
CENTER FOR

MACHINE PERCEPTION

CZECH TECHNICAL

UNIVERSITY

R
E
S
E
A

R
C
H

R
E
P
O

R
T

IS
S
N

1
2
1
3
-2

3
6
5

Statistical Pattern Recognition
Toolbox for Matlab

User’s guide

Vojtěch Franc and Václav Hlaváč

{xfrancv,hlavac}@cmp.felk.cvut.cz

CTU–CMP–2004–08

June 24, 2004

Available at
ftp://cmp.felk.cvut.cz/pub/cmp/articles/Franc-TR-2004-08.pdf

The authors were supported by the European Union under project
IST-2001-35454 ECVision, the project IST-2001-32184 ActIPret and
by the Czech Grant Agency under project GACR 102/03/0440 and
by the Austrian Ministry of Education under project CONEX GZ
45.535.

Research Reports of CMP, Czech Technical University in Prague, No. 8, 2004

Published by

Center for Machine Perception, Department of Cybernetics
Faculty of Electrical Engineering, Czech Technical University

Technická 2, 166 27 Prague 6, Czech Republic
fax +4202 2435 7385, phone +4202 2435 7637, www: http://cmp.felk.cvut.cz



Statistical Pattern Recognition Toolbox for Matlab

Vojtěch Franc and Václav Hlaváč

June 24, 2004



Contents

1 Introduction 3
1.1 What is the Statistical Pattern Recognition Toolbox and how it has been

developed? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.2 The STPRtool purpose and its potential users . . . . . . . . . . . . . . 3
1.3 A digest of the implemented methods . . . . . . . . . . . . . . . . . . . 4
1.4 Relevant Matlab toolboxes of others . . . . . . . . . . . . . . . . . . . . 5
1.5 STPRtool document organization . . . . . . . . . . . . . . . . . . . . . 5
1.6 How to contribute to STPRtool? . . . . . . . . . . . . . . . . . . . . . 5
1.7 Acknowledgements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6

2 Linear Discriminant Function 8
2.1 Linear classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
2.2 Linear separation of finite sets of vectors . . . . . . . . . . . . . . . . . 10

2.2.1 Perceptron algorithm . . . . . . . . . . . . . . . . . . . . . . . . 11
2.2.2 Kozinec’s algorithm . . . . . . . . . . . . . . . . . . . . . . . . . 12
2.2.3 Multi-class linear classifier . . . . . . . . . . . . . . . . . . . . . 14

2.3 Fisher Linear Discriminant . . . . . . . . . . . . . . . . . . . . . . . . . 15
2.4 Generalized Anderson’s task . . . . . . . . . . . . . . . . . . . . . . . . 17

2.4.1 Original Anderson’s algorithm . . . . . . . . . . . . . . . . . . . 19
2.4.2 General algorithm framework . . . . . . . . . . . . . . . . . . . 21
2.4.3 ε-solution using the Kozinec’s algorithm . . . . . . . . . . . . . 21
2.4.4 Generalized gradient optimization . . . . . . . . . . . . . . . . . 22

3 Feature extraction 25
3.1 Principal Component Analysis . . . . . . . . . . . . . . . . . . . . . . . 26
3.2 Linear Discriminant Analysis . . . . . . . . . . . . . . . . . . . . . . . 29
3.3 Kernel Principal Component Analysis . . . . . . . . . . . . . . . . . . . 31
3.4 Greedy kernel PCA algorithm . . . . . . . . . . . . . . . . . . . . . . . 32
3.5 Generalized Discriminant Analysis . . . . . . . . . . . . . . . . . . . . . 33
3.6 Combining feature extraction and linear classifier . . . . . . . . . . . . 34

1



4 Density estimation and clustering 41
4.1 Gaussian distribution and Gaussian mixture model . . . . . . . . . . . 41
4.2 Maximum-Likelihood estimation of GMM . . . . . . . . . . . . . . . . 43

4.2.1 Complete data . . . . . . . . . . . . . . . . . . . . . . . . . . . 44
4.2.2 Incomplete data . . . . . . . . . . . . . . . . . . . . . . . . . . . 45

4.3 Minimax estimation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47
4.4 Probabilistic output of classifier . . . . . . . . . . . . . . . . . . . . . . 48
4.5 K-means clustering . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 50

5 Support vector and other kernel machines 57
5.1 Support vector classifiers . . . . . . . . . . . . . . . . . . . . . . . . . . 57
5.2 Binary Support Vector Machines . . . . . . . . . . . . . . . . . . . . . 58
5.3 One-Against-All decomposition for SVM . . . . . . . . . . . . . . . . . 63
5.4 One-Against-One decomposition for SVM . . . . . . . . . . . . . . . . . 64
5.5 Multi-class BSVM formulation . . . . . . . . . . . . . . . . . . . . . . . 66
5.6 Kernel Fisher Discriminant . . . . . . . . . . . . . . . . . . . . . . . . . 68
5.7 Pre-image problem . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 70
5.8 Reduced set method . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

6 Miscellaneous 76
6.1 Data sets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 76
6.2 Visualization . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 77
6.3 Bayesian classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
6.4 Quadratic classifier . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 80
6.5 K-nearest neighbors classifier . . . . . . . . . . . . . . . . . . . . . . . 82

7 Examples of applications 85
7.1 Optical Character Recognition system . . . . . . . . . . . . . . . . . . 85
7.2 Image denoising . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 87

8 Conclusions and future planes 94

2



Chapter 1

Introduction

1.1 What is the Statistical Pattern Recognition Tool-

box and how it has been developed?

The Statistical Pattern Recognition Toolbox (abbreviated STPRtool) is a collection of
pattern recognition (PR) methods implemented in Matlab.

The core of the STPRtool is comprised of statistical PR algorithms described in
the monograph Schlesinger, M.I., Hlaváč, V: Ten Lectures on Statistical and Structural
Pattern Recognition, Kluwer Academic Publishers, 2002 [26]. The STPRtool has been
developed since 1999. The first version was a result of a diploma project of Vojtěch
Franc [8]. Its author became a PhD student in CMP and has been extending the
STPRtool since. Currently, the STPRtool contains much wider collection of algorithms.

The STPRtool is available at
http://cmp.felk.cvut.cz/cmp/cmp software.html.

We tried to create concise and complete documentation of the STPRtool. This
document and associated help files in .html should give all information and parameters
the user needs when she/he likes to call appropriate method (typically a Matlab m-
file). The intention was not to write another textbook. If the user does not know
the method then she/he will likely have to read the description of the method in a
referenced original paper or in a textbook.

1.2 The STPRtool purpose and its potential users

• The principal purpose of STPRtool is to provide basic statistical pattern recog-
nition methods to (a) researchers, (b) teachers, and (c) students. The STPRtool
is likely to help both in research and teaching. It can be found useful by practi-
tioners who design PR applications too.

3



• The STPRtool offers a collection of the basic and the state-of-the art statistical
PR methods.

• The STPRtool contains demonstration programs, working examples and visual-
ization tools which help to understand the PR methods. These teaching aids are
intended for students of the PR courses and their teachers who can easily create
examples and incorporate them into their lectures.

• The STPRtool is also intended to serve a designer of a new PR method by
providing tools for evaluation and comparison of PR methods. Many standard
and state-of-the art methods have been implemented in STPRtool.

• The STPRtool is open to contributions by others. If you develop a method
which you consider useful for the community then contact us. We are willing to
incorporate the method into the toolbox. We intend to moderate this process to
keep the toolbox consistent.

1.3 A digest of the implemented methods

This section should give the reader a quick overview of the methods implemented in
STPRtool.

• Analysis of linear discriminant function: Perceptron algorithm and multi-
class modification. Kozinec’s algorithm. Fisher Linear Discriminant. A collection
of known algorithms solving the Generalized Anderson’s Task.

• Feature extraction: Linear Discriminant Analysis. Principal Component Anal-
ysis (PCA). Kernel PCA. Greedy Kernel PCA. Generalized Discriminant Analy-
sis.

• Probability distribution estimation and clustering: Gaussian Mixture
Models. Expectation-Maximization algorithm. Minimax probability estimation.
K-means clustering.

• Support Vector and other Kernel Machines: Sequential Minimal Opti-
mizer (SMO). Matlab Optimization toolbox based algorithms. Interface to the
SV M light software. Decomposition approaches to train the Multi-class SVM clas-
sifiers. Multi-class BSVM formulation trained by Kozinec’s algorithm, Mitchell-
Demyanov-Molozenov algorithm and Nearest Point Algorithm. Kernel Fisher
Discriminant.

4



1.4 Relevant Matlab toolboxes of others

Some researchers in statistical PR provide code of their methods. The Internet offers
many software resources for Matlab. However, there are not many compact and well
documented packages comprised of PR methods. We found two useful packages which
are briefly introduced below.

NETLAB is focused to the Neural Networks applied to PR problems. The classical
PR methods are included as well. This Matlab toolbox is closely related to the
popular PR textbook [3]. The documentation published in book [21] contains de-
tailed description of the implemented methods and many working examples. The
toolbox includes: Probabilistic Principal Component Analysis, Generative Topo-
graphic Mapping, methods based on the Bayesian inference, Gaussian processes,
Radial Basis Functions (RBF) networks and many others.

The toolbox can be downloaded from
http://www.ncrg.aston.ac.uk/netlab/.

PRTools is a Matlab Toolbox for Pattern Recognition [7]. Its implementation is
based on the object oriented programming principles supported by the Matlab
language. The toolbox contains a wide range of PR methods including: analysis
of linear and non-linear classifiers, feature extraction, feature selection, methods
for combining classifiers and methods for clustering.

The toolbox can be downloaded from
http://www.ph.tn.tudelft.nl/prtools/.

1.5 STPRtool document organization

The document is divided into chapters describing the implemented methods. The last
chapter is devoted to more complex examples. Most chapters begin with definition of
the models to be analyzed (e.g., linear classifier, probability densities, etc.) and the list
of the implemented methods. Individual sections have the following fixed structure: (i)
definition of the problem to be solved, (ii) brief description and list of the implemented
methods, (iii) reference to the literature where the problem is treaded in details and
(iv) an example demonstrating how to solve the problem using the STPRtool.

1.6 How to contribute to STPRtool?

If you have an implementation which is consistent with the STPRtool spirit and you
want to put it into public domain through the STPRtool channel then send an email
to xfrancv@cmp.felk.cvut.cz.

5



Please prepare your code according to the pattern you find in STPRtool implemen-
tations. Provide piece of documentation too which will allow us to incorporate it to
STPRtool easily.

Of course, your method will be bound to your name in STPRtool.

1.7 Acknowledgements

First, we like to thank to Prof. M.I. Schlesinger from the Ukrainian Academy of
Sciences, Kiev, Ukraine who showed us the beauty of pattern recognition and gave us
many valuable advices.

Second, we like to thank for discussions to our colleagues in the Center for Machine
Perception, the Czech Technical University in Prague, our visitors, other STPRtool
users and students who used the toolbox in their laboratory exercises.

Third, thanks go to several Czech, EU and industrial grants which indirectly con-
tributed to STPRtool development.

Forth, the STPRtool was rewritten and its documentation radically improved in
May and June 2004 with the financial help of ECVision European Research Network
on Cognitive Computer Vision Systems (IST-2001-35454) lead by D. Vernon.

6



Notation

Upper-case bold letters denote matrices, for instance A. Vectors are implicitly column
vectors. Vectors are denoted by lower-case bold italic letters, for instance x. The
concatenation of column vectors w ∈ R

n, z ∈ R
m is denoted as v = [w; z] where the

column vector v is (n + m)-dimensional.

〈x · x′〉 Dot product between vectors x and x′.
Σ Covariance matrix.
µ Mean vector (mathematical expectation).
S Scatter matrix.
X ⊆ R

n n-dimensional input space (space of observations).
Y Set of c hidden states – class labels Y = {1, . . . , c}.
F Feature space.
φ:X → F Mapping from input space X to the feature space F .
k:X × X → R Kernel function (Mercer kernel).
TXY Labeled training set (more precisely multi-set) TXY =

{(x1, y1), . . . , (xl, yl)}.
TX Unlabeled training set TX = {x1, . . . ,xl}.
q:X → Y Classification rule.
fy:X → R Discriminant function associated with the class y ∈ Y .
f :X → R Discriminant function of the binary classifier.
| · | Cardinality of a set.
‖ · ‖ Euclidean norm.
det(()·) Matrix determinant.
δ(i, j) Kronecker delta δ(i, j) = 1 for i = j and δ(i, j) = 0

otherwise.∨
Logical or.

7



Chapter 2

Linear Discriminant Function

The linear classification rule q:X ⊆ R
n → Y = {1, 2, . . . , c} is composed of a set of

discriminant functions

fy(x) = 〈wy · x〉 + by , ∀y ∈ Y ,

which are linear with respect to both the input vector x ∈ R
n and their parameter

vectors w ∈ R
n. The scalars by, ∀y ∈ Y introduce bias to the discriminant functions.

The input vector x ∈ R
n is assigned to the class y ∈ Y its corresponding discriminant

function fy attains maximal value

y = argmax
y′∈Y

fy′(x) = argmax
y′∈Y

(〈wy′ · x〉 + by′) . (2.1)

In the particular binary case Y = {1, 2}, the linear classifier is represented by a
single discriminant function

f(x) = 〈w · x〉 + b ,

given by the parameter vector w ∈ R
n and bias b ∈ R. The input vector x ∈ R

n is
assigned to class y ∈ {1, 2} as follows

q(x) =

{
1 if f(x) = 〈w · x〉 + b ≥ 0 ,
2 if f(x) = 〈w · x〉 + b < 0 .

(2.2)

The data-type used to describe the linear classifier and the implementation of the
classifier is described in Section 2.1. Following sections describe supervised learning
methods which determine the parameters of the linear classifier based on available
knowledge. The implemented learning methods can be distinguished according to the
type of the training data:

I. The problem is described by a finite set T = {(x1, y1), . . . , (xl, yl)} containing pairs
of observations xi ∈ R

n and corresponding class labels yi ∈ Y . The methods
using this type of training data is described in Section 2.2 and Section 2.3.

8



II. The parameters of class conditional distributions are (completely or partially)
known. The Anderson’s task and its generalization are representatives of such
methods (see Section 2.4).

The summary of implemented methods is given in Table 2.1.
References: The linear discriminant function is treated throughout for instance in
books [26, 6].

Table 2.1: Implemented methods: Linear discriminant function
linclass Linear classifier (linear machine).
andrerr Classification error of the Generalized Anderson’s

task.
androrig Original method to solve the Anderson-Bahadur’s

task.
eanders Epsilon-solution of the Generalized Anderson’s task.
ganders Solves the Generalized Anderson’s task.
ggradander Gradient method to solve the Generalized Anderson’s

task.
ekozinec Kozinec’s algorithm for eps-optimal separating hyper-

plane.
mperceptr Perceptron algorithm to train multi-class linear ma-

chine.
perceptron Perceptron algorithm to train binary linear classifier.
fld Fisher Linear Discriminant.
fldqp Fisher Linear Discriminant using Quadratic Program-

ming.
demo linclass Demo on the algorithms learning linear classifiers.
demo anderson Demo on Generalized Anderson’s task.

2.1 Linear classifier

The STPRtool uses a specific structure array to describe the binary (see Table 2.2)
and the multi-class (see Table 2.3) linear classifier. The implementation of the linear
classifier itself provides function linclass.

Example: Linear classifier
The example shows training of the Fisher Linear Discriminant which is the classical

example of the linear classifier. The Riply’s data set riply trn.mat is used for training.
The resulting linear classifier is then evaluated on the testing data riply tst.mat.

9



Table 2.2: Data-type used to describe binary linear classifier.
Binary linear classifier (structure array):
.W [n × 1] The normal vector w ∈ R

n of the separating hyper-
plane f(x) = 〈w · x〉 + b.

.b [1 × 1] Bias b ∈ R of the hyperplane.

.fun = ’linclass’ Identifies function associated with this data type.

Table 2.3: Data-type used to describe multi-class linear classifier.
Multi-class linear classifier (structure array):
.W [n × c] Matrix of parameter vectors wy ∈ R

n, y = 1, . . . , c of
the linear discriminant functions fy(x) = 〈wy ·x〉+ b.

.b [c × 1] Parameters by ∈ R, y = 1, . . . , c.

.fun = ’linclass’ Identifies function associated with this data type.

trn = load(’riply_trn’); % load training data

tst = load(’riply_tst’); % load testing data

model = fld( trn ); % train FLD classifier

ypred = linclass( tst.X, model ); % classify testing data

cerror( ypred, tst.y ) % evaluate testing error

ans =

0.1080

2.2 Linear separation of finite sets of vectors

The input training data T = {(x1, y1), . . . , (xl, yl)} consists of pairs of observations
xi ∈ R

n and corresponding class labels yi ∈ Y = {1, . . . , c}. The implemented methods
solve the task of (i) training separating hyperplane for binary case c = 2, (ii) training
ε-optimal hyperplane and (iii) training the multi-class linear classifier. The definitions
of these tasks are given below.

The problem of training the binary (c = 2) linear classifier (2.2) with zero training
error is equivalent to finding the hyperplane H = {x: 〈w ·x〉+ b = 0} which separates
the training vectors of the first y = 1 and the second y = 2 class. The problem is
formally defined as solving the set of linear inequalities

〈w · xi〉 + b ≥ 0 , yi = 1 ,
〈w · xi〉 + b < 0 , yi = 2 .

(2.3)

with respect to the vector w ∈ R
n and the scalar b ∈ R. If the inequalities (2.3) have a

solution then the training data T is linearly separable. The Perceptron (Section 2.2.1)

10



and Kozinec’s (Section 2.2.2) algorithm are useful to train the binary linear classifiers
from the linearly separable data.

If the training data is linearly separable then the optimal separating hyperplane
can be defined the solution of the following task

(w∗, b∗) = argmax
w,b

m(w, b)

= argmax
w,b

min

(
min
i∈I1

〈w · xi〉 + b
‖w‖ , min

i∈I2

−〈w · xi〉 + b
‖w‖

)
,

(2.4)

where I1 = {i: yi = 1} and I2 = {i: yi = 2} are sets of indices. The optimal separating
hyperplane H∗ = {x ∈ R

n: 〈w∗ · x〉 + b∗ = 0} separates training data T with maxi-
mal margin m(w∗, b∗). This task is equivalent to training the linear Support Vector
Machines (see Section 5). The optimal separating hyperplane cannot be found exactly
except special cases. Therefore the numerical algorithms seeking the approximate so-
lution are applied instead. The ε-optimal solution is defined as the vector w and scalar
b such that the inequality

m(w∗, b∗) − m(w, b) ≤ ε , (2.5)

holds. The parameter ε ≥ 0 defines closeness to the optimal solution in terms of the
margin. The ε-optimal solution can be found by Kozinec’s algorithm (Section 2.2.2).

The problem of training the multi-class linear classifier c > 2 with zero training
error is formally stated as the problem of solving the set of linear inequalities

〈wyi
· xi〉 + byi

> 〈wy · xi〉 + by , i = 1, . . . , l , yi 
= y , (2.6)

with respect to the vectors wy ∈ R
n, y ∈ Y and scalars by ∈ R, y ∈ Y . The task (2.6)

for linearly separable training data T can be solved by the modified Perceptron (Sec-
tion 2.2.3) or Kozinec’s algorithm. An interactive demo on the algorithms separating
the finite sets of vectors by a hyperplane is implemented in demo linclass.

2.2.1 Perceptron algorithm

The input is a set T = {(x1, y1), . . . , (xl, yl)} of binary labeled yi ∈ {1, 2} training
vectors xi ∈ R

n. The problem of training the separating hyperplane (2.3) can be
formally rewritten to a simpler form

〈v · zi〉 > 0 , i = 1, . . . , l , (2.7)

where the vector v ∈ R
n+1 is constructed as

v = [w; b] , (2.8)

11



and transformed training data Z = {z1, . . . , zl} are defined as

zi =

{
[xi; 1] if yi = 1 ,

−[xi; 1] if yi = 2 .
(2.9)

The problem of solving (2.7) with respect to the unknown vector v ∈ R
n+1 is equivalent

to the original task (2.3). The parameters (w, b) of the linear classifier are obtained
from the found vector v by inverting the transformation (2.8).

The Perceptron algorithm is an iterative procedure which builds a series of vectors
v(0),v(1), . . . ,v(t) until the set of inequalities (2.7) is satisfied. The initial vector v(0) can
be set arbitrarily (usually v = 0). The Novikoff theorem ensures that the Perceptron
algorithm stops after finite number of iterations t if the training data are linearly
separable. Perceptron algorithm is implemented in function perceptron.

References: Analysis of the Perceptron algorithm including the Novikoff’s proof of
convergence can be found in Chapter 5 of the book [26]. The Perceptron from the
neural network perspective is described in the book [3].

Example: Training binary linear classifier with Perceptron
The example shows the application of the Perceptron algorithm to find the binary

linear classifier for synthetically generated 2-dimensional training data. The generated
training data contain 50 labeled vectors which are linearly separable with margin 1.
The found classifier is visualized as a separating hyperplane (line in this case) H =
{x ∈ R

2: 〈w · x〉 + b = 0}. See Figure 2.1.

data = genlsdata( 2, 50, 1); % generate training data

model = perceptron( data ); % call perceptron

figure;

ppatterns( data ); % plot training data

pline( model ); % plot separating hyperplane

2.2.2 Kozinec’s algorithm

The input is a set T = {(x1, y1), . . . , (xl, yl)} of binary labeled yi ∈ {1, 2} training

vectors xi ∈ R
n. The Kozinec’s algorithm builds a series of vectors w

(0)
1 ,w

(1)
1 , . . . ,w

(t)
1

and w
(0)
2 ,w

(1)
2 , . . . ,w

(t)
2 which converge to the vector w∗

1 and w∗
2 respectively. The

vectors w∗
1 and w∗

2 are the solution of the following task

w∗
1,w

∗
2 = argmin

w1∈X1,w2∈X2

‖w1 −w2‖ ,

where X1 stands for the convex hull of the training vectors of the first class X1 =
{xi: yi = 1} and X2 for the convex hull of the second class likewise. The vector w∗ =

12



−55 −50 −45 −40 −35 −30
−55

−50

−45

−40

−35

−30

Figure 2.1: Linear classifier trained by the Perceptron algorithm

w∗
1 −w∗

2 and the bias b∗ = 1
2
(‖w∗

2‖2 − ‖w∗
1‖2) determine the optimal hyperplane (2.4)

separating the training data with the maximal margin.
The Kozinec’s algorithm is proven to converge to the vectors w∗

1 and w∗
2 in infinite

number of iterations t = ∞. If the ε-optimal optimality stopping condition is used
then the Kozinec’s algorithm converges in finite number of iterations. The Kozinec’s
algorithm can be also used to solve a simpler problem of finding the separating hyper-
plane (2.3). Therefore the following two stopping conditions are implemented:

I. The separating hyperplane (2.3) is sought for (ε < 0). The Kozinec’s algorithm is
proven to converge in a finite number of iterations if the separating hyperplane
exists.

II. The ε-optimal hyperplane (2.5) is sought for (ε ≥ 0). Notice that setting ε = 0
force the algorithm to seek the optimal hyperplane which is generally ensured to
be found in an infinite number of iterations t = ∞.

The Kozinec’s algorithm which trains the binary linear classifier is implemented in the
function ekozinec.

References: Analysis of the Kozinec’s algorithm including the proof of convergence
can be found in Chapter 5 of the book [26].

Example: Training ε-optimal hyperplane by the Kozinec’s algorithm
The example shows application of the Kozinec’s algorithm to find the (ε = 0.01)-

optimal hyperplane for synthetically generated 2-dimensional training data. The gen-
erated training data contains 50 labeled vectors which are linearly separable with

13



margin 1. The found classifier is visualized (Figure 2.2) as a separating hyperplane
H = {x ∈ R

2: 〈w ·x〉+ b = 0} (straight line in this case). It could be verified that the
found hyperplane has margin model.margin which satisfies the ε-optimality condition.

data = genlsdata(2,50,1); % generate data

% run ekozinec

model = ekozinec(data, struct(’eps’,0.01));

figure;

ppatterns(data); % plot data

pline(model); % plot found hyperplane

−10 −8 −6 −4 −2 0 2 4 6 8 10
−10

−8

−6

−4

−2

0

2

4

6

8

Figure 2.2: ε-optimal hyperplane trained with the Kozinec’s algorithm.

2.2.3 Multi-class linear classifier

The input training data T = {(x1, y1), . . . , (xl, yl)} consists of pairs of observations
xi ∈ R

n and corresponding class labels yi ∈ Y = {1, . . . , c}. The task is to design
the linear classifier (2.1) which classifies the training data T without error. The prob-
lem of training (2.1) is equivalent to solving the set of linear inequalities (2.6). The
inequalities (2.6) can be formally transformed to a simpler set

〈v · zy
i 〉 > 0 , i = 1, . . . , l , y = Y \ {yi} , (2.10)

where the vector v ∈ R
(n+1)c contains the originally optimized parameters

v = [w1; b1;w2; b2; . . . ;wc; bc] .

14



The set of vectors zy
i ∈ R

(n+1)c, i = 1, . . . , l, y ∈ Y \ {yi} is created from the training
set T such that

zy
i (j) =

⎧⎨
⎩

[xi; 1] , for j = yi ,
−[xi; 1] , for j = y ,

0 , otherwise.
(2.11)

where zy
i (j) stands for the j-th slot between coordinates (n+1)(j−1)+1 and (n+1)j.

The described transformation is known as the Kesler’s construction.
The transformed task (2.10) can be solved by the Perceptron algorithm. The simple

form of the Perceptron updating rule allows to implement the transformation implicitly
without mapping the training data T into (n + 1)c-dimensional space. The described
method is implemented in function mperceptron.

References: The Kesler’s construction is described in books [26, 6].

Example: Training multi-class linear classifier by the Perceptron
The example shows application of the Perceptron rule to train the multi-class linear

classifier for the synthetically generated 2-dimensional training data pentagon.mat. A
user’s own data can be generated interactively using function createdata(’finite’,10)

(number 10 stands for number of classes). The found classifier is visualized as its sep-
arating surface which is known to be piecewise linear and the class regions should be
convex (see Figure 2.3).

data = load(’pentagon’); % load training data

model = mperceptron(data); % run training algorithm

figure;

ppatterns(data); % plot training data

pboundary(model); % plot decision boundary

2.3 Fisher Linear Discriminant

The input is a set T = {(x1, y1), . . . , (xl, yl)} of binary labeled yi ∈ {1, 2} training
vectors xi ∈ R

n. Let Iy = {i: yi = y}, y ∈ {1, 2} be sets of indices of training
vectors belonging to the first y = 1 and the second y = 2 class, respectively. The class
separability in a direction w ∈ R

n is defined as

F (w) =
〈w · SBw〉
〈w · SWw〉 , (2.12)

where SB is the between-class scatter matrix

SB = (µ1 − µ2)(µ1 − µ2)
T , µy =

1

|Iy|
∑
i∈Iy

xi , y ∈ {1, 2} ,

15



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 2.3: Multi-class linear classifier trained by the Perceptron algorithm.

and SW is the within class scatter matrix defined as

SW = S1 + S2 , Sy =
∑
i∈Yy

(xi − µy)(xi − µy)
T , y ∈ {1, 2} .

In the case of the Fisher Linear Discriminant (FLD), the parameter vector w of the
linear discriminant function f(x) = 〈w · x〉 + b is determined to maximize the class
separability criterion (2.12)

w = argmax
w′

F (w′) = argmax
w′

〈w′ · SBw
′〉

〈w′ · SWw′〉 . (2.13)

The bias b of the linear rule must be determined based on another principle. The
STPRtool implementation, for instance, computes such b that the equality

〈w · µ1〉 + b = −(〈w · µ2〉 + b) ,

holds. The STPRtool contains two implementations of FLD:

I. The classical solution of the problem (2.13) using the matrix inversion

w = SW
−1(µ1 − µ2) .

This case is implemented in the function fld.

16



II. The problem (2.13) can be reformulated as the quadratic programming (QP) task

w = argmin
w′

〈w′ · SWw
′〉 ,

subject to
〈w′ · (µ1 − µ2)〉 = 2 .

The QP solver quadprog of the Matlab Optimization Toolbox is used in the
toolbox implementation. This method can be useful when the matrix inversion
is hard to compute. The method is implemented in the function fldqp.

References: The Fisher Linear Discriminant is described in Chapter 3 of the book [6]
or in the book [3].

Example: Fisher Linear Discriminant
The binary linear classifier based on the Fisher Linear Discriminant is trained on

the Riply’s data set riply trn.mat. The QP formulation fldqp of FLD is used.
However, the function fldqp can be replaced by the standard approach implemented
in the function fld which would yield the same solution. The found linear classifier is
visualized (see Figure 2.4) and evaluated on the testing data riply tst.mat.

trn = load(’riply_trn’); % load training data

model = fldqp(trn); % compute FLD

figure;

ppatterns(trn); pline(model); % plot data and solution

tst = load(’riply_tst’); % load testing data

ypred = linclass(tst.X,model); % classify testing data

cerror(ypred,tst.y) % compute testing error

ans =

0.1080

2.4 Generalized Anderson’s task

The classified object is described by the vector of observations x ∈ X ⊆ R
n and a

binary hidden state y ∈ {1, 2}. The class conditional distributions pX|Y (x|y), y ∈ {1, 2}
are known to be multi-variate Gaussian distributions. The parameters (µ1,Σ1) and
(µ2,Σ2) of these class distributions are unknown. However, it is known that the
parameters (µ1,Σ1) belong to a certain finite set of parameters {(µi,Σi): i ∈ I1}.
Similarly (µ2,Σ2) belong to a finite set {(µi,Σi): i ∈ I2}. Let q:X ⊆ R

n → {1, 2}

17



−1.5 −1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 2.4: Linear classifier based on the Fisher Linear Discriminant.

be a binary linear classifier (2.2) with discriminant function f(x) = 〈w · x〉 + b. The
probability of misclassification is defined as

Err(w, b) = max
i∈I1∪I2

ε(w, b,µi,Σi) ,

where ε(w, b,µi,Σi) is probability that the Gaussian random vector x with mean
vector µi and the covariance matrix Σi satisfies q(x) = 1 for i ∈ I2 or q(x) = 2 for
i ∈ I1. In other words, it is the probability that the vector x will be misclassified by
the linear rule q.

The Generalized Anderson’s task (GAT) is to find the parameters (w∗, b∗) of the
linear classifier

q(x) =

{
1 , for f(x) = 〈w∗ · x〉 + b∗ ≥ 0 ,
2 , for f(x) = 〈w∗ · x〉 + b∗ < 0 ,

such that the error Err(w∗, b∗) is minimal

(w∗, b∗) = argmin
w,b

Err(w, b) = argmin
w,b

max
i∈I1∪I2

ε(w, b,µi,Σi) . (2.14)

The original Anderson’s task is a special case of (2.14) when |I1| = 1 and |I2| = 1.
The probability ε(w, b,µi,Σi) is proportional to the reciprocal of the Mahalanobis

distance ri between the (µi,Σi) and the nearest vector of the separating hyperplane
H = {x ∈ R

n: 〈w · x〉 + b = 0}, i.e.,

ri = min
x∈H

〈(µi − x) · (Σi)−1(µi − x)〉 =
〈w · µi〉 + b√
〈w ·Σiw〉

.

18



The exact relation between the probability ε(w, b,µi,Σi) and the corresponding Ma-
halanobis distance ri is given by the integral

ε(w, b,µi,Σi) =

∫ ∞

ri

1√
2π

e−
1
2
t2dt . (2.15)

The optimization problem (2.14) can be equivalently rewritten as

(w∗, b∗) = argmax
w,b

F (w, b) = argmax
w,b

min
i∈I1∪I2

〈w · µi〉 + b√
〈w · Σiw〉

.

which is more suitable for optimization. The objective function F (w, b) is proven to
be convex in the region where the probability of misclassification Err(w, b) is less than
0.5. However, the objective function F (w, b) is not differentiable.

The STPRtool contains implementations of the algorithm solving the original An-
derson’s task as well as implementations of three different approaches to solve the
Generalized Anderson’s task which are described bellow. An interactive demo on the
algorithms solving the Generalized Anderson’s task is implemented in demo anderson.

References: The original Anderson’s task was published in [1]. A detailed description
of the Generalized Anderson’s task and all the methods implemented in the STPRtool
is given in book [26].

2.4.1 Original Anderson’s algorithm

The algorithm is implemented in the function androrig. This algorithm solves the
original Anderson’s task defined for two Gaussians only |I1| = |I2| = 1. In this case,
the optimal solution vector w ∈ R

n is obtained by solving the following problem

w = ((1 − λ)Σ1 + λΣ2)
−1 (µ1 − µ2) ,

1 − λ

λ
=

√
〈w ·Σ2w〉
〈w ·Σ1w〉 ,

where the scalar 0 < λ < 1 is unknown. The problem is solved by an iterative algorithm
which stops while the condition

∣∣∣∣γ − 1 − λ

λ

∣∣∣∣ ≤ ε , γ =

√
〈w · Σ2w〉
〈w · Σ1w〉 ,

is satisfied. The parameter ε defines the closeness to the optimal solution.

Example: Solving the original Anderson’s task

19



The original Anderson’s task is solved for the Riply’s data set riply trn.mat. The
parameters (µ1,Σ1) and (µ2,Σ2) of the Gaussian distribution of the first and the
second class are obtained by the Maximum-Likelihood estimation. The found linear
classifier is visualized and the Gaussian distributions (see Figure 2.5). The classifier is
validated on the testing set riply tst.mat.

trn = load(’riply_trn’); % load training data

distrib = mlcgmm(data); % estimate Gaussians

model = androrig(distrib); % solve Anderson’s task

figure;

pandr( model, distrib ); % plot solution

tst = load(’riply_tst’); % load testing data

ypred = linclass( tst.X, model ); % classify testing data

cerror( ypred, tst.y ) % evaluate error

ans =

0.1150

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6
0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

gauss 1

0.929

gauss 2

1.37

Figure 2.5: Solution of the original Anderson’s task.

20



2.4.2 General algorithm framework

The algorithm is implemented in the function ganders. This algorithm repeats the
following steps:

I. An improving direction (∆w, ∆b) in the parameter space is computed such that
moving along this direction increases the objective function F . The quadprog

function of the Matlab optimization toolbox is used to solve this subtask.

II. The optimal movement k along the direction (∆w, ∆b). The optimal movement k
is determined by 1D-search based on the cutting interval algorithm according to
the Fibonacci series. The number of interval cuttings of is an optional parameter
of the algorithm.

III. The new parameters are set

w(t+1): = w(t) + k∆w , b(t+1): = b(t) + k∆b .

The algorithm iterates until the minimal change in the objective function is less than
the prescribed ε, i.e., the condition

F (w(t+1), b(t+1)) − F (w(t), b(t)) > ε ,

is violated.

Example: Solving the Generalized Anderson’s task
The Generalized Anderson’s task is solved for the data mars.mat. Both the first

and second class are described by three 2D-dimensional Gaussian distributions. The
found linear classifier as well as the input Gaussian distributions are visualized (see
Figure 2.6).

distrib = load(’mars’); % load input Gaussians

model = ganders(distrib); % solve the GAT

figure;

pandr(model,distrib); % plot the solution

2.4.3 ε-solution using the Kozinec’s algorithm

This algorithm is implemented in the function eanders. The ε-solution is defined as a
linear classifier with parameters (w, b) such that

F (w, b) < ε

21



−5 −4 −3 −2 −1 0 1 2 3 4 5
−4

−3

−2

−1

0

1

2

3

4

5

gauss 1

0.0461
gauss 2

0.0483

gauss 3

0.0503

gauss 4

0.0421

gauss 5

0.047

gauss 6

0.0503

Figure 2.6: Solution of the Generalized Anderson’s task.

is satisfied. The prescribed ε ∈ (0, 0.5) is the desired upper bound on the probability
of misclassification. The problem is transformed to the task of separation of two sets
of ellipsoids which is solved the Kozinec’s algorithm. The algorithm converges in finite
number of iterations if the given ε-solution exists. Otherwise it can get stuck in an
endless loop.

Example: ε-solution of the Generalized Anderson’s task
The ε-solution of the generalized Anderson’s task is solved for the data mars.mat.

The desired maximal possible probability of misclassification is set to 0.06 (it is 6%).
Both the first and second class are described by three 2D-dimensional Gaussian distri-
butions. The found linear classifier and the input Gaussian distributions are visualized
(see Figure 2.7).

distrib = load(’mars’); % load Gaussians

options = struct(’err’,0.06’); % maximal desired error

model = eanders(distrib,options); % training

figure; pandr(model,distrib); % visualization

2.4.4 Generalized gradient optimization

This algorithm is implemented in the function ggradandr. The objective function
F (w, b) is convex but not differentiable thus the standard gradient optimization cannot

22



−5 −4 −3 −2 −1 0 1 2 3 4 5
−4

−3

−2

−1

0

1

2

3

4

5

gauss 1

0.0473

gauss 2

0.0496

gauss 30.0516

gauss 4

0.0432

gauss 5

0.0483

gauss 6

0.0516

Figure 2.7: ε-solution of the Generalized Anderson’s task with maximal 0.06 probability
of misclassification.

be used. However, the generalized gradient optimization method can be applied. The
algorithm repeats the following two steps:

I. The generalized gradient (∆w, ∆b) is computed.

II. The optimized parameters are updated

w(t+1): = w(t) + ∆w , b(t+1) = b(t) + ∆b .

The algorithm iterates until the minimal change in the objective function is less than
the prescribed ε, i.e., the condition

F (w(t+1), b(t+1)) − F (w(t), b(t)) > ε ,

is violated. The maximal number of iterations can be used as the stopping condition
as well.

Example: Solving the Generalized Anderson’s task using the generalized
gradient optimization

The generalized Anderson’s task is solved for the data mars.mat. Both the first
and second class are described by three 2D-dimensional Gaussian distributions. The
maximal number of iterations is limited to tmax=10000. The found linear classifier as
well as the input Gaussian distributions are visualized (see Figure 2.8).

23



distrib = load(’mars’); % load Gaussians

options = struct(’tmax’,10000); % max # of iterations

model = ggradandr(distrib,options); % training

figure;

pandr( model, distrib ); % visualization

−5 −4 −3 −2 −1 0 1 2 3 4 5
−4

−3

−2

−1

0

1

2

3

4

5

gauss 1

0.0475

gauss 2

0.0498

gauss 3

0.0518

gauss 4

0.0434

gauss 5

0.0485
gauss 6

0.0518

Figure 2.8: Solution of the Generalized Anderson’s task after 10000 iterations of the
generalized gradient optimization algorithm.

24



Chapter 3

Feature extraction

The feature extraction step consists of mapping the input vector of observations x ∈ R
n

onto a new feature description z ∈ R
m which is more suitable for given task. The linear

projection
z = WTx+ b , (3.1)

is commonly used. The projection is given by the matrix W [n × m] and bias vector
b ∈ R

m. The Principal Component Analysis (PCA) (Section 3.1) is a representative of
the unsupervised learning method which yields the linear projection (3.1). The Linear
Discriminant Analysis (LDA) (Section 3.2) is a representative of the supervised learning
method yielding the linear projection. The linear data projection is implemented in
function linproj (See examples in Section 3.1 and Section 3.2). The data type used
to describe the linear data projection is defined in Table 3.

The quadratic data mapping projects the input vector x ∈ R
n onto the feature

space R
m where m = n(n + 3)/2. The quadratic mapping φ: Rn → R

m is defined as

φ(x) = [ x1, x2, . . . , xn,
x1x1, x1x2, . . . , x1xn,

x2x2, . . . , x2xn,
...

xnxn ]T ,

(3.2)

where xi, i = 1, . . . , n are entries of the vector x ∈ R
n. The quadratic data mapping

is implemented in function qmap.
The kernel functions allow for non-linear extensions of the linear feature extrac-

tion methods. In this case, the input vectors x ∈ R
n are mapped into a new higher

dimensional feature space F in which the linear methods are applied. This yields a
non-linear (kernel) projection of data which has generally defined as

z = ATk(x) + b , (3.3)

25



where A [l × m] is a parameter matrix and b ∈ R
m a parameter vector. The vector

k(x) = [k(x,x1), . . . , k(x,xl)]
T is a vector of kernel functions centered in the training

data or their subset. The x ∈ R
n stands for the input vector and z ∈ R

m is the
vector of extracted features. The extracted features are projections of φ(x) onto m
vectors (or functions) from the feature space F . The Kernel PCA (Section 3.3) and
the Generalized Discriminant Analysis (GDA) (Section 3.5) are representatives of the
feature extraction methods yielding the kernel data projection (3.3). The kernel data
projection is implemented in the function kernelproj (See examples in Section 3.3
and Section 3.5). The data type used to describe the kernel data projection is defined
in Table 3. The summary of implemented methods for feature extraction is given in
Table 3.1

Table 3.1: Implemented methods for feature extraction
linproj Linear data projection.
kerproj Kernel data projection.
qmap Quadratic data mapping.
lin2quad Merges linear rule and quadratic mapping.
lin2svm Merges linear rule and kernel projection.
lda Linear Discriminant Analysis.
pca Principal Component Analysis.
pcarec Computes reconstructed vector after PCA projection.
gda Generalized Discriminant Analysis.
greedykpca Greedy Kernel Principal Component Analysis.
kpca Kernel Principal Component Analysis.
kpcarec Reconstructs image after kernel PCA.
demo pcacomp Demo on image compression using PCA.

Table 3.2: Data-type used to describe linear data projection.
Linear data projection (structure array):
.W [n × m] Projection matrix W = [w1, . . . ,wm].
.b [m × 1] Bias vector b.
.fun = ’linproj’ Identifies function associated with this data type.

3.1 Principal Component Analysis

Let TX = {x1, . . . ,xl} be a set of training vectors from the n-dimensional input space
R

n. The set of vectors TZ = {z1, . . . , zl} is a lower dimensional representation of the

26



Table 3.3: Data-type used to describe kernel data projection.
Kernel data projection (structure array):
.Alpha [l × m] Parameter matrix A [l × m].
.b [m × 1] Bias vector b.
.sv.X [n × l] Training vectors {x1, . . . ,xl}.
.options.ker [string] Kernel identifier.
.options.arg [1 × p] Kernel argument(s).
.fun = ’kernelproj’ Identifies function associated with this data type.

input training vectors TX in the m-dimensional space R
m. The vectors TZ are obtained

by the linear orthonormal projection

z = WTx+ b , (3.4)

where the matrix W [n × m] and the vector b [m × 1] are parameters of the projec-
tion. The reconstructed vectors TX̃ = {x̃1, . . . , x̃l} are computed by the linear back
projection

x̃ = W(z − b) , (3.5)

obtained by inverting (3.4). The mean square reconstruction error

εMS(W, b) =
1

l

l∑
i=1

‖xi − x̃i‖2 , (3.6)

is a function of the parameters of the linear projections (3.4) and (3.5). The Principal
Component Analysis (PCA) is the linear orthonormal projection (3.4) which allows
for the minimal mean square reconstruction error (3.6) of the training data TX . The
parameters (W, b) of the linear projection are the solution of the optimization task

(W, b) = argmin
W′,b′

εMS(W′, b′) , (3.7)

subject to
〈wi ·wj〉 = δ(i, j) , ∀i, j ,

where wi, i = 1, . . . , m are column vectors of the matrix W = [w1, . . . ,wm] and
δ(i, j) is the Kronecker delta function. The solution of the task (3.7) is the matrix
W = [w1, . . . ,wm] containing the m eigenvectors of the sample covariance matrix
which have the largest eigen values. The vector b equals to WTµ, where µ is the
sample mean of the training data. The PCA is implemented in the function pca. A
demo showing the use of PCA for image compression is implemented in the script
demo pcacomp.

27



References: The PCA is treated throughout for instance in books [13, 3, 6].

Example: Principal Component Analysis
The input data are synthetically generated from the 2-dimensional Gaussian dis-

tribution. The PCA is applied to train the 1-dimensional subspace to approximate
the input data with the minimal reconstruction error. The training data, the recon-
structed data and the 1-dimensional subspace given by the first principal component
are visualized (see Figure 3.1).

X = gsamp([5;5],[1 0.8;0.8 1],100); % generate data

model = pca(X,1); % train PCA

Z = linproj(X,model); % lower dim. proj.

XR = pcarec(X,model); % reconstr. data

figure; hold on; axis equal; % visualization

h1 = ppatterns(X,’kx’);

h2 = ppatterns(XR,’bo’);

[dummy,mn] = min(Z);

[dummy,mx] = max(Z);

h3 = plot([XR(1,mn) XR(1,mx)],[XR(2,mn) XR(2,mx)],’r’);

legend([h1 h2 h3], ...

’Input vectors’,’Reconstructed’, ’PCA subspace’);

2 3 4 5 6 7 8

2.5

3

3.5

4

4.5

5

5.5

6

6.5

7

7.5 Input vectors
Reconstructed
PCA subspace

Figure 3.1: Example on the Principal Component Analysis.

28



3.2 Linear Discriminant Analysis

Let TXY = {(x1, y1), . . . , (xl, yl)}, xi ∈ R
n, y ∈ Y = {1, 2, . . . , c} be labeled set

of training vectors. The within-class SW and between-class SB scatter matrices are
described as

SW =
∑
y∈Y

Sy , Sy =
∑
i∈Iy

(xi − µi)(xi − µi)
T ,

SB =
∑
y∈Y

|Iy|(µy − µ)(µy − µ)T ,
(3.8)

where the total mean vector µ and the class mean vectors µy, y ∈ Y are defined as

µ =
1

l

l∑
i=1

xi , µy =
1

|Iy|
∑
i∈Iy

xi , y ∈ Y .

The goal of the Linear Discriminant Analysis (LDA) is to train the linear data projec-
tion

z = WTx ,

such that the class separability criterion

F (W) =
det(S̃B)

det(S̃W)
=

det(SB)

det(SW )
,

is maximized. The S̃B is the between-class and S̃W is the within-class scatter matrix
of projected data which is defined similarly to (3.8).
References: The LDA is treated for instance in books [3, 6].

Example 1: Linear Discriminant Analysis
The LDA is applied to extract 2 features from the Iris data set iris.mat which

consists of the labeled 4-dimensional data. The data after the feature extraction step
are visualized in Figure 3.2.

orig_data = load(’iris’); % load input data

model = lda(orig_data,2); % train LDA

ext_data = linproj(orig_data,model); % feature extraction

figure; ppatterns(ext_data); % plot ext. data

Example 2: PCA versus LDA
This example shows why the LDA is superior to the PCA when features good for

classification are to be extracted. The synthetical data are generated from the Gaussian
mixture model. The LDA and PCA are trained on the generated data. The LDA and

29



−1.5 −1 −0.5 0 0.5 1 1.5
−0.5

−0.4

−0.3

−0.2

−0.1

0

0.1

0.2

0.3

0.4

0.5

Figure 3.2: Example shows 2-dimensional data extracted from the originally 4-
dimensional Iris data set using Linear Discriminant Analysis.

PCA directions are displayed as connection of the vectors projected to the trained LDA
and PCA subspaces and re-projected back to the input space (see Figure 3.3a). The
extracted data using the LDA and PCA model are displayed with the Gaussians fitted
by the Maximum-Likelihood (see Figure 3.3b).

% Generate data

distrib.Mean = [[5;4] [4;5]]; % mean vectors

distrib.Cov(:,:,1) = [1 0.9; 0.9 1]; % 1st covariance

distrib.Cov(:,:,2) = [1 0.9; 0.9 1]; % 2nd covariance

distrib.Prior = [0.5 0.5]; % Gaussian weights

data = gmmsamp(distrib,250); % sample data

lda_model = lda(data,1); % train LDA

lda_rec = pcarec(data.X,lda_model);

lda_data = linproj(data,lda_model);

pca_model = pca(data.X,1); % train PCA

pca_rec = pcarec(data.X,pca_model);

pca_data = linproj( data,pca_model);

figure; hold on; axis equal; % visualization

ppatterns(data);

30



h1 = plot(lda_rec(1,:),lda_rec(2,:),’r’);

h2 = plot(pca_rec(1,:),pca_rec(2,:),’b’);

legend([h1 h2],’LDA direction’,’PCA direction’);

figure; hold on;

subplot(2,1,1); title(’LDA’); ppatterns(lda_data);

pgauss(mlcgmm(lda_data));

subplot(2,1,2); title(’PCA’); ppatterns(pca_data);

pgauss(mlcgmm(pca_data));

3.3 Kernel Principal Component Analysis

The Kernel Principal Component Analysis (Kernel PCA) is the non-linear extension of
the ordinary linear PCA. The input training vectors TX = {x1, . . . ,xl}, xi ∈ X ⊆ R

n

are mapped by φ:X → F to a high dimensional feature space F . The linear PCA
is applied on the mapped data TΦ = {φ(x1), . . . ,φ(xl)}. The computation of the
principal components and the projection on these components can be expressed in
terms of dot products thus the kernel functions k:X × X → R can be employed. The
kernel PCA trains the kernel data projection

z = ATk(x) + b , (3.9)

such that the reconstruction error

εKMS(A, b) =
1

l

l∑
i=1

‖φ(xi) − φ̃(xi)‖2 , (3.10)

is minimized. The reconstructed vector φ̃(x) is given as a linear combination of the
mapped data TΦ

φ̃(x) =

l∑
i=1

βiφ(xi) , β = A(z − b) . (3.11)

In contrast to the linear PCA, the explicit projection from the feature space F to the
input space X usually do not exist. The problem is to find the vector x ∈ X its image
φ(x) ∈ F well approximates the reconstructed vector φ̃(x) ∈ F . This procedure is
implemented in the function kpcarec for the case of the Radial Basis Function (RBF)
kernel. The procedure consists of the following step:

I. Project input vector xin ∈ R
n onto its lower dimensional representation z ∈ R

m

using (3.9).

31



II. Computes vector xout ∈ R
n which is good pre-image of the reconstructed vector

φ̃(xin), such that
xout = argmin

x
‖φ(x) − φ̃(xin)‖2 .

References: The kernel PCA is described at length in book [29, 30].

Example: Kernel Principal Component Analysis
The example shows using the kernel PCA for data denoising. The input data are

synthetically generated 2-dimensional vectors which lie on a circle and are corrupted by
the Gaussian noise. The kernel PCA model with RBF kernel is trained. The function
kpcarec is used to find pre-images of the reconstructed data (3.11). The result is
visualized in Figure 3.4.

X = gencircledata([1;1],5,250,1); % generate circle data

options.ker = ’rbf’; % use RBF kernel

options.arg = 4; % kernel argument

options.new_dim = 2; % output dimension

model = kpca(X,options); % compute kernel PCA

XR = kpcarec(X,model); % compute reconstruced data

figure; % Visualization

h1 = ppatterns(X);

h2 = ppatterns(XR, ’+r’);

legend([h1 h2],’Input vectors’,’Reconstructed’);

3.4 Greedy kernel PCA algorithm

The Greedy Kernel Principal Analysis (Greedy kernel PCA) is an efficient algorithm
to compute the ordinary kernel PCA. Let TX = {x1, . . . ,xl}, xi ∈ R

n be the set of
input training vectors. The goal is to train the kernel data projection

z = ATkS(x) + b , (3.12)

where A [d × m] is the parameter matrix, b [m × 1] is the parameter vector and
kS = [k(x, s1), . . . , k(x, sl)]

T are the kernel functions centered in the vectors TS =
{s1, . . . , sd}. The vector set TS is a subset of training data TX . In contrast to the
ordinary kernel PCA, the subset TS does not contain all the training vectors TX thus
the complexity of the projection (3.12) is reduced compared to (3.9). The objective of
the Greedy kernel PCA is to minimize the reconstruction error (3.11) while the size d
of the subset TS is kept small. The Greedy kernel PCA algorithm is implemented in
the function greedykpca.

32



References: The implemented Greedy kernel PCA algorithm is described in [11].

Example: Greedy Kernel Principal Component Analysis
The example shows using kernel PCA for data denoising. The input data are

synthetically generated 2-dimensional vectors which lie on a circle and are corrupted
with the Gaussian noise. The Greedy kernel PCA model with RBF kernel is trained.
The number of vectors defining the kernel projection (3.12) is limited to 25. In contrast
the ordinary kernel PCA (see experiment in Section 3.3) requires all the 250 training
vectors. The function kpcarec is used to find pre-images of the reconstructed data
obtained by the kernel PCA projection. The training and reconstructed vectors are
visualized in Figure 3.5. The vector of the selected subset TX are visualized as well.

X = gencircledata([1;1],5,250,1); % generate training data

options.ker = ’rbf’; % use RBF kernel

options.arg = 4; % kernel argument

options.new_dim = 2; % output dimension

options.m = 25; % size of sel. subset

model = greedykpca(X,options); % run greedy algorithm

XR = kpcarec(X,model); % reconstructed vectors

figure; % visualization

h1 = ppatterns(X);

h2 = ppatterns(XR,’+r’);

h3 = ppatterns(model.sv.X,’ob’,12);

legend([h1 h2 h3], ...

’Training set’,’Reconstructed set’,’Selected subset’);

3.5 Generalized Discriminant Analysis

The Generalized Discriminant Analysis (GDA) is the non-linear extension of the ordi-
nary Linear Discriminant Analysis (LDA). The input training data TXY = {(x1, y1), . . . , (xl, yl)},
xi ∈ X ⊆ R

n, y ∈ Y = {1, . . . , c} are mapped by φ:X → F to a high dimen-
sional feature space F . The ordinary LDA is applied on the mapped data TΦY =
{(φ(x1), y1), . . . , (φ(xl), yl)}. The computation of the projection vectors and the pro-
jection on these vectors can be expressed in terms of dot products thus the kernel
functions k:X × X → R can be employed. The resulting kernel data projection is
defined as

z = ATk(x) + b ,

33



where A [l × m] is the matrix and b [m × 1] the vector trained by the GDA. The
parameters (A, b) are trained to increase the between-class scatter and decrease the
within-class scatter of the extracted data TZY = {(z1, y1), . . . , (zl, yl)}, zi ∈ R

m. The
GDA is implemented in the function gda.
References: The GDA was published in the paper [2].

Example: Generalized Discriminant Analysis
The GDA is trained on the Iris data set iris.mat which contains 3 classes of

4-dimensional data. The RBF kernel with kernel width σ = 1 is used. Notice, that
setting σ too low leads to the perfect separability of the training data TXY but the kernel
projection is heavily over-fitted. The extracted data YZY are visualized in Figure 3.6.

orig_data = load(’iris’); % load data

options.ker = ’rbf’; % use RBF kernel

options.arg = 1; % kernel arg.

options.new_dim = 2; % output dimension

model = gda(orig_data,options); % train GDA

ext_data = kernelproj(orig_data,model); % feature ext.

figure; ppatterns(ext_data); % visualization

3.6 Combining feature extraction and linear classi-

fier

Let TXY = {(x1, y1), . . . , (xl, yl)} be a training set of observations xi ∈ X ⊆ R
n and

corresponding hidden states yi ∈ Y = {1, . . . , c}. Let φ:X → R
m be a mapping

φ(x) = [φ1(x), . . . , φm(x)]T

defining a non-linear feature extraction step (e.g., quadratic data mapping or kernel
projection). The feature extraction step applied to the input data TXY yields extracted
data TΦY = {(φ(x1), y1), . . . , (φ(xl), yl)}. Let f(x) = 〈w · φ(x)〉 + b be a linear
discriminant function found by an arbitrary training method on the extracted data
TΦY . The function f can be seen as a non-linear function of the input vectors x ∈ X ,
as

f(x) = 〈w · φ(x)〉 + b =
m∑

i=1

wiφi(x) + b .

In the case of the quadratic data mapping (3.2) used as the feature extraction step,
the discriminant function can be written in the following form

f(x) = 〈x · Ax〉 + 〈x · b〉 + c . (3.13)

34



The discriminant function (3.13) defines the quadratic classifier described in Section 6.4.
Therefore the quadratic classifier can be trained by (i) applying the quadratic data
mapping qmap, (ii) training a linear rule on the mapped data (e.g., perceptron, fld)
and (iii) combining the quadratic mapping and the linear rule. The combining is
implement in function lin2quad.

In the case of the kernel projection (3.3) applied as the feature extraction step, the
resulting discriminant function has the following form

f(x) = 〈α · k(x)〉 + b . (3.14)

The discriminant function (3.14) defines the kernel (SVM type) classifier described
in Section 5. This classifier can be trained by (i) applying the kernel projection
kernelproj, (ii) training a linear rule on the extracted data and (iii) combing the kernel
projection and the linear rule. The combining is implemented in function lin2svm.

Example: Quadratic classifier trained the Perceptron
This example shows how to train the quadratic classifier using the Perceptron al-

gorithm. The Perceptron algorithm produces the linear rule only. The input training
data are linearly non-separable but become separable after the quadratic data map-
ping is applied. Function lin2quad is used to compute the parameters of the quadratic
classifier explicitly based on the found linear rule in the feature space and the mapping.
Figure 3.7 shows the decision boundary of the quadratic classifier.

% load training data living in the input space

input_data = load(’vltava’);

% map data to the feature space

map_data = qmap(input_data);

% train linear rule in the feature sapce

lin_model = perceptron(map_data);

% compute parameters of the quadratic classifier

quad_model = lin2quad(lin_model);

% visualize the quadratic classifier

figure; ppatterns(input_data);

pboundary(quad_model);

Example: Kernel classifier from the linear rule
This example shows how to train the kernel classifier using arbitrary training algo-

rithm for linear rule. The Fisher Linear Discriminant was used in this example. The

35



greedy kernel PCA algorithm was applied as the feature extraction step. The Riply’s
data set was used for training and evaluation. Figure 3.8 shows the found kernel clas-
sifier, the training data and vectors used in the kernel expansion of the discriminant
function.

% load input data

trn = load(’riply_trn’);

% train kernel PCA by greedy algorithm

options = struct(’ker’,’rbf’,’arg’,1,’new_dim’,10);

kpca_model = greedykpca(trn.X,options);

% project data

map_trn = kernelproj(trn,kpca_model);

% train linear classifier

lin_model = fld(map_trn);

% combine linear rule and kernel PCA

kfd_model = lin2svm(kpca_model,lin_model);

% visualization

figure;

ppatterns(trn); pboundary(kfd_model);

ppatterns(kfd_model.sv.X,’ok’,13);

% evaluation on testing data

tst = load(’riply_tst’);

ypred = svmclass(tst.X,kfd_model);

cerror(ypred,tst.y)

ans =

0.0970

36



0 1 2 3 4 5 6 7 8

1

2

3

4

5

6

7

LDA direction
PCA direction

(a)

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
0

0.2

0.4

0.6

0.8

1

1.2

1.4
LDA

−4 −3 −2 −1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35
PCA

(b)

Figure 3.3: Comparison between PCA and LDA. Figure (a) shows input data and
found LDA (red) and PCA (blue) directions onto which the data are projected. Figure
(b) shows the class conditional Gaussians estimated from data projected data onto
LDA and PCA directions.

37



−8 −6 −4 −2 0 2 4 6 8 10
−8

−6

−4

−2

0

2

4

6

8

10
Input vectors
Reconstructed

Figure 3.4: Example on the Kernel Principal Component Analysis.

−8 −6 −4 −2 0 2 4 6 8 10
−6

−4

−2

0

2

4

6

8
Training set
Reconstructed set
Selected set

Figure 3.5: Example on the Greedy Kernel Principal Component Analysis.

38



−0.6 −0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3
−0.2

−0.15

−0.1

−0.05

0

0.05

0.1

0.15

Figure 3.6: Example shows 2-dimensional data extracted from the originally 4-
dimensional Iris data set using the Generalized Discriminant Analysis. In contrast
to LDA (see Figure 3.2 for comparison), the class clusters are more compact but at the
expense of a higher risk of over-fitting.

−0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

Figure 3.7: Example shows quadratic classifier found by the Perceptron algorithm on
the data mapped to the feature by the quadratic mapping.

39



−1.5 −1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 3.8: Example shows the kernel classifier found by the Fisher Linear Discriminant
algorithm on the data mapped to the feature by the kernel PCA. The greedy kernel
PCA was used therefore only a subset of training data was used to determine the kernel
projection.

40



Chapter 4

Density estimation and clustering

The STPRtool represents a probability distribution function PX(x), x ∈ R
n as a

structure array which must contain field .fun (see Table 4.2). The field .fun specifies
function which is used to evaluate PX(x) for given set of realization {x1, . . . ,xl} of a
random vector. Let the structure model represent a given distribution function. The
Matlab command

y = feval(X,model.fun)

is used to evaluate yi = PX(xi). The matrix X [n × l] contains column vectors
{x1, . . . ,xl}. The vector y [1 × l] contains values of the distribution function. In
particular, the Gaussian distribution and the Gaussian mixture models are described
in Section 4.1. The summary of implemented methods for dealing with probability
density estimation and clustering is given in Table 4.1

4.1 Gaussian distribution and Gaussian mixture model

The value of the multivariate Gaussian probability distribution function in the vector
x ∈ R

n is given by

PX(x) =
1

(2π)
n
2

√
det(Σ)

exp(−1

2
(x− µ)T Σ−1(x− µ)) , (4.1)

where µ [n × 1] is the mean vector and Σ [n × n] is the covariance matrix. The
STPRtool uses specific data-type to describe a set of Gaussians which can be labeled,
i.e., each pair (µi,Σi) is assigned to the class yi ∈ Y . The covariance matrix Σ is
always represented as the square matrix [n× n], however, the shape of the matrix can
be indicated in the optimal field .cov type (see Table 4.3). The data-type is described
in Table 4.4. The evaluation of the Gaussian distribution is implemented in the function

41



Table 4.1: Implemented methods: Density estimation and clustering
gmmsamp Generates sample from Gaussian mixture model.
gsamp Generates sample from Gaussian distribution.
kmeans K-means clustering algorithm.
pdfgauss Evaluates for multivariate Gaussian distribution.
pdfgauss Evaluates Gaussian mixture model.
sigmoid Evaluates sigmoid function.
emgmm Expectation-Maximization Algorithm for Gaussian

mixture model.
melgmm Maximizes Expectation of Log-Likelihood for Gaus-

sian mixture.
mlcgmm Maximal Likelihood estimation of Gaussian mixture

model.
mlsigmoid Fitting a sigmoid function using ML estimation.
mmgauss Minimax estimation of Gaussian distribution.
rsde Reduced Set Density Estimator.
demo emgmm Demo on Expectation-Maximization (EM) algorithm.
demo mmgauss Demo on minimax estimation for Gaussian.
demo svmpout Fitting a posteriori probability to SVM output.

Table 4.2: Data-type used to represent probability distribution function.
Probability Distribution Function (structure array):
.fun [string] The name of a function which evaluates probability

distribution y = feval( X, model.fun ).

pdfgauss. The random sampling from the Gaussian distribution is implemented in the
function gsamp.

The Gaussian Mixture Model (GMM) is weighted sum of the Gaussian distributions

PX(x) =
∑
y∈Y

PY (y)PX|Y (x|y) , (4.2)

where PY (y), y ∈ Y = {1, . . . , c} are weights and PX|Y (x|y) is the Gaussian distribu-
tion (4.1) given by parameters (µy,Σy). The data-type used to represent the GMM
is described in Table 4.5. The evaluation of the GMM is implemented in the function
pdfgmm. The random sampling from the GMM is implemented in the function gmmsamp.

Example: Sampling from the Gaussian distribution
The example shows how to represent the Gaussian distribution and how to sample

data it. The sampling from univariate and bivariate Gaussians is shown. The distribu-
tion function of the univariate Gaussian is visualized and compared to the histogram

42



Table 4.3: Shape of covariance matrix.
Parameter cov type:

’full’ Full covariance matrix.
’diag’ Diagonal covariance matrix.
’spherical’ Spherical covariance matrix.

Table 4.4: Data-type used to represent the labeled set of Gaussians.
Labeled set of Gaussians (structure array):
.Mean [n × k] Mean vectors {µ1, . . . ,µk}.
.Cov [n × n × k] Covariance matrices {Σ1, . . . ,Σk}.
.y [1 × k] Labels {y1, . . . , yk} assigned to Gaussians.
.cov type [string] Optional field which indicates shape of the covariance

matrix (see Table 4.3).
.fun = ’pdfgauss’ Identifies function associated with this data type.

of the sample data (see Figure 4.1a). The isoline of the distribution function of the
bivariate Gaussian is visualized together with the sample data (see Figure 4.1b).

% univariate case

model = struct(’Mean’,1,’Cov’,2); % Gaussian parameters

figure; hold on;

% plot pdf. of the Gaussisan

plot([-4:0.1:5],pdfgauss([-4:0.1:5],model),’r’);

[Y,X] = hist(gsamp(model,500),10); % compute histogram

bar(X,Y/500); % plot histogram

% bi-variate case

model.Mean = [1;1]; % Mean vector

model.Cov = [1 0.6; 0.6 1]; % Covariance matrix

figure; hold on;

ppatterns(gsamp(model,250)); % plot sampled data

pgauss(model); % plot shape

4.2 Maximum-Likelihood estimation of GMM

Let the probability distribution

PXY |Θ(x, y|θ) = PX|Y Θ(x|y, θ)PY |Θ(y|θ) ,

43



Table 4.5: Data-type used to represent the Gaussian Mixture Model.
Gaussian Mixture Model (structure array):
.Mean [n × c] Mean vectors {µ1, . . . ,µc}.
.Cov [n × n × c] Covariance matrices {Σ1, . . . ,Σc}.
.Prior [c × 1] Weights of Gaussians {PK(1), . . . , PK(c)}.
.fun = ’pdfgmm’ Identifies function associated with this data type.

−4 −3 −2 −1 0 1 2 3 4 5 6
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

−2 −1 0 1 2 3 4 5
−3

−2

−1

0

1

2

3

4

5

gauss 1

0.127

(a) (b)

Figure 4.1: Sampling from the univariate (a) and bivariate (b) Gaussian distribution.

be known up to parameters θ ∈ Θ. The vector of observations x ∈ R
n and the hidden

state y ∈ Y = {1, . . . , c} are assumed to be realizations of random variables which
are independent and identically distributed according to the PXY |Θ(x, y|θ). The con-
ditional probability distribution PX|Y Θ(x|y, θ) is assumed to be Gaussian distribution.
The θ involves parameters (µy,Σy), y ∈ Y of Gaussian components and the values
of the discrete distribution PY |Θ(y|θ), y ∈ Y . The marginal probability PX|Θ(x|θ) is
the Gaussian mixture model (4.2). The Maximum-Likelihood estimation of the pa-
rameters θ of the GMM for the case of complete and incomplete data is described in
Section 4.2.1 and Section 4.2.2, respectively.

4.2.1 Complete data

The input is a set TXY = {(x1, y1), . . . , (xl, yl)} which contains both vectors of ob-
servations xi ∈ R

n and corresponding hidden states yi ∈ Y . The pairs (xi, yi) are
assumed to samples from random variables which are independent and identically dis-
tributed (i.i.d.) according to PXY |Θ(x, y|θ). The logarithm of probability P (TXY |θ)
is referred to as the log-likelihood L(θ|TXY ) of θ with respect to TXY . Thanks to the

44



i.i.d. assumption the log-likelihood can be factorized as

L(θ|TXY ) = log P (TXY |θ) =
l∑

i=1

log PXY |Θ(xi, yi|θ) .

The problem of Maximum-Likelihood (ML) estimation from the complete data TXY is
defined as

θ∗ = argmax
θ∈Θ

L(θ|TXY ) = argmax
θ∈Θ

l∑
i=1

log PXY |Θ(xi, yi|θ) . (4.3)

The ML estimate of the parameters θ of the GMM from the complete data set TXY

has an analytical solution. The computation of the ML estimate is implemented in the
function mlcgmm.

Example: Maximum-Likelihood estimate from complete data
The parameters of the Gaussian mixture model is estimated from the complete

Riply’s data set riply trn. The data are binary labeled thus the GMM has two Gaus-
sians components. The estimated GMM is visualized as: (i) shape of components of the
GMM (see Figure 4.2a) and (ii) contours of the distribution function (see Figure 4.2b)
.

data = load(’riply_trn’); % load labeled (complete) data

model = mlcgmm(data); % ML estimate of GMM

% visualization

figure; hold on;

ppatterns(data); pgauss(model);

figure; hold on;

ppatterns(data);

pgmm(model,struct(’visual’,’contour’));

4.2.2 Incomplete data

The input is a set TX = {x1, . . . ,xl} which contains only vectors of observations
xi ∈ R

n without knowledge about the corresponding hidden states yi ∈ Y . The
logarithm of probability P (TX |θ) is referred to as the log-likelihood L(θ|TX) of θ with
respect to TX . Thanks to the i.i.d. assumption the log-likelihood can be factorized as

L(θ|TX) = log P (TX |θ) =

l∑
i=1

∑
y∈Y

PX|Y Θ(xi|yi, θ)PY |Θ(yi|θ) .

45



The problem of Maximum-Likelihood (ML) estimation from the incomplete data TX is
defined as

θ∗ = argmax
θ∈Θ

L(θ|TX) = argmax
θ∈Θ

l∑
i=1

∑
y∈Y

PX|Y Θ(xi|yi, θ)PY |Θ(yi|θ) . (4.4)

The ML estimate of the parameters θ of the GMM from the incomplete data set
TXY does not have an analytical solution. The numerical optimization has to be used
instead.

The Expectation-Maximization (EM) algorithm is an iterative procedure for ML
estimation from the incomplete data. The EM algorithm builds a sequence of parameter
estimates

θ(0), θ(1), . . . , θ(t) ,

such that the log-likelihood L(θ(t)|TX) monotonically increases, i.e.,

L(θ(0)|TX) < L(θ(1)|TX) < . . . < L(θ(t)|TX)

until a stationary point L(θ(t−1)|TX) = L(θ(t)|TX) is achieved. The EM algorithm is a
local optimization technique thus the estimated parameters depend on the initial guess
θ(0). The random guess or K-means algorithm (see Section 4.5) are commonly used to
select the initial θ(0). The EM algorithm for the GMM is implemented in the function
emgmm. An interactive demo on the EM algorithm for the GMM is implemented in
demo emgmm.
References: The EM algorithm (including convergence proofs) is described in book [26].
A nice description can be found in book [3]. The monograph [18] is entirely devoted
to the EM algorithm. The first papers describing the EM are [25, 5].

Example: Maximum-Likelihood estimate from incomplete data
The estimation of the parameters of the GMM is demonstrated on a synthetic

data. The ground truth model is the GMM with two univariate Gaussian components.
The ground truth model is sampled to obtain a training (incomplete) data. The EM
algorithm is applied to estimate the GMM parameters. The random initialization is
used by default. The ground truth model, sampled data and the estimate model are
visualized in Figure 4.3a. The plot of the log-likelihood function L(θ(t)|TX) with respect
to the number of iterations t is visualized in Figure 4.3b.

% ground truth Gaussian mixture model

true_model.Mean = [-2 2];

true_model.Cov = [1 0.5];

true_model.Prior = [0.4 0.6];

sample = gmmsamp(true_model, 250);

46



% ML estimation by EM

options.ncomp = 2; % number of Gaussian components

options.verb = 1; % display progress info

estimated_model = emgmm(sample.X,options);

% visualization

figure;

ppatterns(sample.X);

h1 = pgmm(true_model,struct(’color’,’r’));

h2 = pgmm(estimated_model,struct(’color’,’b’));

legend([h1(1) h2(1)],’Ground truth’, ’ML estimation’);

figure; hold on;

xlabel(’iterations’); ylabel(’log-likelihood’);

plot( estimated_model.logL );

4.3 Minimax estimation

The input is a set TX = {x1, . . . ,xl} contains vectors xi ∈ R
n which are realizations of

random variable distributed according to PX|Θ(x|θ). The vectors TX are assumed to be
a realizations with high value of the distribution function PX|Θ(x|θ). The PX|Θ(x|θ)
is known up to the parameter θ ∈ Θ. The minimax estimation is defined as

θ∗ = argmax
θ∈Θ

min
x∈TX

log PX|Θ(x|θ) . (4.5)

If a procedure for the Maximum-Likelihood estimate (global solution) of the distri-
bution PX|Θ(x|θ) exists then a numerical iterative algorithm which converges to the
optimal estimate θ∗ can be constructed. The algorithm builds a series of estimates
θ(0), θ(1), . . . , θ(t) which converges to the optimal estimate θ∗. The algorithm converges
in a finite number of iterations to such an estimate θ that the condition

min
x∈TX

log PX|Θ(x|θ∗) − min
x∈TX

log PX|Θ(x|θ) < ε , (4.6)

holds for ε > 0 which defines closeness to the optimal solution θ∗. The inequality (4.6)
can be evaluated efficiently thus it is a natural choice for the stopping condition of
the algorithm. The STPRtool contains an implementation of the minimax algorithm
for the Gaussian distribution (4.1). The algorithm is implemented in the function
mmgauss. An interactive demo on the minimax estimation for the Gaussian distribution
is implemented in the function demo mmgauss.
References: The minimax algorithm for probability estimation is described and ana-
lyzed in Chapter 8 of the book [26].

47



Example: Minimax estimation of the Gaussian distribution
The bivariate Gaussian distribution is described by three samples which are known

to have high value of the distribution function. The minimax algorithm is applied
to estimate the parameters of the Gaussian. In this particular case, the minimax
problem is equivalent to searching for the minimal enclosing ellipsoid. The found
solution is visualized as the isoline of the distribution function at the point PX|Θ(x|θ)
(see Figure 4.4).

X = [[0;0] [1;0] [0;1]]; % points with high p.d.f.

model = mmgauss(X); % run minimax algorithm

% visualization

figure; ppatterns(X,’xr’,13);

pgauss(model, struct(’p’,exp(model.lower_bound)));

4.4 Probabilistic output of classifier

In general, the discriminant function of an arbitrary classifier does not have meaning of
probability (e.g., SVM, Perceptron). However, the probabilistic output of the classifier
can help in post-processing, for instance, in combining more classifiers together. Fitting
a sigmoid function to the classifier output is a way how to solve this problem.

Let TXY = {(x1, y1), . . . , (xl, yl)} is the training set composed of the vectors xi ∈
X ⊆ R

n and the corresponding binary hidden states yi ∈ Y = {1, 2}. The training
set TXY is assumed to be identically and independently distributed from underlying
distribution. Let f :X ⊆ R

n → R be a discriminant function trained from the data TXY

by an arbitrary learning method. The aim is to estimate parameters of a posteriori
distribution PY |FΘ(y|f(x), θ) of the hidden state y given the value of the discriminant
function f(x). The distribution is modeled by a sigmoid function

PY |FΘ(1|f(x), θ) =
1

1 + exp(a1f(x) + a2)
,

which is determined by parameters θ = [a1, a2]
T . The log-likelihood function is defined

as

L(θ|TXY ) =

l∑
i=1

log PY |FΘ(yi|f(xi), θ) .

The parameters θ = [a1, a2]
T can be estimated by the maximum-likelihood method

θ = argmax
θ′

L(θ′|TXY ) = argmax
θ′

l∑
i=1

log PY |FΘ(yi|f(xi), θ
′) . (4.7)

48



The STPRtool provides an implementation mlsigmoid which uses the Matlab Opti-
mization toolbox function fminunc to solve the task (4.7). The function produces the
parameters θ = [a1, a2]

T which are stored in the data-type describing the sigmoid (see
Table 4.6). The evaluation of the sigmoid is implemented in function sigmoid.

Table 4.6: Data-type used to describe sigmoid function.
Sigmoid function (structure array):
.A [2 × 1] Parameters θ = [a1, a2]

T of the sigmoid function.
.fun = ’sigmoid’ Identifies function associated with this data type.

References: The method of fitting the sigmoid function is described in [22].

Example: Probabilistic output for SVM
This example is implemented in the script demo svmpout. The example shows how

to train the probabilistic output for the SVM classifier. The Riply’s data set riply trn

is used for training the SVM and the ML estimation of the sigmoid. The ML estimated
of Gaussian mixture model (GMM) of the SVM output is used for comparison. The
GMM allows to compute the a posteriori probability for comparison to the sigmoid
estimate. The example is implemented in the script demo svmpout. Figure 4.5a shows
found probabilistic models of a posteriori probability of the SVM output. Figure 4.5b
shows the decision boundary of SVM classifier for illustration.

% load training data

data = load(’riply_trn’);

% train SVM

options = struct(’ker’,’rbf’,’arg’,1,’C’,10);

svm_model = smo(data,options);

% compute SVM output

[dummy,svm_output.X] = svmclass(data.X,svm_model);

svm_output.y = data.y;

% fit sigmoid function to svm output

sigmoid_model = mlsigmoid(svm_output);

% ML estimation of GMM model of SVM output

gmm_model = mlcgmm(svm_output);

% visulization

figure; hold on;

49



xlabel(’svm output f(x)’); ylabel(’p(y=1|f(x))’);

% sigmoid model

fx = linspace(min(svm_output.X), max(svm_output.X), 200);

sigmoid_apost = sigmoid(fx,sigmoid_model);

hsigmoid = plot(fx,sigmoid_apost,’k’);

ppatterns(svm_output);

% GMM model

pcond = pdfgauss( fx, gmm_model);

gmm_apost = (pcond(1,:)*gmm_model.Prior(1))./...

(pcond(1,:)*gmm_model.Prior(1)+(pcond(2,:)*gmm_model.Prior(2)));

hgmm = plot(fx,gmm_apost,’g’);

hcomp = pgauss(gmm_model);

legend([hsigmoid,hgmm,hcomp],’P(y=1|f(x)) ML-Sigmoid’,...

’P(y=1|f(x)) ML-GMM’,’P(f(x)|y=1) ML-GMM’,’P(f(x)|y=2) ML-GMM’);

% SVM decision boundary

figure; ppatterns(data); psvm(svm_model);

4.5 K-means clustering

The input is a set TX = {x1, . . . ,xl} which contains vectors xi ∈ R
n. Let θ =

{µ1, . . . ,µc}, µi ∈ R
n be a set of unknown cluster centers. Let the objective function

F (θ) be defined as

F (θ) =
1

l

l∑
i=1

min
y=1,...,c

‖µy − xi‖2 .

The small value of F (θ) indicates that the centers θ well describe the input set TX .
The task is to find such centers θ which describe the set TX best, i.e., the task is to
solve

θ∗ = argmin
θ

F (θ) = argmin
θ

1

l

l∑
i=1

min
y=1,...,c

‖µy − xi‖2 .

The K-means1 is an iterative procedure which iteratively builds a series θ(0), θ(1), . . . , θ(t).
The K-means algorithm converges in a finite number of steps to the local optimum of
the objective function F (θ). The found solution depends on the initial guess θ(0) which

1The K in the name K-means stands for the number of centers which is here denoted by c.

50



is usually selected randomly. The K-means algorithm is implemented in the function
kmeans.
References: The K-means algorithm is described in the books [26, 6, 3].

Example: K-means clustering
The K-means algorithm is used to find 4 clusters in the Riply’s training set. The

solution is visualized as the cluster centers. The vectors classified to the corresponding
centers are distinguished by color (see Figure 4.6a). The plot of the objective function
F (θ(t)) with respect to the number of iterations is shown in Figure 4.6b.

data = load(’riply_trn’); % load data

[model,data.y] = kmeans(data.X, 4 ); % run k-means

% visualization

figure; ppatterns(data);

ppatterns(model.X,’sk’,14);

pboundary( model );

figure; hold on;

xlabel(’t’); ylabel(’F’);

plot(model.MsErr);

51



−1.5 −1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

gauss 1

0.981

gauss 2

1.45

(a)

−1.5 −1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(b)

Figure 4.2: Example of the Maximum-Likelihood of the Gaussian Mixture Model from
the incomplete data. Figure (a) shows components of the GMM and Figure (b) shows
contour plot of the distribution function.

52



−5 −4 −3 −2 −1 0 1 2 3 4 5
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4
Ground truth
ML estimation

(a)

0 5 10 15 20 25
−460

−458

−456

−454

−452

−450

−448

−446

−444

−442

iterations

lo
g−

lik
el

ih
oo

d

(b)

Figure 4.3: Example of using the EM algorithm for ML estimation of the Gaussian
mixture model. Figure (a) shows ground truth and the estimated GMM and Figure(b)
shows the log-likelihood with respect to the number of iterations of the EM.

53



−0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

gauss 1

0.304

Figure 4.4: Example of the Minimax estimation of the Gaussian distribution.

54



−4 −3 −2 −1 0 1 2 3 4 5
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

svm output f(x)

p(
y=

1|
f(

x)
)

P(y=1|f(x)) ML−Sigmoid
P(y=1|f(x)) ML−GMM
P(f(x)|y=1) ML−GMM
P(f(x)|y=2) ML−GMM

(a)

−1.5 −1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(b)

Figure 4.5: Example of fitting a posteriori probability to the SVM output. Figure (a)
shows the sigmoid model and GMM model both fitted by ML estimated. Figure (b)
shows the corresponding SVM classifier.

55



−1.5 −1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

(a)

0 2 4 6 8 10 12
0.04

0.06

0.08

0.1

0.12

0.14

0.16

t

F

(b)

Figure 4.6: Example of using the K-means algorithm to cluster the Riply’s data set.
Figure (a) shows found clusters and Figure (b) contains the plot of the objective func-
tion F (θ(t)) with respect to the number of iterations.

56



Chapter 5

Support vector and other kernel
machines

5.1 Support vector classifiers

The binary support vector classifier uses the discriminant function f :X ⊆ R
n → R of

the following form
f(x) = 〈α · kS(x)〉 + b . (5.1)

The kS(x) = [k(x, s1), . . . , k(x, sd)]
T is the vector of evaluations of kernel functions

centered at the support vectors S = {s1, . . . , sd}, si ∈ R
n which are usually subset of

the training data. The α ∈ R
l is a weight vector and b ∈ R is a bias. The binary

classification rule q:X → Y = {1, 2} is defined as

q(x) =

{
1 for f(x) ≥ 0 ,
2 for f(x) < 0 .

(5.2)

The data-type used by the STPRtool to represent the binary SVM classifier is described
in Table 5.2.

The multi-class generalization involves a set of discriminant functions fy:X ⊆ R
n →

R, y ∈ Y = {1, 2, . . . , c} defined as

fy(x) = 〈αy · kS(x)〉 + by , y ∈ Y .

Let the matrix A = [α1, . . . ,αc] be composed of all weight vectors and b = [b1, . . . , bc]
T

be a vector of all biases. The multi-class classification rule q:X → Y = {1, 2, . . . , c} is
defined as

q(x) = argmax
y∈Y

fy(x) . (5.3)

The data-type used by the STPRtool to represent the multi-class SVM classifier is
described in Table 5.3. Both the binary and the multi-class SVM classifiers are imple-
mented in the function svmclass.

57



The majority voting strategy is other commonly used method to implement the
multi-class SVM classifier. Let qj :X ⊆ R

n → {y1
j , y

2
j}, j = 1, . . . , g be a set of g binary

SVM rules (5.2). The j-th rule qj(x) classifies the inputs x into class y1
j ∈ Y or y2

j ∈ Y .
Let v(x) be a vector [c × 1] of votes for classes Y when the input x is to be classified.
The vector v(x) = [v1(x), . . . , vc(x)]T is computed as:

Set vy = 0, ∀y ∈ Y .

For j = 1, . . . , g do

vy(x) = vy(x) + 1 where y = qj(x).

end.

The majority votes based multi-class classifier assigns the input x into such class y ∈ Y
having the majority of votes

y = argmax
y′=1,...,g

vy′(x) . (5.4)

The data-type used to represent the majority voting strategy for the multi-class SVM
classifier is described in Table 5.4. The strategy (5.4) is implemented in the function
mvsvmclass. The implemented methods to deal with the SVM and related kernel
classifiers are enlisted in Table 5.1
References: Books describing Support Vector Machines are for example [31, 4, 30]

5.2 Binary Support Vector Machines

The input is a set TXY = {(x1, y1), . . . , (xl, yl)} of training vectors xi ∈ R
n and cor-

responding hidden states yi ∈ Y = {1, 2}. The linear SVM aims to train the linear
discriminant function f(x) = 〈w · x〉 + b of the binary classifier

q(x) =

{
1 for f(x) ≥ 0 ,
2 for f(x) < 0 .

The training of the optimal parameters (w∗, b∗) is transformed to the following quadratic
programming task

(w∗, b∗) = argmin
w,b

1

2
‖w‖2 + C

l∑
i=1

ξp
i , (5.5)

〈w · xi〉 + b ≥ +1 − ξi , i ∈ I1 ,
〈w · xi〉 + b ≤ −1 + ξi , i ∈ I2 ,

ξi ≥ 0 , i ∈ I1 ∪ I2 .

58



Table 5.1: Implemented methods: Support vector and other kernel machines.
svmclass Support Vector Machines Classifier.
mvsvmclass Majority voting multi-class SVM classifier.
evalsvm Trains and evaluates Support Vector Machines classi-

fier.
bsvm2 Multi-class BSVM with L2-soft margin.
oaasvm Multi-class SVM using One-Against-All decomposi-

tion.
oaosvm Multi-class SVM using One-Against-One decomposi-

tion.
smo Sequential Minimal Optimization for binary SVM

with L1-soft margin.
svmlight Interface to SV M light software.
svmquadprog SVM trained by Matlab Optimization Toolbox.
diagker Returns diagonal of kernel matrix of given data.
kdist Computes distance between vectors in kernel space.
kernel Evaluates kernel function.
kfd Kernel Fisher Discriminant.
kperceptr Kernel Perceptron.
minball Minimal enclosing ball in kernel feature space.
rsrbf Reduced Set Method for RBF kernel expansion.
rbfpreimg RBF pre-image by Schoelkopf’s fixed-point algorithm.
rbfpreimg2 RBF pre-image problem by Gradient optimization.
rbfpreimg3 RBF pre-image problem by Kwok-Tsang’s algorithm.
demo svm Demo on Support Vector Machines.

The I1 = {i: yi = 1} and I2 = {i: yi = 2} are sets of indices. The C > 0 stands for the
regularization constant. The ξi ≥ 0, i ∈ I1 ∪ I2 are slack variables used to relax the
inequalities for the case of non-separable data. The linear p = 1 and quadratic p = 2
term for the slack variables ξi is used. In the case of the parameter p = 1, the L1-soft
margin SVM is trained and for p = 2 it is denoted as the L2-soft margin SVM.

The training of the non-linear (kernel) SVM with L1-soft margin corresponds to
solving the following QP task

β∗ = argmax
β

〈β · 1〉 − 1

2
〈β · Hβ〉 , (5.6)

subject to
〈β · γ〉 = 1 ,

β ≥ 0 ,
β ≤ 1C .

59



Table 5.2: Data-type used to describe binary SVM classifier.
Binary SVM classifier (structure array):
.Alpha [d × 1] Weight vector α.
.b [1 × 1] Bias b.
.sv.X [n × d] Support vectors S = {s1, . . . , sd}.
.options.ker [string] Kernel identifier.
.options.arg [1 × p] Kernel argument(s).
.fun = ’svmclass’ Identifies function associated with this data type.

Table 5.3: Data-type used to describe multi-class SVM classifier.
Multi-class SVM classifier (structure array):
.Alpha [d × c] Weight vectors A = [α1, . . . ,αc].
.b [c × 1] Vector of biased b = [b1, . . . , bc]

T .
.sv.X [n × d] Support vectors S = {s1, . . . , sd}.
.options.ker [string] Kernel identifier.
.options.arg [1 × p] Kernel argument(s).
.fun = ’svmclass’ Identifies function associated with this data type.

The 0 [l × 1] is vector of zeros and the 1 [l × 1] is vector of ones. The vector γ [l × 1]
and the matrix H [l × l] are constructed as follows

γi =

{
1 if yi = 1 ,

−1 if yi = 2 ,
Hi,j =

{
k(xi,xj) if yi = yj ,

−k(xi,xj) if yi 
= yj ,

where k:X × X → R is selected kernel function. The discriminant function (5.1) is
determined by the weight vector α, bias b and the set of support vectors S. The
set of support vectors is denoted as S = {xi: i ∈ ISV }, where the set of indices is
ISV = {i: βi > 0}. The weight vectors are compute as

αi =

{
βi if yi = 1 ,

−βi if yi = 2 ,
for i ∈ ISV . (5.7)

The bias b can be computed from the Karush-Kuhn-Tucker (KKT) conditions as the
following constrains

f(xi) = 〈α · kS(xi)〉 + b = +1 for i ∈ {j: yj = 1, 0 < βj < C} ,

f(xi) = 〈α · kS(xi)〉 + b = −1 for i ∈ {j: yj = 2, 0 < βj < C} ,

must hold for the optimal solution. The bias b is computed as an average over all the
constrains such that

b =
1

|Ib|
∑
i∈Ib

γi − 〈α · kS(xi)〉 .

60



Table 5.4: Data-type used to describe the majority voting strategy for multi-class SVM
classifier.
Majority voting SVM classifier (structure array):
.Alpha [d × g] Weight vectors A = [α1, . . . ,αg].
.b [g × 1] Vector of biased b = [b1, . . . , bg]

T .
.bin y [2 × g] Targets for the binary rules. The vector bin y(1,:)

contains [y1
1, y

1
2, . . . , y

1
g ] and the bin y(2,:) contains

[y2
1, y

2
2, . . . , y

2
g ].

.sv.X [n × d] Support vectors S = {s1, . . . , sd}.

.options.ker [string] Kernel identifier.

.options.arg [1 × p] Kernel argument(s).

.fun = ’mvsvmclass’ Identifies function associated with this data type.

where Ib = {i: 0 < βi < C} are the indices of the vectors on the boundary.
The training of the non-linear (kernel) SVM with L2-soft margin corresponds to

solving the following QP task

β∗ = argmax
β

〈β · 1〉 − 1

2
〈β · (H +

1

2C
E)β〉 , (5.8)

subject to
〈β · γ〉 = 1 ,

β ≥ 0 ,

where E is the identity matrix. The set of support vectors is set to S = {xi: i ∈ ISV }
where the set of indices is ISV = {i: βi > 0}. The weight vector α is given by (5.7).
The bias b can be computed from the KKT conditions as the following constrains

f(xi) = 〈α · kS(xi)〉 + b = +1 − αi

2C
for i ∈ {i: yj = 1, βj > 0} ,

f(xi) = 〈α · kS(xi)〉 + b = −1 +
αi

2C
for i ∈ {i: yj = 2, βj > 0} ,

must hold at the optimal solution. The bias b is computed as an average over all the
constrains thus

b =
1

|ISV |
∑

i∈ISV

γi(1 − αi

2C
) − 〈α · kS(xi)〉 .

The binary SVM solvers implemented in the STPRtool are enlisted in Table 5.5.
An interactive demo on the binary SVM is implemented in demo svm.
References: The Sequential Minimal Optimizer (SMO) is described in the books [23,
27, 30]. The SV M light is described for instance in the book [27].

Example: Training binary SVM.

61



Table 5.5: Implemented binary SVM solvers.
Function description

smo Implementation of the Sequential Minimal Optimizer (SMO)
used to train the binary SVM with L1-soft margin. It can
handle moderate size problems.

svmlight Matlab interface to SV M light software (Version: 5.00) which
trains the binary SVM with L1-soft margin. The executable
file svm learn for the Linux OS must be installed. It can be
downloaded from http://svmlight.joachims.org/. The
SV M light is very powerful optimizer which can handle large
problems.

svmquadprog SVM solver based on the QP solver quadprog of the Mat-
lab optimization toolbox. It trains both L1-soft and L2-soft
margin binary SVM. The function quadprog is a part of the
Matlab Optimization toolbox. It useful for small problems
only.

The binary SVM is trained on the Riply’s training set riply trn. The SMO solver
is used in the example but other solvers (svmlight, svmquadprog) can by used as well.
The trained SVM classifier is evaluated on the testing data riply tst. The decision
boundary is visualized in Figure 5.1.

trn = load(’riply_trn’); % load training data

options.ker = ’rbf’; % use RBF kernel

options.arg = 1; % kernel argument

options.C = 10; % regularization constant

% train SVM classifier

model = smo(trn,options);

% model = svmlight(trn,options);

% model = svmquadprog(trn,options);

% visualization

figure;

ppatterns(trn); psvm(model);

tst = load(’riply_tst’); % load testing data

ypred = svmclass(tst.X,model); % classify data

cerror(ypred,tst.y) % compute error

62



ans =

0.0920

−1.5 −1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 5.1: Example showing the binary SVM classifier trained on the Riply’s data.

5.3 One-Against-All decomposition for SVM

The input is a set TXY = {(x1, y1), . . . , (xl, yl)} of training vectors xi ∈ X ⊆ R
n

and corresponding hidden states yi ∈ Y = {1, 2, . . . , c}. The goal is to train the
multi-class rule q:X ⊆ R

n → Y defined by (5.3). The problem can be solved by
the One-Against-All (OAA) decomposition. The OAA decomposition transforms the
multi-class problem into a series of c binary subtasks that can be trained by the binary
SVM. Let the training set T y

XY = {(x1, y
′
1), . . . , (xl, y

′
l)} contain the modified hidden

states defined as

y′
i =

{
1 for y = yi ,
2 for y 
= yi .

The discriminant functions

fy(x) = 〈αy · kS(x)〉 + by , y ∈ Y ,

are trained by the binary SVM solver from the set T y
XY , y ∈ Y . The OAA decomposition

is implemented in the function oaasvm. The function allows to specify any binary SVM

63



solver (see Section 5.2) used to solve the binary problems. The result is the multi-class
SVM classifier (5.3) represented by the data-type described in Table 5.3.
References: The OAA decomposition to train the multi-class SVM and comparison
to other methods is described for instance in the paper [12].

Example: Multi-class SVM using the OAA decomposition
The example shows the training of the multi-class SVM using the OAA decomposi-

tion. The SMO binary solver is used to train the binary SVM subtasks. The training
data and the decision boundary is visualized in Figure 5.2.

data = load(’pentagon’); % load data

options.solver = ’smo’; % use SMO solver

options.ker = ’rbf’; % use RBF kernel

options.arg = 1; % kernel argument

options.C = 10; % regularization constant

model = oaasvm(data,options ); % training

% visualization

figure;

ppatterns(data);

ppatterns(model.sv.X,’ko’,12);

pboundary(model);

5.4 One-Against-One decomposition for SVM

The input is a set TXY = {(x1, y1), . . . , (xl, yl)} of training vectors xi ∈ X ⊆ R
n and

corresponding hidden states yi ∈ Y = {1, 2, . . . , c}. The goal is to train the multi-class
rule q:X ⊆ R

n → Y based on the majority voting strategy defined by (5.4). The
one-against-one (OAO) decomposition strategy can be used train such a classifier. The
OAO decomposition transforms the multi-class problem into a series of g = c(c− 1)/2
binary subtasks that can be trained by the binary SVM. Let the training set T j

XY =
{(x′

1, y
′
1), . . . , (x

′
lj
, y′

lj
)} contain the training vectors xi ∈ Ij = {i: yi = y1

∨
yi = y2}

and the modified the hidden states defined as

y′
i =

{
1 for y1

j = yi ,
2 for y2

j = yi ,
i ∈ Ij .

The training set T j
XY , j = 1, . . . , g is constructed for all g = c(c− 1)/2 combinations of

classes y1
j ∈ Y and y2

j ∈ Y \{y1
j}. The binary SVM rules qj , j = 1, . . . , g are trained on

the data T j
XY . The OAO decomposition for multi-class SVM is implemented in function

64



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 5.2: Example showing the multi-class SVM classifier build by one-against-all
decomposition.

oaosvm. The function oaosvm allows to specify an arbitrary binary SVM solver to train
the subtasks.
References: The OAO decomposition to train the multi-class SVM and comparison
to other methods is described for instance in the paper [12].

Example: Multi-class SVM using the OAO decomposition
The example shows the training of the multi-class SVM using the OAO decomposi-

tion. The SMO binary solver is used to train the binary SVM subtasks. The training
data and the decision boundary is visualized in Figure 5.3.

data = load(’pentagon’); % load data

options.solver = ’smo’; % use SMO solver

options.ker = ’rbf’; % use RBF kernel

options.arg = 1; % kernel argument

options.C = 10; % regularization constant

model = oaosvm(data,options); % training

% visualization

figure;

ppatterns(data);

ppatterns(model.sv.X,’ko’,12);

pboundary(model);

65



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 5.3: Example showing the multi-class SVM classifier build by one-against-one
decomposition.

5.5 Multi-class BSVM formulation

The input is a set TXY = {(x1, y1), . . . , (xl, yl)} of training vectors xi ∈ X ⊆ R
n and

corresponding hidden states yi ∈ Y = {1, 2, . . . , c}. The goal is to train the multi-class
rule q:X ⊆ R

n → Y defined by (5.3). In the linear case, the parameters of the multi-
class rule can be found by solving the multi-class BSVM formulation which is defined
as

(W∗, b∗, ξ∗) = argmin
W,b

1

2

∑
y∈Y

(‖wy‖2 + b2
y) + C

∑
i∈I

∑
y∈Y\{y}

(ξi)
p

︸ ︷︷ ︸
F (W,b,ξ)

, (5.9)

subject to

〈wyi
· xi〉 + byi

− (〈wy · xi〉 + by) ≥ 1 − ξy
i , i ∈ I , y ∈ Y \ {yi} ,

ξy
i ≥ 0 , i ∈ I , y ∈ Y \ {yi} ,

where W = [w1, . . . ,wc] is a matrix of normal vectors, b = [b1, . . . , bc]
T is vector of

biases, ξ is a vector of slack variables and I = [1, . . . , l] is set of indices. The L1-soft
margin is used for p = 1 and L2-soft margin for p = 2. The letter B in BSVM stands
for the bias term added to the objective (5.9).

In the case of the L2-soft margin p = 2, the optimization problem (5.9) can be

66



expressed in its dual form

A∗ = argmax
A

∑
i∈I

∑
y∈Y\{yi}

αy
i −

1

2

∑
i∈I

∑
y∈Y\{yi}

∑
j∈I

∑
u∈Y\{yj}

αy
i α

u
j h(y, u, i, j) , (5.10)

subject to
αy

i ≥ 0 , i ∈ I , y ∈ Y \ {yi} ,

where A = [α1, . . . ,αc] are optimized weight vectors. The function h:Y×Y×I×I → R

is defined as

h(y, u, i, j) = (〈xi ·xj〉+1)(δ(yi, yj)+δ(y, u)−δ(yi, u)−δ(yj, y))+
δ(y, u)δ(i, j)

2C
. (5.11)

The criterion (5.10) corresponds to the single-class SVM criterion which is simple to
optimize. The multi-class rule (5.3) is composed of the set of discriminant functions
fy:X → R which are computed as

fy(x) =
∑
i∈I

〈xi · x〉
∑

u∈Y\{yi}

αu
i (δ(u, yi) − δ(u, y)) + by , y ∈ Y , (5.12)

where the bias by, y ∈ Y is given by

by =
∑
i∈I

∑
y∈Y\{yi}

αu
i (δ(y, yi) − δ(y, u)) , y ∈ Y .

The non-linear (kernel) classifier is obtained by substituting the selected kernel k:X ×
X → R for the dot products 〈x·x′〉 to (5.11) and (5.12). The training of the multi-class
BSVM classifier with L2-soft margin is implemented in the function bsvm2. The opti-
mization task (5.10) can be solved by most the optimizers. The optimizers implemented
in the function bsvm2 are enlisted bellow:

Mitchell-Demyanov-Malozemov (solver = ’mdm’).

Kozinec’s algorithm (solver = ’kozinec’).

Nearest Point Algorithm (solver = ’npa’).

The above mentioned algorithms are of iterative nature and converge to the optimal
solution of the criterion (5.9). The upper bound FUB and the lower bound FLB on the
optimal value F (W∗, b∗, ξ∗) of the criterion (5.9) can be computed. The bounds are
used in the algorithms to define the following two stopping conditions:

Relative tolerance:
FUB − FLB

FLB + 1
≤ εrel.

67



Absolute tolerance: FUB ≤ εabs.

References: The multi-class BSVM formulation is described in paper [12]. The trans-
formation of the multi-class BSVM criterion to the single-class criterion (5.10) imple-
mented in the STPRtool is published in paper [9]. The Mitchell-Demyanov-Malozemov
and Nearest Point Algorithm are described in paper [14]. The Kozinec’s algorithm
based SVM solver is described in paper [10].

Example: Multi-class BSVM with L2-soft margin.
The example shows the training of the multi-class BSVM using the NPA solver. The

other solvers can be used instead by setting the variable options.solver (other options
are ’kozinec’, ’mdm’). The training data and the decision boundary is visualized in
Figure 5.4.

data = load(’pentagon’); % load data

options.solver = ’npa’; % use NPA solver

options.ker = ’rbf’; % use RBF kernel

options.arg = 1; % kernel argument

options.C = 10; % regularization constant

model = bsvm2(data,options); % training

% visualization

figure;

ppatterns(data);

ppatterns(model.sv.X,’ko’,12);

pboundary(model);

5.6 Kernel Fisher Discriminant

The input is a set TXY = {(x1, y1), . . . , (xl, yl)} of training vectors xi ∈ X ⊆ R
n and

corresponding values of binary state yi ∈ Y = {1, 2}. The Kernel Fisher Discriminant
is the non-linear extension of the linear FLD (see Section 2.3). The input training
vectors are assumed to be mapped into a new feature space F by a mapping function
φ:X → F . The ordinary FLD is applied on the mapped data training data TΦY =
{(φ(x1), y1), . . . , (φ(xl), yl)}. The mapping is performed efficiently by means of kernel
functions k:X × X → R being the dot products of the mapped vectors k(x,x′) =
〈φ(x) · φ(x′)〉. The aim is to find a direction ψ =

∑l
i=1 αiφ(xi) in the feature space

F given by weights α = [α1, . . . , αl]
T such that the criterion

F (α) =
〈α ·Mα〉

〈α · (N + µE)α〉 =
〈α ·m〉2

〈α · (N + µE)α〉 , (5.13)

68



−1 −0.8 −0.6 −0.4 −0.2 0 0.2 0.4 0.6 0.8 1
−1

−0.8

−0.6

−0.4

−0.2

0

0.2

0.4

0.6

0.8

1

Figure 5.4: Example showing the multi-class BSVM classifier with L2-soft margin.

is maximized. The criterion (5.13) is the feature space counterpart of the crite-
rion (2.13) defined in the input space X . The vector m [l × 1], matrices N [l × l]
M [l × l] are constructed as

my =
1

|Iy|
K1y , y ∈ Y , m = m1 −m2 ,

N = KKT −
∑
y∈Y

|Iy|mym
T
y , M = (m1 −m2)(m1 −m2)

T ,

where the vector 1y has entries i ∈ Iy equal to and remaining entries zeros. The kernel
matrix K [l × l] contains kernel evaluations Ki,j = k(xi,xj). The diagonal matrix
µE in the denominator of the criterion (5.13) serves as the regularization term. The
discriminant function f(x) of the binary classifier (5.2) is given by the found vector α
as

f(x) = 〈ψ ·φ(x)〉 + b = 〈α · k(x)〉 + b , (5.14)

where the k(x) = [k(x1,x), . . . , k(xl,x)]T is vector of evaluations of the kernel. The
discriminant function (5.14) is known up to the bias b which is determined by the linear
SVM with L1-soft margin is applied on the projected data TZY = {(z1, y1), . . . , (zl, yl)}.
The projections {z1, . . . , zl} are computed as

zi = 〈α · k(xi)〉 .

The KFD training algorithm is implemented in the function kfd.

69



References: The KFD formulation is described in paper [19]. The detailed analysis
can be found in book [30].

Example: Kernel Fisher Discriminant
The binary classifier is trained by the KFD on the Riply’s training set riply trn.mat.

The found classifier is evaluated on the testing data riply tst.mat. The training data
and the found kernel classifier is visualized in Figure 5.5. The classifier is visualized as
the SVM classifier, i.e., the isolines with f(x) = +1 and f(x) = −1 are visualized and
the support vectors (whole training set) are marked as well.

trn = load(’riply_trn’); % load training data

options.ker = ’rbf’; % use RBF kernel

options.arg = 1; % kernel argument

options.C = 10; % regularization of linear SVM

options.mu = 0.001; % regularization of KFD criterion

model = kfd(trn, options) % KFD training

% visualization

figure;

ppatterns(trn);

psvm(model);

% evaluation on testing data

tst = load(’riply_tst’);

ypred = svmclass( tst.X, model );

cerror( ypred, tst.y )

ans =

0.0960

5.7 Pre-image problem

Let TX = {x1, . . . ,xl} be a set of vector from the input space X ⊆ R
n. The kernel

methods works with the data non-linearly mapped φ:X → F into a new feature space
F . The mapping is performed implicitly by using the kernel functions k:X × X → R

which are dot products of the input data mapped into the feature space F such that
k(xa,xb) = 〈φ(xa) · φ(xb)〉. Let ψ ∈ F be given by the following kernel expansion

ψ =
l∑

i=1

αiφ(xi) , (5.15)

70



−1.5 −1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 5.5: Example shows the binary classifier trained based on the Kernel Fisher
Discriminant.

where α = [α1, . . . , αl]
T is a weight vector of real coefficients. The pre-image problem

aims to find an input vector x ∈ X , its feature space image φ(x) ∈ F would well
approximate the expansion point Ψ ∈ F given by (5.15). In other words, the pre-
image problem solves mapping from the feature space F back to the input space X .
The pre-image problem can be stated as the following optimization task

x = argmin
x′

‖φ(x) −ψ‖2

= argmin
x′

‖φ(x′) −
l∑

i=1

αiφ(xi)‖2

= argmin
x′

k(x′,x′) − 2

l∑
i=1

αik(x′,xi) +

l∑
i=1

l∑
j=1

αiαjk(xi,xj) .

(5.16)

Let the Radial Basis Function (RBF) k(xa,xb) = exp(−0.5‖xa−xb‖2/σ2) be assumed.
The pre-image problem (5.16) for the particular case of the RBF kernel leads to the
following task

x = argmax
x′

l∑
i=1

αi exp(−0.5‖x′ − xi‖2/σ2) . (5.17)

The STPRtool provides three optimization algorithms to solve the RBF pre-image
problem (5.17) which are enlisted in Table 5.6. However, all the methods are guaranteed
to find only a local optimum of the task (5.17).

71



Table 5.6: Methods to solve the RBF pre-image problem implemented in the STPRtool.
rbfpreimg An iterative fixed point algorithm proposed in [28].
rbfpreimg2 A standard gradient optimization method using the

Matlab optimization toolbox for 1D search along the
gradient.

rbfpreimg3 A method exploiting the correspondence between dis-
tances in the input space and the feature space pro-
posed in [16].

References: The pre-image problem and the implemented algorithms for its solution
are described in [28, 16].

Example: Pre-image problem
The example shows how to visualize a pre-image of the data mean in the feature

induced by the RBF kernel. The result is visualized in Figure 5.6.

% load input data

data = load(’riply_trn’);

% define the mean in the feature space

num_data = size(data,2);

expansion.Alpha = ones(num_data,1)/num_data;

expansion.sv.X = data.X;

expansion.options.ker = ’rbf’;

expansion.options.arg = 1;

% compute pre-image problem

x = rbfpreimg(expansion);

% visualization

figure;

ppatterns(data.X);

ppatterns(x,’or’,13);

72



−1.5 −1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 5.6: Example shows training data and the pre-image of their mean in the feature
space induced by the RBF kernel.

5.8 Reduced set method

The reduced set method is useful to simplify the kernel classifier trained by the SVM
or other kernel machines. Let the function f :X ⊆ R

n → R be given as

f(x) =
l∑

i=1

αik(xi,x) + b = 〈ψ ·φ(x)〉 + b , (5.18)

where TX = {x1, . . . ,xl} are vectors from R
n, k:X × X → R is a kernel function,

α = [α1, . . . , αl]
T is a weight vector of real coefficients and b ∈ R is a scalar. Let

φ:X → F be a mapping from the input space X to the feature space F associated
with kernel function such that k(xa,xb) = 〈φ(xa) · φ(xb)〉. The function f(x) can be
expressed in the feature space F as the linear function f(x) = 〈ψ · φ(x)〉 + b. The
reduced set method aims to find a new function

f̃(x) =
m∑

i=1

βik(si,x) + b = 〈φ(x) ·
m∑

i=1

βiφ(si)︸ ︷︷ ︸
ψ̃

〉 + b , (5.19)

such that the expansion (5.19) is shorter, i.e., m < l, and well approximates the original
one (5.18). The weight vector β = [β1, . . . , βm]T and the vectors TS = {s1, . . . , sm},
si ∈ R

n determine the reduced kernel expansion (5.19). The problem of finding the

73



reduced kernel expansion (5.19) can be stated as the optimization task

(β, TS) = argmin
β′,T ′

S

‖ψ̃ −ψ‖2 = argmin
β′,T ′

S

∥∥∥∥∥
m∑

i=1

β ′
iφ(s′i) −

l∑
i=1

αiφ(xi)

∥∥∥∥∥
2

. (5.20)

Let the Radial Basis Function (RBF) k(xa,xb) = exp(−0.5‖xa−xb‖2/σ2) be assumed.
In this case, the optimization task (5.20) can be solved by an iterative greedy algo-
rithm. The algorithm converts the task (5.20) into a series of m pre-image tasks (see
Section 5.7). The reduced set method for the RBF kernel is implemented in function
rsrbf.
References: The implemented reduced set method is described in [28].

Example: Reduced set method for SVM classifier
The example shows how to use the reduced set method to simplify the SVM clas-

sifier. The SVM classifier is trained from the Riply’s training set riply trn/mat. The
trained kernel expansion (discriminant function) is composed of 94 support vectors.
The reduced expansion with 10 support vectors is found. Decision boundaries of the
original and the reduced SVM are visualized in Figure 5.7. The original and reduced
SVM are evaluated on the testing data riply tst.mat.

% load training data

trn = load(’riply_trn’);

% train SVM classifier

model = smo(trn,struct(’ker’,’rbf’,’arg’,1,’C’,10));

% compute the reduced rule with 10 support vectors

red_model = rsrbf(model,struct(’nsv’,10));

% visualize decision boundaries

figure; ppatterns(trn);

h1 = pboundary(model,struct(’line_style’,’r’));

h2 = pboundary(red_model,struct(’line_style’,’b’));

legend([h1(1) h2(1)],’Original SVM’,’Reduced SVM’);

% evaluate SVM classifiers

tst = load(’riply_tst’);

ypred = svmclass(tst.X,model);

err = cerror(ypred,tst.y);

red_ypred = svmclass(tst.X,model);

74



red_err = cerror(red_ypred,tst.y);

fprintf([’Original SVM: nsv = %d, err = %.4f\n’ ...

’Reduced SVM: nsv = %d, err = %.4f\n’], ...

model.nsv, err, red_model.nsv, red_err);

Original SVM: nsv = 94, err = 0.0960

Reduced SVM: nsv = 10, err = 0.0960

−1.5 −1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2
Original SVM
Reduced SVM

Figure 5.7: Example shows the decision boundaries of the SVM classifier trained by
SMO and the approximated SVM classifier found by the reduced set method. The
original decision rule involves 94 support vectors while the reduced one only 10 support
vectors.

75



Chapter 6

Miscellaneous

6.1 Data sets

The STPRtool provides several datasets and functions to generate synthetic data. The
datasets stored in the Matlab data file are enlisted in Table 6.1. The functions which
generate synthetic data and scripts for converting external datasets to the Matlab are
given in Table 6.2.

Table 6.1: Datasets stored in /data/ directory of the STPRtool.
/riply trn.mat Training part of the Riply’s data set [24].
/riply tst.mat Testing part of the Riply’s data set [24].
/iris.mat Well known Fisher’s data set.
/anderson task/*.mat Input data for the demo on the Generalized Ander-

son’s task demo anderson.
/binary separable/*.mat Input data for the demo on training linear classifiers

from finite vector sets demo linclass.
/gmm samles/*.mat Input data for the demo on the Expectation-

Maximization algorithm for the Gaussian mixture
model demo emgmm.

/multi separable/*.mat Linearly separable multi-class data in 2D.
/ocr data/*.mat Examples of hand-written numerals. A description is

given in Section 7.1.
/svm samples/*.mat Input data for the demo on the Support Vector Ma-

chines demo svm.

76



Table 6.2: Data generation.
createdata GUI which allows to create interactively labeled vec-

tors sets and labeled sets of Gaussian distributions. It
operates in 2-dimensional space only.

genlsdata Generates linearly separable binary data with pre-
scribed margin.

gmmsamp Generates data from the Gaussian mixture model.
gsamp Generates data from the multivariate Gaussian distri-

bution.
gencircledata Generates data on circle corrupted by the Gaussian

noise.
usps2mat Converts U.S. Postal Service (USPS) database of

hand-written numerals to the Matlab file.

6.2 Visualization

The STPRtool provides tools for visualization of common models and data. The list
of functions for visualization is given in Table 6.3. Each function contains an example
of using.

Table 6.3: Functions for visualization.
pandr Visualizes solution of the Generalized Anderson’s

task.
pboundary Plots decision boundary of given classifier in 2D.
pgauss Visualizes set of bivariate Gaussians.
pgmm Visualizes the bivariate Gaussian mixture model.
pkernelproj Plots isolines of kernel projection.
plane3 Plots plane in 3D.
pline Plots line in 2D.
ppatterns Visualizes patterns as points in the feature space. It

works for 1D, 2D and 3D.
psvm Plots decision boundary of binary SVM classifier in

2D.
showim Displays images entered as column vectors.

77



6.3 Bayesian classifier

The object under study is assumed to be described by a vector of observations x ∈ X
and a hidden state y ∈ Y . The x and y are realizations of random variables with joint
probability distribution PXY (x, y). A decision rule q:X → D takes a decision d ∈ D
based on the observation x ∈ X . Let W :D×Y → R be a loss function which penalizes
the decision q(x) ∈ D when the true hidden state is y ∈ Y . Let X ⊆ R

n and the sets
Y and D be finite. The Bayesian risk R(q) is an expectation of the value of the loss
function W when the decision rule q is applied, i.e.,

R(q) =

∫
X

∑
y∈Y

PXY (x, y)W (q(x), y) dx . (6.1)

The optimal rule q∗ which minimizes the Bayesian risk (6.1) is referred to as the
Bayesian rule

q∗(x) = argmin
y

∑
y∈Y

PXY (x, y)W (q(x), y) , ∀x ∈ X .

The STPRtool implements the Bayesian rule for two particular cases:

Minimization of misclassification: The set of decisions D coincides to the set of
hidden states Y = {1, . . . , c}. The 0/1-loss function

W0/1(q(x), y) =

{
0 for q(x) = y ,
1 for q(x) 
= y .

(6.2)

is used. The Bayesian risk (6.1) with the 0/1-loss function corresponds to the
expectation of misclassification. The rule q:X → Y which minimizes the expec-
tation of misclassification is defined as

q(x) = argmax
y∈Y

PY |X(y|x) ,

= argmax
y∈Y

PX|Y (x|y)PY (y) .
(6.3)

Classification with reject-option: The set of decisions D is assumed to be D =
Y ∪ {dont know}. The loss function is defined as

Wε(q(x), y) =

⎧⎨
⎩

0 for q(x) = y ,
1 for q(x) 
= y ,
ε for q(x) = dont know ,

(6.4)

where ε is penalty for the decision dont know. The rule q:X → Y which mini-
mizes the Bayesian risk with the loss function (6.4) is defined as

q(x) =

⎧⎨
⎩

argmax
y∈Y

PX|Y (x|y)PY (y) if 1 − max
y∈Y

PY |X(y|x) < ε ,

dont know if 1 − max
y∈Y

PY |X(y|x) ≥ ε .
(6.5)

78



To apply the optimal classification rules one has to know the class-conditional
distributions PX|Y and a priory distribution PY (or their estimates). The data-type
used by the STPRtool is described in Table 6.4. The Bayesian classifiers (6.3) and (6.5)
are implemented in function bayescls.

Table 6.4: Data-type used to describe the Bayesian classifier.
Bayesian classifier (structure array):
.Pclass [cell 1 × c] Class conditional distributions PX|Y . The distribution

PX|Y (x|y) is given by Pclassy which uses the data-
type described in Table 4.2.

.Prior [1 × c] Discrete distribution PY (y), y ∈ Y .

.fun = ’bayescls’ Identifies function associated with this data type.

References: The Bayesian decision making with applications to PR is treated in
details in book [26].

Example: Bayesian classifier
The example shows how to design the plug-in Bayesian classifier for the Riply’s

training set riply trn.mat. The class-conditional distributions PX|Y are modeled by
the Gaussian mixture models (GMM) with two components. The GMM are estimated
by the EM algorithm emgmm. The a priori probabilities PY (y), y ∈ {1, 2} are estimated
by the relative occurrences (it corresponds to the ML estimate). The designed Bayesian
classifier is evaluated on the testing data riply tst.mat.

% load input training data

trn = load(’riply_trn’);

inx1 = find(trn.y==1);

inx2 = find(trn.y==2);

% Estimation of class-conditional distributions by EM

bayes_model.Pclass{1} = emgmm(trn.X(:,inx1),struct(’ncomp’,2));

bayes_model.Pclass{2} = emgmm(trn.X(:,inx2),struct(’ncomp’,2));

% Estimation of priors

n1 = length(inx1); n2 = length(inx2);

bayes_model.Prior = [n1 n2]/(n1+n2);

% Evaluation on testing data

tst = load(’riply_tst’);

ypred = bayescls(tst.X,bayes_model);

cerror(ypred,tst.y)

79



ans =

0.0900

The following example shows how to visualize the decision boundary of the found
Bayesian classifier minimizing the misclassification (solid black line). The Bayesian
classifier splits the feature space into two regions corresponding to the first class and
the second class. The decision boundary of the reject-options rule (dashed line) is
displayed for comparison. The reject-option rule splits the feature space into three
regions corresponding to the first class, the second class and the region in between
corresponding to the dont know decision. The visualization is given in Figure 6.1.

% Visualization

figure; hold on; ppatterns(trn);

bayes_model.fun = ’bayescls’;

pboundary(bayes_model);

% Penalization for don’t know decision

reject_model = bayes_model;

reject_model.eps = 0.1;

% Vislualization of rejet-option rule

pboundary(reject_model,struct(’line_style’,’k--’));

6.4 Quadratic classifier

The quadratic classification rule q:X ⊆ R
n → Y = {1, 2, . . . , c} is composed of a set

of discriminant functions

fy(x) = 〈x · Ayx〉 + 〈by · x〉 + cy , ∀y ∈ Y ,

which are quadratic with respect to the input vector x ∈ R
n. The quadratic discrimi-

nant function fy is determined by a matrix Ay [n× n], a vector by [n× 1] and a scalar
cy [1 × 1]. The input vector x ∈ R

n is assigned to the class y ∈ Y its corresponding
discriminant function fy attains maximal value

y = argmax
y′∈Y

fy′(x) = argmax
y′∈Y

(〈x · Ayx〉 + 〈by · x〉 + cy) . (6.6)

In the particular binary case Y = {1, 2}, the quadratic classifier is represented by
a single discriminant function

f(x) = 〈x · Ax〉 + 〈b · x〉 + c ,

80



−1.5 −1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 6.1: Figure shows the decision boundary of the Bayesian classifier (solid line)
and the decision boundary of the reject-option rule with ε = 0.1 (dashed line). The
class-conditional probabilities are modeled by the Gaussian mixture models with two
components estimated by the EM algorithm.

given by a matrix A [n× n], a vector b [n× 1] and a scalar c [1× 1]. The input vector
x ∈ R

n is assigned to class y ∈ {1, 2} as follows

q(x) =

{
1 if f(x) = 〈x · Ax〉 + 〈b · x〉 + c ≥ 0 ,
2 if f(x) = 〈x · Ax〉 + 〈b · x〉 + c < 0 .

(6.7)

The STPRtool uses a specific structure array to describe the binary (see Table 6.5)
and the multi-class (see Table 6.6) quadratic classifier. The implementation of the
quadratic classifier itself provides function quadclass.

Table 6.5: Data-type used to describe binary quadratic classifier.
Binary linear quadratic (structure array):
.A [n × n] Parameter matrix A.
.b [n × 1] Parameter vector b.
.c [1 × 1] Parameter scalar c.
.fun = ’quadclass’ Identifies function associated with this data type.

Example: Quadratic classifier
The example shows how to train the quadratic classifier using the Fisher Linear Dis-

criminant and the quadratic data mapping. The classifier is trained from the Riply’s

81



Table 6.6: Data-type used to describe multi-class quadratic classifier.
Multi-class quadratic classifier (structure array):
.A [n × n × c] Parameter matrices Ay, y ∈ Y .
.b [n × c] Parameter vectors by, y ∈ Y .
.c [1 × c] Parameter scalars cy, y ∈ Y .
.fun = ’quadclass’ Identifies function associated with this data type.

training set riply trn.mat. The found quadratic classifier is evaluated on the test-
ing data riply trn.mat. The boundary of the quadratic classifier is visualized (see
Figure 6.2).

trn = load(’riply_trn’); % load input data

quad_data = qmap(trn); % quadratic mapping

lin_model = fld(quad_data); % train FLD

% make quadratic classifier

quad_model = lin2quad(lin_model);

% visualization

figure;

ppatterns(trn); pboundary(quad_model);

% evaluation

tst = load(’riply_tst’);

ypred = quadclass(tst.X,quad_model);

cerror(ypred,tst.y)

ans =

0.0940

6.5 K-nearest neighbors classifier

Let TXY = {(x1, y1), . . . , (xl, yl)} be a set of prototype vectors xi ∈ X ⊆ R
n and

corresponding hidden states yi ∈ Y = {1, . . . , c}. Let R
n(x) = {x′: ‖x− x′‖ ≤ r2} be

a ball centered in the vector x in which lie K prototype vectors xi, i ∈ {1, . . . , l}, i.e.,
|{xi:xi ∈ R

n(x)}| = K. The K-nearest neighbor (KNN) classification rule q:X → Y
is defined as

q(x) = argmax
y∈Y

v(x, y) , (6.8)

82



−1.5 −1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 6.2: Figure shows the decision boundary of the quadratic classifier.

where v(x, y) is number of prototype vectors xi with hidden state yi = y which lie in
the ball xi ∈ R

n(x). The classification rule (6.8) is computationally demanding if the
set of prototype vectors is large. The data-type used by the STPRtool to represent the
K-nearest neighbor classifier is described in Table 6.7.

Table 6.7: Data-type used to describe the K-nearest neighbor classifier.
K-NN classifier (structure array):
.X [n × l] Prototype vectors {x1, . . . ,xl}.
.y [1 × l] Labels {y1, . . . , yl}.
.fun = ’knnclass’ Identifies function associated with this data type.

References: The K-nearest neighbors classifier is described in most books on PR, for
instance, in book [6].

Example: K-nearest neighbor classifier
The example shows how to create the (K = 8)-NN classification rule from the

Riply’s training data riply trn.mat. The classifier is evaluated on the testing data
riply tst.mat. The decision boundary is visualized in Figure 6.3.

% load training data and setup 8-NN rule

trn = load(’riply_trn’);

model = knnrule(trn,8);

83



% visualize decision boundary and training data

figure; ppatterns(trn); pboundary(model);

% evaluate classifier

tst = load(’riply_tst’);

ypred = knnclass(tst.X,model);

cerror(ypred,tst.y)

ans =

0.1160

−1.5 −1 −0.5 0 0.5 1
−0.2

0

0.2

0.4

0.6

0.8

1

1.2

Figure 6.3: Figure shows the decision boundary of the (K = 8)-nearest neighbor
classifier.

84



Chapter 7

Examples of applications

We intend to demonstrate how methods implemented in the STPRtool can be used to
solve a more complex applications. The applications selected are the optical charac-
ter recognition (OCR) system based on the multi-class SVM (Section 7.1) and image
denoising system using the kernel PCA (Section 7.2).

7.1 Optical Character Recognition system

The use of the STPRtool is demonstrated on a simple Optical Character Recognition
(OCR) system for handwritten numerals from 0 to 9. The STPRtool provides GUI
which allows to use standard computer mouse as an input device to draw images of
numerals. The GUI is intended just for demonstration purposes and the scanner or
other device would be used in practice instead. The multi-class SVM are used as the
base classifier of the numerals. A numeral to be classified is represented as a vector
x containing pixel values taken from the numeral image. The training stage of the
OCR system involves (i) collection of training examples of numerals and (ii) training
the multi-class SVM. To see the trained OCR system run the demo script demo ocr.

The GUI for drawing numerals is implemented in a function mpaper. The function
mpaper creates a form composed of 50 cells to which the numerals can be drawn (see
Figure 7.1a). The drawn numerals are normalized to size 16 × 16 pixels (different
size can be specified). The function mpaper is designed to invoke a specified function
whenever the middle mouse button is pressed. In particular, the functions save chars

and ocr fun are called from the mpaper to process drawn numerals. The function
save chars saves drawn numerals in the stage of collecting training examples and the
function ocr fun is used to recognize the numerals if the trained OCR is applied.

The set of training examples has to be collected before the OCR is trained. The
function collect chars invokes the form for drawing numerals and allows to save the
numerals to a specified file. The STPRtool contains examples of numerals collected

85



from 6 different persons. Each person drew 50 examples of each of numerals from
’0’ to ’9’. The numerals are stored in the directory /data/ocr numerals/. The file
name format name xx.mat (the character can be omitted from the name) is used.
The string name is name of the person who drew the particular numeral and xx stands
for a label assigned to the numeral. The labels from y = 1 to y = 9 corresponds to the
numerals from ’1’ to ’9’ and the label y = 10 is used for numeral ’0’. For example,
to collect examples of numeral ’1’ from person honza cech

collect_chars(’honza_cech1’)

was called. Figure 7.1a shows the form filled with the examples of the numeral ’1’.
The Figure 7.1b shows numerals after normalization which are saved to the speci-
fied file honza cech.mat. The images of normalized numerals are stored as vectors
to a matrix X of size [256 × 50]. The vector dimension n = 256 corresponds to
16 × 16 pixels of each image numeral and l = 50 is the maximal number of numerals
drawn to a single form. If the file name format name xx.mat is met then the function
mergesets(Directory,DataFile) can be used to merge all the file to a single one.
The resulting file contains a matrix X of all examples and a vector y containing labels
are assigned to examples according the number xx. The string Directory specifies the
directory where the files name xx.mat are stored and the string FileName is a file name
to which the resulting training set is stored.

Having the labeled training set TXY = {(x1, y1), . . . , (xl, yl)} created the multi-class
SVM classifier can be trained. The methods to train the multi-class SVM are described
in Chapter 5. In particular, the One-Against-One (OAO) decomposition was used as
it requires the shortest training time. However, if a speed of classification is the major
objective the multi-class BSVM formulation is often a better option as it produce less
number of support vectors. The SVM has two free parameters which have to be tuned:
the regularization constant C and the kernel function k(xa,xb) with its argument.
The RBF kernel k(xa,xb) = exp(−0.5‖xa − xb‖2/σ2) determined by the parameter
σ was used in the experiment. Therefore, the free SVM parameters are C and σ. A
common method to tune the free parameters is to use the cross-validation to select the
best parameters from a pre-selected set Θ = {(C1, σ1), . . . , (Ck, σk)}. The STPRtool
contains a function evalsvm which evaluates the set of SVM parameters Θ based on the
cross-validation estimation of the classification error. The function evalsvm returns the
SVM model its parameters (C∗, σ∗) turned out to be have the lowest cross-validation
error over the given set Θ. The parameter tuning is implemented in the script tune ocr.
The parameters C = ∞ (data are separable) and σ = 5 were found to be the best.

After the parameters (C∗, σ∗) are tuned the SVM classifier is trained using all
training data available. The training procedure for OCR classifier is implemented in
the function train ocr. The directory /demo/ocr/models/ contains the SVM model
trained by OAO decomposition strategy (function oaosvm) and model trained based
on the multi-class BSVM formulation (function bsvm2).

86



The particular model used by OCR is specified in the function ocr fun which
implicitly uses the file ocrmodel.mat stored in the directory /demo/ocr/. To run the
resulting OCR type demo ocr or call

mpaper(struct(’fun’,’ocr_fun’))

If one intends to modify the classifier or the way how the classification results are
displayed then modify the function ocr fun. A snapshot of running OCR is shown in
Figure 7.2.

7.2 Image denoising

The aim is to train a model of a given class of images in order to restore images
corrupted by noise. The U.S. Postal Service (USPS) database of images of hand-
written numerals [17] was used as the class of images to model. The additive Gaussian
noise was assumed as the source of image degradation. The kernel PCA was used to
model the image class. This method was proposed in [20] and further developed in [15].

The STPRtool contains a script which converts the USPS database to the Matlab
data file. It is implemented in the function usps2mat. The corruption of the USPS
images by the Gaussian noise is implemented in script make noisy data. The script
make noisy data produces the Matlab file usps noisy.mat its contains is summarized
in Table 7.1.

The aim is to train a model of images of all numerals at ones. Thus the unlabeled
training data set TX = {x1, . . . ,xl} is used. The model should describe the non-linear
subspace Ximg ⊆ R

n where the images live. It is assumed that the non-linear subspace
Ximg forms a linear subspace Fimg of a new feature space F . A link between the
input space X and the feature space F is given by a mapping φ:X → F which is
implicitly determined by a selected kernel function k:X ×X → R. The kernel function
corresponds to the dot product in the feature space, i.e., k(xa,xb) = 〈φ(xa) · φ(xb)〉.
The kernel PCA can be used to find the basis vectors of the subspace Fimg from the
input training data TX . Having the kernel PCA model of the subspace Fimg it can be
used to map the images x ∈ X into the subspace Ximg. A noisy image x̂ is assumed to
lie outside the subspace Ximg. The denoising procedure is based on mapping the noisy
image x̂ into the subspace Ximg. The idea of using the kernel PCA for image denoising
is demonstrated in Figure 7.3. The example which produced the figure is implemented
in demo kpcadenois.

The subspace Fimg is modeled by the kernel PCA trained from the set TX mapped
into the feature space F by a function φ:X → F . Let TΦ = {φ(x1), . . . ,φ(xl)} denote
the feature space representation of the training images TX . The kernel PCA computes
the lower dimensional representation TZ = {z1, . . . , zl}, zi ∈ R

m of the mapped images

87



Table 7.1: The content of the file usps noisy.mat produced by the script
make noisy data.

Structure array trn containing the training data:
gnd X [256 × 7291] Training images of numerals represented as column

vectors. The input are 7291 gray-scale images of size
16 × 16.

X [256 × 7291] Training images corrupted by the Gaussian noise with
signal-to-noise ration SNR = 1 (it can be changed).

y [1 × 7291] Labels y ∈ Y = {1, . . . , 10} of training images.

Structure array tst containing the testing data:
gnd X [256 × 2007] Testing images of numerals represented as column vec-

tors. The input are 2007 gray-scale images of size
16 × 16.

X [256 × 2007] Training images corrupted by the Gaussian noise with
signal-to-noise ration SNR = 1 (it can be changed).

y [1 × 2007] Labels y ∈ Y = {1, . . . , 10} of training images.

TΦ to minimize the mean square reconstruction error

εKMS =

l∑
i=1

‖φ(xi) − φ̃(xi)‖2 ,

where

φ̃(x) =
l∑

i=1

βiφ(x) , β = A(z − b) , z = ATk(x) + b . (7.1)

The vector k(x) = [k(x1,x), . . . , k(xl,x)]T contains kernel functions evaluated at the
training data TX . The matrix A [l × m] and the vector b [m × 1] are trained by the
kernel PCA algorithm. Given a projection φ̃(x) onto the kernel PCA subspace an
image x′ ∈ R

n of the input space can be recovered by solving the pre-image problem

x′ = argmin
x

‖φ(x) − φ̃(x)‖2 . (7.2)

The Radial Basis Function (RBF) kernel k(xa,xb) = exp(−0.5‖xa − xb‖2/σ2) was
used here as the pre-image problem (7.2) can be well solved for this case. The whole
procedure of reconstructing the corrupted image x̂ ∈ R

n involves (i) using (7.1) to
compute z which determines φ̃(x) and (ii) solving the pre-image problem (7.2) which
yields the resulting x′. This procedure is implemented in function kpcarec.

In contrast to the linear PCA, the kernel PCA allows to model the non-linearity
which is very likely in the case of images. However, the non-linearity hidden in

88



the parameter σ of the used RBF kernel has to be tuned properly to prevent over-
fitting. Another parameter is the dimension m of the subspace kernel PCA subspace
to be trained. The best parameters (σ∗, m∗) was selected out of a prescribed set
Θ = {(σ1, m1), . . . , (σk, mk)} such that the cross-validation estimate of the mean square
error

εMS(σ, m) =

∫
X

PX(x)
(
‖x− x′‖2

)
dx ,

was minimal. The x stands for the ground truth image and x′ denotes the image
restored from noisy one x̂ using (7.1) and (7.2). The images are assumed to be gen-
erated from distribution PX(x). Figure 7.4 shows the idea of tuning the parameters
of the kernel PCA. The linear PCA was used to solve the same task for comparison.
The same idea was used to tune the output dimension of the linear PCA. Having the
parameters tuned the resulting kernel PCA and linear PCA are trained on the whole
training set. The whole training procedure of the kernel PCA is implemented in the
script train kpca denois. The training for linear PCA is implemented in the script
train lin denois. The greedy kernel PCA Algorithm 3.4 is used for training the
model. It produces sparse model and can deal with large data sets. The results of
tuning the parameters are displayed in Figure 7.5. The figure was produced by a script
show denois tuning.

The function kpcarec is used to denoise images using the kernel PCA model. In
the case of the linear PCA, the function pcarec was used. An example of denoising of
the testing data of USPS is implemented in script show denoising. Figure 7.6 shows
examples of ground truth images, noisy images, images restored by the linear PCA and
kernel PCA.

89



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Control: left_button − draw, middle_button − classify, right_button − erase.

(a)

(b)

Figure 7.1: Figure (a) shows hand-written training examples of numeral ’1’ and Figure
(b) shows corresponding normalized images of size 16 × 16 pixels.

90



0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5
Control: left_button − draw, middle_button − classify, right_button − erase.

(a)

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

0.45

0.5

1 2 3 4 5 6 7 8 9 0

4 0

5 3 1 9

6 2 8

(b)

Figure 7.2: A snapshot of running OCR system. Figure (a) shows hand-written nu-
merals and Figure (b) shows recognized numerals.

91



−4 −3 −2 −1 0 1 2 3 4 5 6 7
−4

−3

−2

−1

0

1

2

3

4

5

6

7

Ground truth
Noisy examples
Corrupted
Reconstructed

Figure 7.3: Demonstration of idea of image denoising by kernel PCA.

Data
generator

model

model
Distortion

KPCA Pre-image
problem

θ ∈ Θ

Error

er
ro

r

θ

assessment

Figure 7.4: Schema of tuning parameters of kernel PCA model used for image restora-
tion.

92



0 10 20 30 40 50 60 70 80 90 100
10

11

12

13

14

15

16

17

18

dim

ε M
S

3.5 4 4.5 5 5.5 6 6.5 7 7.5 8
6

8

10

12

14

16

18

20

σ

ε M
S

dim = 50
dim = 100
dim = 200
dim = 300

(a) (b)

Figure 7.5: Figure (a) shows plot of εMS with respect to output dimension of lin-
ear PCA. Figure(b) shows plot of εMS with respect to output dimension and kernel
argument of the kernel PCA.

Ground truth

Numerals with added Gaussian noise

Linear PCA reconstruction

Kernel PCA reconstruction

Figure 7.6: The results of denosing the handwritten images of USPS database.

93



Chapter 8

Conclusions and future planes

The STPRtool as well as its documentation is being updating. Therefore we are grateful
for any comment, suggestion or other feedback which would help in the development
of the STPRtool.

There are many relevant methods and proposals which have not been implemented
yet. We welcome anyone who likes to contribute to the STPRtool in any way. Please
send us an email and your potential contribution.

The future planes involve the extensions of the toolbox by the following methods:

• Feature selection methods.

• AdaBoost and related learning methods.

• Efficient optimizers to for large scale Support Vector Machines learning problems.

• Model selection methods for SVM.

• Probabilistic Principal Component Analysis (PPCA) and mixture of PPCA esti-
mated by the Expectation-Maximization (EM) algorithm.

• Discrete probability models estimated by the EM algorithm.

94



Bibliography

[1] T.W. Anderson and R.R. Bahadur. Classification into two multivariate normal
distributions with differrentia covariance matrices. Anals of Mathematical Statis-
tics, 33:420–431, June 1962.

[2] G. Baudat and F. Anouar. Generalized discriminant analysis using a kernel ap-
proach. Neural Computation, 12(10):2385–2404, 2000.

[3] C.M. Bishop. Neural Networks for Pattern Recognition. Clarendon Press, Oxford,
Great Britain, 3th edition, 1997.

[4] N. Cristianini and J. Shawe-Taylor. Support Vector Machines. Cambridge Uni-
versity Press, 2000.

[5] A.P. Dempster, N.M. Laird, and D.B. Rubin. Maximum likelihood from incom-
plete data via the EM Algorithm. Journal of the Royal Statistical Society, 39:185–
197, 1977.

[6] R.O. Duda, P.E. Hart, and D.G. Stork. Pattern Classification. John Wiley &
Sons, 2nd. edition, 2001.

[7] R.P.W. Duin. Prtools: A matlab toolbox for pattern recognition, 2000.

[8] V. Franc. Programové nástroje pro rozpoznáváńı (Pattern Recognition Program-
ming Tools, In Czech). Master’s thesis, České vysoké učeńı technické, Fakulta
elektrotechnická, Katedra kybernetiky, February 2000.

[9] V. Franc and V. Hlaváč. Multi-class support vector machine. In R. Kasturi,
D. Laurendeau, and Suen C., editors, 16th International Conference on Pattern
Recognition, volume 2, pages 236–239. IEEE Computer Society, 2002.

[10] V. Franc and V. Hlaváč. An iterative algorithm learning the maximal margin
classifier. Pattern Recognition, 36(9):1985–1996, 2003.

95



[11] V. Franc and V. Hlaváč. Greedy algorithm for a training set reduction in the
kernel methods. In N. Petkov and M.A. Westenberg, editors, Computer Analysis
of Images and Patterns, pages 426–433, Berlin, Germany, 2003. Springer.

[12] C.W. Hsu and C.J. Lin. A comparison of methods for multiclass support vector
machins. IEEE Transactions on Neural Networks, 13(2), March 2002.

[13] I.T. Jollife. Principal Component Analysis. Springer-Verlag, New York, 1986.

[14] S.S. Keerthi, S.K. Shevade, C. Bhattacharya, and K.R.K. Murthy. A fast itera-
tive nearest point algorithm for support vector machine classifier design. IEEE
Transactions on Neural Networks, 11(1):124–136, January 2000.

[15] Kim Kwang, In, Franz Matthias, O., and Schölkopf Bernhard. Kernel hebbian
algorithm for single-fram super-resolution. In Leonardis Aleš and Bischof Horst,
editors, Statisical Learning in Computer Vision, ECCV Workshop. Springer, May
2004.

[16] J.T. Kwok and I.W. Tsang. The pre-image problem in kernel methods. In Pro-
ceedings of the Twentieth International Conference on Machine Learning (ICML-
2003), pages 408–415, Washington, D.C., USA, August 2003.

[17] Y. LeCun, B. Boser, J.S. Denker, D. Henderson, R.E. Howard, W. Hubbard, and
L.J Jackel. Backpropagation applied to handwritten zip code recognition. Neural
Computation, 1:541–551, 1989.

[18] G. McLachlan and T. Krishnan. The EM Algorithm and Extensions. John Wiley
& Sons, New York, 1997.

[19] S. Mika, G. Rätsch, J. Weston, B. Schölkpf, and K. Müller. Fisher discriminant
analysis with kernel. In Y.H. Hu, J. Larsen, and S. Wilson, E. Douglas, editors,
Neural Networks for Signal Processing, pages 41–48. IEEE, 1999.

[20] S. Mika, B. Schölkopf, A. Smola, K.R. Müller, M. Scholz, and G. Rätsch. Kernel
pca and de-noising in feature spaces. In M.S. Kearns, S.A. Solla, and D.A. Cohn,
editors, Advances in Neural Information Processing Systems 11, pages 536 – 542,
Cambridge, MA, 1999. MIT Press.

[21] I.T. Nabney. NETLAB : algorithms for pattern recognition. Advances in pattern
recognition. Springer, London, 2002.

[22] J. Platt. Probabilities for sv machines. In A.J. Smola, P.J. Bartlett, B. Scholkopf,
and D. Schuurmans, editors, Advances in Large Margin Classifiers (Neural Infor-
mation Processing Series). MIT Press, 2000.

96



[23] J.C. Platt. Sequential minimal optimizer: A fast algorithm for training support
vector machines. Technical Report MSR-TR-98-14, Microsoft Research, Redmond,
1998.

[24] B.D. Riply. Neural networks and related methods for classification (with discu-
sion). J. Royal Statistical Soc. Series B, 56:409–456, 1994.

[25] M.I. Schlesinger. A connection between learning and self-learning in the pattern
recognition (in Russian). Kibernetika, 2:81–88, 1968.

[26] M.I. Schlesinger and V. Hlaváč. Ten lectures on statistical and structural pattern
recognition. Kluwer Academic Publishers, 2002.

[27] B. Schölkopf, C. Burges, and A.J. Smola. Advances in Kernel Methods – Support
Vector Learning. MIT Press, Cambridge, 1999.

[28] B. Schölkopf, P. Knirsch, and C. Smola, A. Burges. Fast approximation of support
vector kernel expansions, and an interpretation of clustering as approximation in
feature spaces. In P. Levi, M. Schanz, R.J. Ahler, and F. May, editors, Mus-
tererkennung 1998-20. DAGM., pages 124–132, Berlin, Germany, 1998. Springer-
Verlag.

[29] B. Scholkopf, A. Smola, and K.R. Muller. Nonlinear component analysis as a
kernel eigenvalue problem. Neural Computation, 10:1299–1319, 1998.

[30] B. Schölkopf and A.J. Smola. Learning with Kernels. The MIT Press, MA, 2002.

[31] V. Vapnik. The nature of statistical learning theory. Springer Verlag, 1995.

97


