Lab 2 - "My first audio classifier"

Monday, June 22,2009
4:11PM

PURPOSE

My first audio classifier:introducing K-NN! We can now appreciate why we need additional intelligence in our systems - heuristics can't very farin the world
of complex audio signals. We'll be using Netlab'simplementation of the k-NN for ourwork here. It proves be a straight-forward and easy to use
implementation. The steps and skills of working with one classifier will scale nicely to working with other, more complex classifiers.

We're also going to be usingthe new featuresin ourarsenal: cherishing those "spectral moments" (centroid, bandwidth, skewness, kurtosis) and also
examining other spectral statistics.

SETUP

Toread MP3 filesinto Matlab, you have to do some additional setup onyourlocal Linux machine. Please follow thesestepsto set this up:
https://cm-wiki.stanford.edu/wiki/Reading MP3 Files

SECTION 1
First off, we want to analyze and feature extracta small collection of audio samples - storing theirfeature dataas our "training data". The below commands
read all of the .wav filesina directoryinto a structure, snareFileList.

1. Usethese commandstoreadin a list of filenames (samples)in adirectory, replacing the path with the actual directory that the audio \ drumsamples
arestoredin.

snareDirectory =["~/Matlab/audio/drum samples/snares/"];
snareFilelist=getFileNames(snareDirectory,'wav')

kickDirectory =['~/Matlab/audio/drum samples/kicks/'];
kickFileList =getFileNames(kickDirectory,'wav')

2. Toaccess the filenames contained in the cell array, use the brackets {} to getto the elementthatyouwantto access.

Forexample, to access the text file name of the 1stfile inthe list, youwould type snareFileList{1}
Tryit out:
snareFileList{1}

When we feature extractasample collection, we need to sequentially access audio files, segment them (ornot), and feature e xtractthem. Loadinga
lot of audiofilesinto memoryis notalways afeasible or desirable operation, so you will create aloop which loads an audi ofile, feature extracts it, and
closes the audiofile. Note thatthe onlyinformation that we retainin memory are the features that are extracted.

2. Createaloopwhichreadsinan audiofile, extractsthe zero crossing rate, and some spectral statistics. Remember, youdid some of thisworkinLab1 -
feel free tore-use yourcode. The feature information foreach audiofile (the "featurevector") should be stored as afeature array, with columnsbeing
the featuresand rows foreachfile.

Orin Matlab, for example:
featuresSnare =

1.0e+003 *

0.5730 1.9183 2.9713 0.0004
0.4750 1.4834 2.4463 0.0004
0.5900 2.2857 3.1788 0.0003
0.5090 1.6622 2.6369 0.0004
0.4860 1.4758 2.2085 0.0004
0.6060 2.2119 3.2798 0.0004
0.4990 2.0607 2.7654 0.0004
0.6360 2.3153 3.0256 0.0003
0.5490 2.0137 3.0342 0.0004
0.5900 2.2857 3.1788 0.0003

Inyourloop, here'show to read in your wav files, using a structure of file names:
[x,fs]=wavread([snareFileDir snareFileList{i}]); %note the use of bracketsforsnareFilelList

Here's an example of how to feature extract forthe current audiofile..

frameSize =0.100 * fs; % 100ms

currentFrame =x(1:frameSize)

featuresSnare(i,1) =zcr(currentFrame);

[sc,ss, sfm]=getSpectralFeatures(currentFrame,fs); % 1st value is spectral centroid, 2nd value is spectral spread, 3rd v alue is spectral
flatness measure

featuresSnare(i,2:4) =[sc,ss, sfm];

3. First, extractall of the feature datafor the kick drums and store it ina feature array. (My example, above, is called "fe aturesKick")
4. Next, extractall of the feature dataforthe snares, storingthemin a differentarray.
Again, the kick and snare features should be separated in two different arrays!

MIR Course 2009 Page 1


https://cm-wiki.stanford.edu/wiki/Reading_MP3_Files

OK, nomore help. Therestis upto you!

SECTION 2
Building Models

1

Examine the feature array forthe various snare samples. Whatdo you notice?

2. Since the features are different scales, we willwant to normalize each feature vectortoacommonrange - storingthe scaling coefficients forlateruse.

Many techniques exist forscaling your features. We'll use linear scaling, which forces the featuresintothe range -1to1.

Forthis, we'll use acustom-created function called scale. Scale returnsan array of scaled values, as well as the multiplication and subtraction
values which were used to conform each columninto-1to 1. Use thisfunctioninyourcode.

[trainingFeatures,mf,sf]=scale([featuresSnare; featuresKick]);

Buildingak-NN

4. Buildak-NN model forthe snare drumsin Netlab, using the function knn.

We'll the implementation of from the Matlab toolbox "netlab":

>help knn

NET= KNN(NIN, NOUT, K, TR_IN, TR_TARGETS) creates a KNN model NET
withinputdimension NIN, output dimension NOUT and K neighbours.
The training datais also stored in the data structure and the
targetsare assumedto be usinga 1-of-N coding.

Thefieldsin NETare

type ='knn'

nin=numberof inputs

nout = number of outputs
tr_in=traininginput data
tr_targets = trainingtargetdata

Here'sanexample...

model_snare =knn(4,1,1,trainingFeatures,[ones(10,1); zeros(10,1)]);

Thisk-NN model uses 4features, has linput (the label), 1output (the label), and takes in the feature dataviaa feature array called
trainingFeatures.

The lastinput, inthis example, isan array of ones and zeros, which looks like this:
111111111 100O0O0O0O0TO0OTG0TGO0OSO
These labelsindicate which sample in ourfeature dataisasnare, vs. a non-snare. The k-NN model uses thisinformation to build a means of

comparison and classification. Itis reallyimportantthatyou getthese labels correct - because they are the crux of all future classifications that
are made lateron. (Trustme, I've made many mistakesin this area - training models withincorrectlabel data.)

6. Create a script which extracts features for a single file, re -scales its feature values, and evaluates them with your kNN classifier.

Evaluating samples with yourk-NN

Now thatthe hard part isdone, it's time to through some feature datathrough the trained k-NN and see what it outputs.

Inevaluatinganew audiofile, we need to extractit's features, re-scale themto the same range as the trained feature values, and then send them
through the knn.

Some helpful commands:

features =rescale(features,mf,sf); % This uses the previous calculated linearscaling parameters to adjust the incoming features to the same
range.

model_output_snare =knnfwd(model_snare, features)

Once you have completed function, first, testit with your training examples. Since ak-NN model has exact representations of the training data, it
will have 100% training accuracy - meaningthat every training example should be predicted correctly, when fed back into the trained model.

Now, testout with the examplesinthe folder "testkicks" and "test snares", located in the drum samples folder. These are real-world testing
samples...

If the outputlabels"1" or "0" aren'tinsightful foryou, you canadd an if statement to display them as strings "snare" and "kick".

BONUS (ONLY IF YOU HAVE EXTRA TIME...)

Whileit'sinterestingtotestone file atatime - try to evaluate an entire file folder of audiofiles.
Create ascript which extracts features fora folder of audio files, re-scales their feature values, and evaluates them with your kNN classifier.

Foraslick experience, check out the commands uigetdir and uigetfile -- these allow your matlab scripts to presenta GUI browser to query for file
locations.

MIR Course 2009 Page 2



2. Createanewclassifier, using otheraudio samples. (Yay! Nomore drumsamples!)
Use the audio files downloaded in your ~\scratch\Instrument Samples folder.
Choose two of these folders and create anew k-NN to be able to distinguish between them...

NOTE!

We didn'tseparate audio into frames here, or use equally -sized time segments for feature extraction.
That's not a very good practice. Why?

Copyright 2009 Jay LeBoeuf
Portions can be re-used by foreducational purposes with consent of copyright owner.

MIR Course 2009 Page 3



