Lab 3 - Cluster Lab

Monday, June 22, 2009
4:50 PM

PURPOSE
Sometimes, an unsupervised learning technique is preferred. Perhapsyou do not have access to adequate training data. Or
perhaps the classifications forthe training data's labels events are not completely clear. Orperhapsyou just wantto quickly
sortreal-world, unseen, datainto groups based onit's feature similarity. Regardless of yoursituation, clusteringisagreat
option!

First, we'll start with some easy framing and MFCCs....

SECTION 1 SEGMENTING INTO EVERY N ms FRAMES

Segmenting: Choppingup into frames every N seconds
Previously, we've either chopping up by the location of it's onsets (and taking the following 100 ms) or just analyzing the e ntire
file.

Analyzingthe audiofile by "frames" isanothertechnique foryourarsenal thatis good foranalyzing entire songs, phrases, or non-
onset-based audio examples.

You easily chop up the audiointoframes every, say, 100ms, with a for loop.

frameSize =0.100 * fs; % 100ms
fori=1: frameSize : (length(x)-frameSize)
currentFrame =x(i:i+frameSize); % thisis the currentaudioframe

% Now, do your feature extraction here and store the featuresin some matrix / array

end

Very often, you will want to have some overlap between the audio frames - taking an 100ms long frame but slidingit 50 ms each
time. Todo a 100ms frame and have it with 50% overlap, try:

frameSize =0.100 * fs; % 100ms
hop=0.5; % 50%overlap

fori=1: hop * frameSize : (length(x)-frameSize)

end

SECTION 2 MFCC

Load an audiofile of yourchoosing from the folder\scratch\mir2008
Use this as an opportunity to explore this collection.

Test out MFCC to make sure that you know how to callit. We'll use the CATbox implementation of MFCC.
currentFramelndex=1;
fori=1: frameSize : (length(x)-frameSize)
currentFrame = x(i:i+frameSize); % thisisthe current audio frame
% Now, doyour otherfeature extraction here

% The code generates MFCC coefficients for the audio signal givenin the currentframe.
[mfceps] =mfcc(currentFrame ,fs)'; %note the transpose operator!
delta_mfceps =mfceps- [zeros(1,size(mfceps,2)); mfceps(l:end-1,:)]; %firstdelta

% Calculate the mean and std of the MFCCs, MFCC-deltas.
MFCC_mean(currentFramelndex,:) =mean(mfceps);
MFCC_std(currentFramelndex,:) =std(mfceps);
MFCC_delta_mean (currentFramelndex,:)=mean(delta_mfceps);
MFCC_delta_std(currentFramelndex,:)=std(delta_mfceps);
currentFramelndex = currentFramelndex+1;

MIR Course 2009 Page 1

end

features =[MFCC_mean MFCC_delta_mean]; % In this case, we'll only store the MFCCand delta-MFCC means
% NOTE: You might want to toss out the FIRST MFCC coefficient and delta-coefficient since it's much largerthan
othersand only describes the total energy of the signal.

You can include this code inside of your frame-hoppingloop to extract the MFCC-values for each frame.

We’re going to use this framing technique in later labs - so make sure to save your work for later use.

SECTION 3 CLUSTERING

Now we're going to try clustering with afamiliar bunch of audio filesand code. Sorry, the simple drum loop is goingto make an
appearance again. However, once we prove thatit works - you can experiment with otheraudio collections that are posted.

Create anew.m file foryourcode.

Load simpleLoop.wav. (Sorry - we'll use otheraudiofilessoon! It's bestto startsimple - because if itdon't work for thisfile, we
have aproblem.)

Segmentthisfile into 100ms frames based on the onsets.

Now, feature extract the frames using only zero crossingand centroid. Store the feature valuesin one matrix forboth the kick
andthe snares...remember, we don't care about the labels with clustering - we just want to create some clustered groups of
data.

Scale the features (usingthe scale function) from-1to 1. (Seelab2 ifyouneedareminder.)
It's clustertime! We're using NETLAB's implementation of the kmeans algorithm.

Use the kmeans algorithm to create clusters of your feature. kMeans will output 2 things of interesttoyou:
(1) The center-points of clusters. You can use the coordinates of the center of the clusterto measure the distance of any
pointfrom the center. Thisnotonly providesyou with adistance metricof how "good" a pointfitsintoa given cluster, but
thisallows youto sort by the points which are closestto the centerof a givenframe! Quite useful.

(2) Each pointwill be assigned alabel, orcluster#. You can then use thislabel to produce a transcription, do creative stuff,
orfurthertrainanother downstream classifier.

Attention:
There are 2 functions called kmeans - one from the CATBox and anotherfrom Netlab. You should be usingthe one
from Netlab. Verify thatyou are by typingwhich kmeans in yourcommandline toverify...

Here's the help function for kmeans:
> help kmeans
KMEANS Trains a k means cluster model.

Description

CENTRES = KMEANS(CENTRES, DATA, OPTIONS) uses the batch K-means
algorithmto setthe centres of a cluster model. The matrix DATA
representsthe datawhichisbeingclustered, with each row
correspondingtoavector. The sum of squares error functionis used.
The pointatwhich a local minimumisachievedisreturnedas

CENTRES. The error value atthat pointis returnedin OPTIONS(8).

[CENTRES, OPTIONS, POST, ERRLOG] = KMEANS(CENTRES, DATA, OPTIONS)
alsoreturnsthe clusternumber (inaone-of-N encoding) foreach
datapointin POST and a log of the errorvalues aftereach cyclein

ERRLOG. The optional parameters have the following

interpretations.

OPTIONS(1) issetto1to display errorvalues;alsologs error
valuesinthe returnargument ERRLOG. If OPTIONS(1) issetto O, then
only warning messages are displayed. If OPTIONS(1)is-1, then
nothingisdisplayed.

MIR Course 2009 Page 2

10.

11.

12.

13.

OPTIONS(2) isameasure of the absolute precision required forthe
value of CENTRES at the solution. If the absolute difference between
the values of CENTRES between two successive stepsisless than
OPTIONS(2), then this condition is satisfied.

OPTIONS(3) isameasure of the precision required of the error
function atthe solution. If the absolute difference between the
errorfunctions between two successive stepsisless than OPTIONS(3),
then this conditionis satisfied. Both thisand the previous

condition must be satisfied fortermination.

OPTIONS(14) isthe maximum number of iterations; default 100.

Now, simply put, here are some examples of how you use it:

% Initialize # of clusters that you want to find and theirinitial conditions.

numCenters=2; % the size of the initial centers; thisis passed to k-means to determine the value of k.
numFeatures=2; % replace the "2" with however many featuresyou have extracted
centers=zeros(numCenters, numFeatures); % inits centerpointsto 0

% setup vector of options forkmeans trainer
options(1)=1;

options(5)=1;

options(14) =50; % num of stepsto waitfor convergence

% train centers from data
[centers,options,post] =kmeans(centers, your_feature_data_matrix, options);

%0Output:

% Centers containsthe center coordinates of the clusters - we can use thisto calculate the distance for each point
inthe distance to the clustercenter.

% Post containsthe assigned cluster numberforeach pointinyourfeature matrix. (from 1to k)

Write ascript to listwhich audioslices (oraudiofiles) were categorized as Cluster#1. Do the same or Cluster#2. Do the clusters
make sense? Now, modify the scriptto play the audioslices thatin each cluster - listening to the clusters will help us build
intuition of what'sin each cluster.

Repeat this clustering (steps 3-7), and listening to the contents of the clusters with CongaGroove-mono.wav.

Repeatthis clustering (steps 3-7) usingthe CongaGroove and 3 clusters. Listento the results. Try again with 4 clusters. Listento
the results. (etc, etc...)

Once you complete this, try out some of the many, many otheraudio loopsinthe audio loops. (Located In audio\Miscellaneous
Loops Samples and SFX)

Let'sadd MFCCs to the mix. Extract the mean of the 12 MFCCs (coefficients 1-12, do not use the "0th" coefficient) foreach
onset using the code that you wrote. Add those to the feature vectors, along with zero crossing and centroid. We should now
have 14 features being extracted - thisis started to get "real world"! With this simple example (and limited collection of audio
slices, you probably won't notice adifference - butatleastitdidn't break, right?) Let'stry it with the some otheraudiototruly
appreciate the power of timbral clustering.

BONUS (ONLY IF YOU HAVE EXTRA TIME...)

Now that we can take ANY LOOP, onset detect, feature extract, and clusterit, let's have some fun.
Choose any audiofile from our collection and use the above techniques break it up into clusters.
Listentothose clusters.

Some rules of thumb: since you need to pick the number of clusters ahead of time, listen to your audio files first.
o Youcan breaka drumkitor percussionloopinto 3 - 6 clustersforit to segmentwell. More is OK too.
o Musical loops: 3-6clusters should work nicely.
o Songs- lotsof clusters forthemto segmentwell. Try 'em out!

BONUS (ONLY IF YOU REALLY HAVE EXTRA TIME....)

Review yourscript that PLAYs all of the audio files that were categorized as Cluster#1 or Cluster# 2.

MIR Course 2009 Page 3

Now, modify yourscriptto play and plot the audio files which are closest to the center of your clusters.
This hopefully provides you with which files are representative of your cluster.
Helpful Commands for sorting or measuring distance:
d = dist2(featureVectorl,featureVector2) % measuresthe Euclidean distance betw/ point 1and point 1

DIST2 Calculatessquared distance between two sets of points.
Description
D= DIST2(X, C) takes two matrices of vectors and calculates the
squared Euclidean distance between them. Both matrices must be of
the same column dimension. If Xhas M rowsand N columns, and C has
Lrows and N columns, thenthe result has M rows and L columns. The
I,Jthentryis the squared distance fromthe Ith row of X to the
Jthrow of C.

[y,ind]=sort()

>> helpsort

SORT Sortinascendingordescendingorder.
For vectors, SORT(X) sorts the elements of Xin ascending order.
For matrices, SORT(X) sorts each column of X in ascending order.
For N-Darrays, SORT(X) sorts the along the first non-singleton
dimension of X. When Xis a cell array of strings, SORT(X) sorts
the stringsin ASCll dictionary order.

Y = SORT(X,DIM, MODE)
has two optional parameters.
DIM selects adimension along which to sort.
MODE selects the direction of the sort
'ascend' resultsinascendingorder
'descend'resultsin descending order
The resultisinY which has the same shape and type as X.

[Y,1]1= SORT(X,DIM,MODE) also returns an index matrix I.
If Xisavector,thenY =X(l).
If X isan m-by-n matrixand DIM=1, then

forj=1:n, Y(:,j) = X(I(:,j),j); end

When X is complex, the elements are sorted by ABS(X). Complex
matches are furthersorted by ANGLE(X).

When more than one elementhas the same value, the order of the
elementsare preservedinthe sorted resultand the indexes of
equal elements will be ascendingin any index matrix.

Example:IfX=[375
042]

thensort(X,1)is[04 2 and sort(X,2)is[357
375] 02 4];

[y,ind] =sortrows()

SORTROWS Sortrows inascendingorder.
Y = SORTROWS(X) sorts the rows of the matrix X in ascending orderas a
group. X is a 2-D numericor char matrix. For a char matrix containing
stringsin each row, thisis the familiardictionary sort. When Xis
complex, the elements are sorted by ABS(X). Complex matches are further
sorted by ANGLE(X). X can be any numericor char class. Y isthe same
size and class as X.

SORTROWS(X,COL) sorts the matrix based on the columns specified in the

vector COL. If an elementof COLis positive, the corresponding column
in X will be sortedinascending order;if an element of COLis negative,

MIR Course 2009 Page 4

the corresponding columnin X will be sorted in descending order. For
example, SORTROWS(X,[2-3]) sorts the rows of X firstin ascending order
for the second column, and then by descending orderforthe third
column.

[Y,11= SORTROWS(X) and [Y,I] = SORTROWS(X,COL) also returns anindex
matrix | such that Y = X(1,:).

[y,ind] =sortrows (featureData_from_a_particular_cluster, clusterNum)

Copyright 2009 Jay LeBoeuf
Portions can be re-used by for educational purposes with consent of copyright owner.

MIR Course 2009 Page 5

