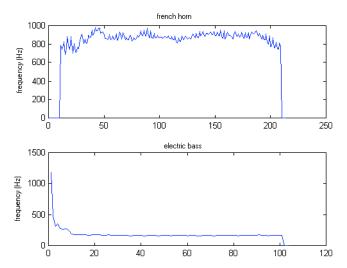
Feature Vectors

Spectral low-level features

- Spectral low-level features aim at describing the structure of (frame or) sound spectra using a single quantity.
- They can be extracted in linear or logarithmic frequency domain, using spectral amplitudes, power values, logarithmic values, etc.
- The most common of these features is the spectral centroid (SC):

$$SC = \frac{\sum_{k=0}^{N/2} f_k |X(k)|^2}{\sum_{k=0}^{N/2} |X(k)|^2}$$

- It characterizes the centre of gravity of the (power) spectra.
- It is usually associated to the timbral sharpness of the sound and even to the concept of brightness.



Temporal evolution of the Spectral Centroid for 2 instrumental sounds

Spectral Spread

• It is a measure of the average spread of the spectrum in relation to its centroid

$$SS = \sqrt{\frac{\sum_{k=0}^{N/2} (f_k - SC)^2 |X(k)|^2}{\sum_{k=0}^{N/2} |X(k)|^2}}$$

 For noisy sounds you would expect SS to be high, while tonal, less broadband, sounds will show a lower SS

Spectral flatness

- It reflects the flatness properties of the power spectrum
- It is calculated as the ratio between the geometric and arithmetic mean

$$SF_{b} = \frac{\sqrt[N_{b}]{\prod_{k_{b}} |X(k_{b})|^{2}}}{\frac{1}{N_{b}} \sum_{k_{b}} |X(k_{b})|^{2}}$$

• It is calculated per spectral band, so that k_b in the above formula goes from the lower (k_l) to the upper (k_u) edge of the band, and $N_b = k_u - k_l + 1$. The flatness for the whole spectrum (SF) is thus the average of the sub-band flatness values

Using harmonic data

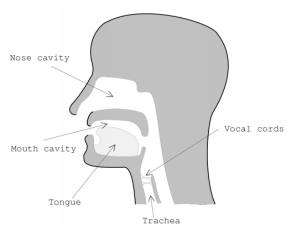
- Since SMS and its variations provide methods for harmonic peak information and fundamental frequency to be known, we can also use these low-level descriptors to characterize harmonic spectra.
- Assuming the frequency and amplitude of harmonic peaks to be known, we can (for example) calculate the harmonic spectral centroid (HSC) as the amplitude-weighted mean of the harmonic peaks of the spectrum:

$$HSC = \frac{\sum_{h=1}^{N_h} f_h A_h}{\sum_{h=1}^{N_h} A_h}$$

• Where f_h and A_h are, respectively, the frequency and amplitude of the h^{th} harmonic. The average of HSC over the duration of the signal results in a single summarizing quantity describing this property for the whole sound.

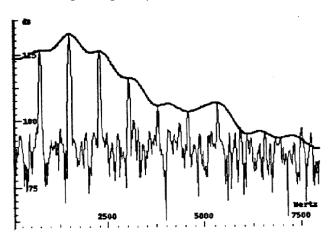
The human speech system

- The vocal chords act as an oscillator
- The mouth cavity, tongue and throat act as filters
- We can shape a tonal sound ('oooh' vs 'aaah')
- We can whiten the signal ('sssshhh')
- We can produce pink noise by removing high frequencies



What is the spectral envelope?

• It is a smoothing of the spectrum that preserves its general form while neglecting its spectral line structure

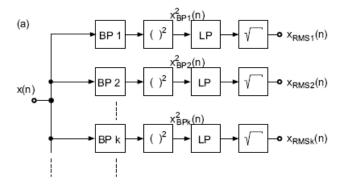


Estimation of the spectral envelope

- There are a number of possible techniques:
- 1. The channel vocoder: estimates the amplitude of the signal inside a few frequency bands
- 2. Linear prediction: estimates the parameters of a filter that matches the spectrum of the sound.
- 3. Cepstrum analysis: smoothes the logarithm of the spectrum and low-pass filters it to obtain the envelope.

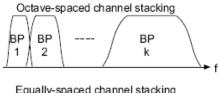
Channel Vocoder (1)

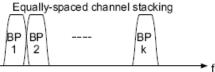
- Filters the sound with a bank of BP filters
- · Calculates RMS for each bandpass signal
- The more filters we use, the more frequency points of the spectrum we estimate



Channel Vocoder (2)

• In the frequency domain: square root of the sum of the multiplication between FFT bin energies with the filter's frequency response.





- The filter bank can be defined on a logarithmic scale (e.g. constant-Q filter bank)
- Can be defined on a linear scale (equal bandwidth)

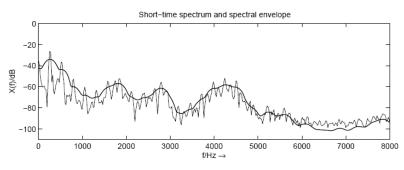
Channel Vocoder (3)

• For a linearly spaced filterbank we can perform a circular convolution:

 $Y(k) = \sqrt{\left|X(k)\right|^2 * w(k)}$

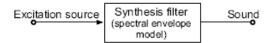
• A very quick implementation uses FFT/IFFT to perform the circular convolution

$$Y(k) = \sqrt{\Re \left(IFFT \left(\left| FFT \left(\left| X(k) \right|^2 \right) \cdot FFT \left(w(k) \right) \right) \right)}$$



Linear Predictive Coding

 Linear predictive coding (LPC) is a source-filter analysis-synthesis methodology that approximates sound generation as an excitation (a pulse train or noise) passing through an all-pole resonant filter.



- · Extensively used in speech and music applications.
- It reduces the amount of data to a few filter coefficients.
- It derives its name from the fact that output samples are predicted as a linear combination of filter coefficients and previous samples.

Linear Predictive Coding (2)

• The input sample x(n) is extrapolated, i.e. approximated by a linear combination of past samples of the input signal:

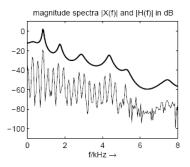
$$x(n) \approx \hat{x}(n) = \sum_{k=1}^{p} a_k x(n-k)$$

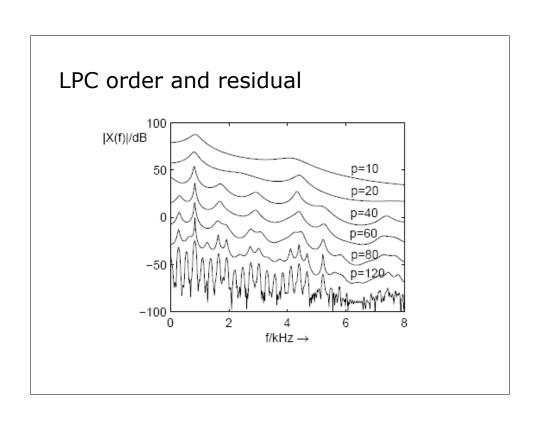
• Because this is a prediction we always have a residual error:

$$e(n) = x(n) - \hat{x}(n) = x(n) - \sum_{k=1}^{p} a_k x(n-k)$$

Linear Predictive Coding (3)

- The IIR filter H(z) is known as the LPC filter and represents the spectral model of x(n).
- With optimal coefficients -> residual energy is minimised
- The higher the coefficient order p, the closer the approximation is to |X(k)|





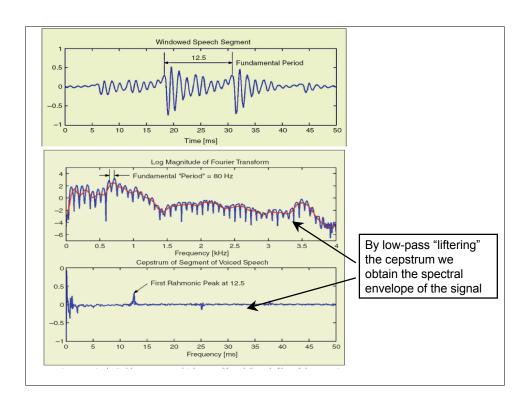
Cepstrum

- Is the result of taking the Fourier Transform of the log Spectrum as if it were a signal
- It measures the rate of change in the different spectral bands
- The name cepstrum, first introduced by Bogert et al (1963) is an anagram of spectrum (they also introduced the terms quefrency, liftering, saphe, alanysis, etc)
- For a real signal x(n), the Cepstrum is calculated as:

$$c(n) = IFFT(log|X(n,k)| + j\varphi(k))$$

• The real spectrum ignores the complex component and is therefore:

$$c_r(n) = IFFT(log|X(n,k)|)$$



Cepstrum

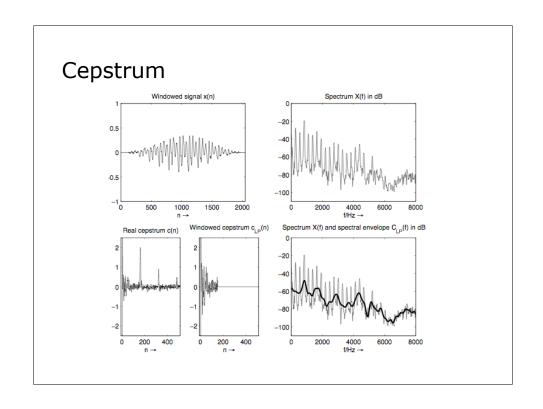
 The real cepstrum can be weighted using a low-pass window of the form:

$$\omega_{LP}(n) = \begin{cases} 1 & n = 0, N_1 \\ 2 & 1 \le n \le N_1 \\ 0 & N_1 < n \le N-1 \end{cases}$$

• With $N_1 \le N/2$, such that the low-pass liftered spectrum and the spectral envelope can be obtained by:

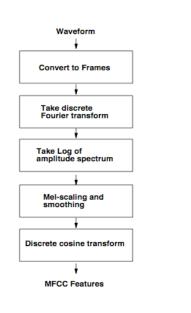
$$c_{LP}(n) = c_r(n) \cdot \omega_{LP}(n)$$

$$C_{LP}(k) = FFT[c_{LP}(n)]$$
 Real Cepstrum Spectral Envelope
$$\sum_{w(n)}^{\chi(n)} \sum_{w(n)}^{\chi(k)} |\hat{\chi}_{R}(k)| \text{ IFFT } c(n) \text{ or } c_{LP}(n) \text{ FFT } c_{LP}(k)$$



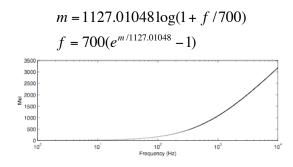
MFCC

- Mel-Frequency Cepstral Coefficients are an interesting variation on the linear cepstrum, which are widely used in speech and music analysis.
- They are the most widely used features in speech recognition, mainly due to their ability to compactly represent the audio spectrum (only ~13 coefficients)
- The steps performed on their computation are motivated by perceptual or computational considerations (Logan, 2000)



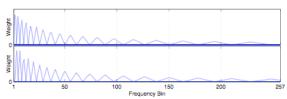
MFCC

- The Mel scale is a non-linear perceptual scale of pitches judged to be equidistant.
- The scale is approximately linear below 1kHz and logarithmic above, the reference point is a 1kHz tone, which is equated to 1000 Mel
- A tone perceived to be half as high is defined to have 500
 Mel, while a tone twice as high is defined to have 2000 Mel

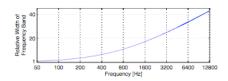


MFCC

• To convert a linear spectrum to Mel we can use a filterbank of overlapping triangular windows:



• Such that the width d of each window increases according to the Mel scale, and the height of each triangle is 2/d

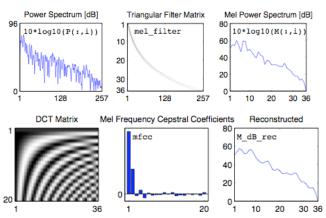


MFCC

- The resulting Mel spectral vectors are highly correlated with each other, i.e. highly redundant
- Thus a more efficient representation of the log-spectrum can be obtained by applying a transform that decorrelates those vectors (see Rabiner and Juang, 93).
- This decorrelation, which can be achieved using Principal Component Analysis (PCA) is commonly approximated by means of the Discrete Cosine Transform (DCT).
- The DCT is similar to a DFT but only for real numbers. It has the property that most of its energy is concentrated on a few initial coefficients (thus effectively compressing the spectral info)

$$X_{DCT}(k) = \sqrt{\frac{2}{N}} \sum_{N=0}^{N-1} x(n) \cos\left[\frac{\pi}{N}(n + \frac{1}{2})k\right]$$

MFCC



 MFCC roughly model certain characteristics of human audition: the non-linear perception of loudness and frequency and spectral masking (Pampalk, 2006)

Useful references

- Zölzer, U. (Ed). "DAFX: Digital Audio Effects". John Wiley and Sons (2002)
 - Chapter 10: Amatriain, X., Bonada, J., Loscos, A. and Serra, X. "Spectral Processing".
- Kim, H-G., Moreau, N. and Sikora, T. "MPEG-7 Audio and Beyond: Audio Content Indexing and Retrieval". John Wiley & Sons (2005)
 - Chapter 2: "Low-Level Descriptors"
- The MPEG-7 standard: http://www.chiariglione.org/mpeg/standards/mpeg-7/mpeg-7.htm
- Zölzer, U. (Ed). "DAFX: Digital Audio Effects". John Wiley and Sons (2002)
 - Chapter 8: Arfib, D., Keiler, F. and Zölzer, U., "Source-filter Processing".
 - Good read, Chapter 2: Dutilleux, P. and Zölzer, U. "Filters"
- Pampalk, E. "Computational Models of Music Similarity and their Application in Music Information Retrieval". PhD Thesis, Vienna University of Technology, Vienna, Austria (2006). PDF available at: http://staff.aist.go.jp/elias.pampalk/mir-phds/
- Logan, B. "Mel Frequency Cepstral Coefficients for Music Modeling", Proceedings of the ISMIR International Symposium on Music Information Retrieval, Plymouth, MA (2000).
- http://en.wikipedia.org/wiki/Discrete cosine transform