudness and frequency
and spectral masking (Pampalk, 2006)
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