
PURPOSE
Goal: By the end of this lab, you will understand the how to build and test with a SVM model.

Verify that SVMlab folder is installed in your local working directory. (If not, please download it from
/usr/ccrma/courses/mir2009/Toolboxes / Utilities / SVMlab folder.)

Add the entire SVMlab folder (with subfolders) to your Matlab path.

Open a Terminal window and cd to the directory where you placed your SVMlab folder.
cd to the folder /Libsvm-2.86/tools/

chmod 755 grid.py
chmod 755 svmtrain
chmod 755 svmpredict
chmod 755 svmscale

In the Terminal, type:

To verify that everything worked, type in grid.py. You should see something that says "Usage: grid.py [-log2c
begin, eng] etc."

If you see "permission denied", then something went wrong - repeat the above process.

Now, we need to reset the permissions of the files in this folder:

SETUP

SECTION 1: BUILDING AN SVM

You've done this a million times by now.
Since we need data that we can assign LABELS to, feature extract a collection of instrument samples (as many
features as you want). Note that you can either a) treat the instrument sample .wav file as 1 giant frame (analyzing
the entire audio signal), or b) analyze the signal using frames size of say, 80 to 100 ms per audio file and then take the
mean of each of the features, creating a mean "signature" for the file.

FEATURE EXTRACT

Input "Test snares" and call them 1.
Input "Test kicks" and call them 0.

If you just can't get enough of the drum samples, start with:

For variety, choose instruments based on samples in:
/scratch/audio/Miscellaneous Loops Samples and SFX/Instrument Samples

Don't forget to scale the feature data, save the scaling coefficients so we can scale the test data to be in the same
range.

Create a label vector using class labels {1,-1}
Kernels (linear, polynomial, RBF, sigmoid)

Find the best parameters (C and gamma)

EXPORT DATA

mat2libSVMFormat.m

We are using an external program (a python script) to run a grid search and look for the best values of C and gamma. To
export your data so that libSVM can read it, I've created a helper function.

mat2libSVMFormat(data,label,filename)

For example:
mat2libSVMFormat(features , labels,'~/Matlab/libsvm-2.86/tools/myData.txt')

This file needs to be saved in the save directory as the libSVM tools (grid.py etc) are located.

Lab 5 - SVMs
Wednesday, July 16, 2008

12:46 PM

 MIR Course 2009 Page 1

Open up the file to see the particular format that libSVM prefers - and also to verify that the data was written out
correctly.

GRID SEARCH
Now that the data has been exported from Matlab, open a Terminal window.

In the Terminal, type:
> grid.py myData.txt

[...]
[local] 13 -13 61.9048 (best c=512.0, g=0.001953125, rate=66.6667)
[local] 13 1 52.381 (best c=512.0, g=0.001953125, rate=66.6667)
[local] 13 -11 61.9048 (best c=512.0, g=0.001953125, rate=66.6667)
[local] 13 -5 57.1429 (best c=512.0, g=0.001953125, rate=66.6667)
[local] 13 -15 57.1429 (best c=512.0, g=0.001953125, rate=66.6667)
[local] 13 3 57.1429 (best c=512.0, g=0.001953125, rate=66.6667)
[local] 13 -9 42.8571 (best c=512.0, g=0.001953125, rate=66.6667)
[local] 13 -3 61.9048 (best c=512.0, g=0.001953125, rate=66.6667)
512.0 0.001953125 66.6667

You'll see the following sample text output to the screen...

These numbers show the parameters as they were chosen during a grid
search, with the corresponding cross-validation error rate for that
particular model. So, in effect, the grid search has built dozens of
SVM models with various parameter settings, and chosen the parameters
that it believe have the best chance of success given your current
training data.

The numbers at the bottom are what we are most interested in.
The first number (512) is C, and the second number (0.001953125) is gamma.
Note that the current cross-validation accuracy is 66.6667% (Since I
had a small number of samples in this colleciton, there are many
possible best choices which also have 66.7% accuracy)

See the README in libSVM\libsvm-2.85\libsvm-2.85\tools for additional information on the easy.py and grid.py scripts, if
you are the curious sort and find yourself interested.

Write down these values of C and gamma --- we'll use these in Matlab to build out SVM model.

SECTION 2: USING AN SVM

To build an SVM:

Type svmtrain in Matlab to review all of the myriad of options for it. (If you cannot find svmtrain, then make sure to
add the folder libsvm-mat-2.86 to your Matlab path)

model = svmtrain(labels,features,'-t 2 -g 0.001953125 -c 512')
An example of how to train it on your feature data using the parameters returned by the grid search:

The "-t 2" specifies RBF kernel. "-g" species the value of gamma and "-c" specifies C.

To test with your SVM:

Feature extract some examples, and don't forget to rescale the data to the same mf and sf (scale factors) as before.

svmpredict(labels, features, model)
Now, to evaluate, all you do is:

"Labels?", you ask.
Yes, if you know the labels for your testing data, insert them into this vector. So, for example, you can insert the
training labels and training feature data into this function, and svmpredict will automatically calculate the accuracy
for you.

If you do not know the labels for your test data (likely the case), then insert a vector of zeros equal to the number of

 MIR Course 2009 Page 2

If you do not know the labels for your test data (likely the case), then insert a vector of zeros equal to the number of
test samples that you have.

Try redoing some of the previous labs' instrument classifiers or artist/genre classifiers using an SVM.

SECTION 3: HAVING FUN

BONUS (only in your have time): CROSS VALIDATION
In today's lecture, we covered k-fold cross-validation.
You'll need some of this code and information to calculate your accuracy rate on your classifiers -- that is, if you chose to do
this as your project.

Divide test set into 10 random subsets.1.
1 test set is tested using the classifier trained on the remaining 9.2.
We then do test/train on all of the other sets and average the percentages. 3.

Let's say we have 10-fold cross validation...

To achieve the first step (divide our training set into k disjoint subsets), use the function crossvalind.m (posted in the Lab 7
folder)

 INDICES = CROSSVALIND('Kfold',N,K) returns randomly generated indices
 for a K-fold cross-validation of N observations. INDICES contains equal
 (or approximately equal) proportions of the integers 1 through K that
 define a partition of the N observations into K disjoint subsets.

 You can type help crossvalind to look at all the other options.

Here is an outline of how to perform cross-validation on a classifier:

% cross_validation
k = 10; % how many folds do you want?
N = size(features,1) ; % this is the total number of observations or rows that we have
indices = crossvalind('Kfold',N,k) % divide test set into 10 random subsets
for i = 1:10

% SEGMENT DATA INTO FOLDS
disp(['fold: ' num2str(i)])
test = (indices == i) ; % which points are in the test set

 train = ~test; % all points that are NOT in the test set

% SCALE
[trainingFeatures,mf,sf]=scale(features(train,:));

% BUILD NEW MODEL
 model = knn(numFeatures,1,1,trainingFeatures,labels(train,:));

% EVALUATE WITH TEST DATA
 model_output = knnfwd(model ,features(test,:))

% COUNT ERRORS
errors(i) = mean (model_output ~= labels(test,:))

end
disp(['cross validation error: ' num2str(mean(errors))])

Recommended reading
A Practical Guide to Support Vector Classification
http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf

It provides an introduction to the libsvm tools, and motivations for why they were developed. It also highlights common
mistakes.

Additional Resources

 MIR Course 2009 Page 3

http://www.csie.ntu.edu.tw/~cjlin/papers/guide/guide.pdf

Additional Resources
SVM Practical (How to get good results without cheating)
http://www.kyb.tuebingen.mpg.de/bs/people/weston/svmpractical/

Libsvm and Libsvm Tools
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/

The interactive Matlab SVM Demo that I demonstrated on Day 5:
http://homepages.cae.wisc.edu/~ece539/matlab/
http://homepages.cae.wisc.edu/~ece539/matlab/svmdemo.m

HELP!
Troubleshooting
If you are experiencing really bizarre results, it's sometimes worthwhile to double-check that the labels are set correctly.
("1" for positive example and "0" for negative example.) Not indicating the correct label will gravely affect the model.

Also, try deleting the temporary output feature file. Sometimes, the file isn't updated by Matlab -- but it's a silent error...

OPTIONAL : How to Build libSVM from source code.
Hopefully, you do NOT need to do this step - I've done the work for you. But for the curious...
The following steps will build the libsvm executables from their source - this is necessary to run them on our Linux
machines.

Download the folder libsvm to your local Matlab folder.1.
Within the libsvm folder, open the file Makefile with a text editor. 2.
On the 2nd line, change /usr/local/matlab to /opt/matlabR2006b3.
Save the file. 4.
Open a Terminal window and cd to the folder containing the Makefile5.
Type make6.

Copyright 2009 Jay LeBoeuf
Portions can be re-used by for educational purposes with consent of copyright owner.

 MIR Course 2009 Page 4

http://www.kyb.tuebingen.mpg.de/bs/people/weston/svmpractical/
http://www.csie.ntu.edu.tw/~cjlin/libsvm/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/
http://homepages.cae.wisc.edu/~ece539/matlab/
http://homepages.cae.wisc.edu/~ece539/matlab/svmdemo.m

