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These lecture notes contain hyperlinks to the CCRMA Wiki.

On these pages, you can find supplemental material for lectures - providing extra tutorials,
support, references for further reading, or demonstration code snippets for those
interested in a given topic.

Click on the@symbol on the lower-left corner of a slide to access additional resources.

WIKI REFERENCES...


http://cm-wiki.stanford.edu/wiki/MIR_workshop_2008_notes
http://cm-wiki.stanford.edu/wiki/MIR_workshop_2008

Review from Day 2

BBQ Today

Correction on knn formatting

Name some spectral features

What are the 3 major components of a MIR system?
Why do we have to scale our extracted features?

Which of these did we really not do at all in Lab 27 And,
do you think this was a problem?

e How did the lab go?

e Let'sdiginto some interesting observations from the lab

e Did you try other audio files — other instrument
recognizers?
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amplitude

Temporal Information

e Rise time or Attack time- time interval between the
onset and instant of maximal amplitude
e Attackslope

Envelope (centered)
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Temporal Informatiop

e Temporal Centroid
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Features — Frame 1
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Features: SimpIeLoop.wav

2.8kHz skHz 2.2 4000 10100
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3

MFCCs

The idea of MFCCs is to

capture spectrum in
accordance with human
perception.

STFT o
log(STFT)

Perform mel-scaling to group
and smooth coefficients.
(perceptual weighting)
Decorrelate with DCT
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MFCC of Music

(Petruncio, 2003)

Piano

Saxophone

Tenor
Opera
Singer

Drums




_d

pectral Energy vs. MFCC



Features: Measuring changes
e AandA A

— Change between frames
— How quickly the change is occurring

e Spectral fluxis the distance between the spectrum
of successive frames



Feature extraction

e Feature design and creation uses one’s domain
knowledge.

e Choosing discriminating features is critical

e Smaller feature space yields smaller, simpler
models, faster training, often less training data
needed



. Feature Analysis/
Segmentation Extraction Decision

(Frames, Onsets, (Time-based, Maklng

Beats, Bars, Chord ) .
Changes, etc) spectral energy, (Classification,

MFCC, etc) Clustering, etc)

ANALYSIS AND DECISION MAKING



Supervised vs. Unsupervised

e Unsupervised - “clustering”
e Supervised — binary classifiers (2 classes)
e Multiclass is derived from binary




Clustering

e Unsupervised learning — find pockets of data to
group together

e Statistical analysis techniques



Clustering

o K =# of clusters

e Choosing the number of clusters — note that
choosing the “best” number of clusters according to
minimizing total squared distance will always result
in same # of clusters as data points.



Clustering

The basic goal of clustering is to divide the data into
groups such that the points within a group are close
to each other, but far from items in other groups.

Hard clustering — each point is assigned to one and
only one cluster.



Demo

e http://home.dei.polimi.it/matteucc/Clustering/tutorial html/AppletKM.html

| oo
Distance objects to
centroids



http://home.dei.polimi.it/matteucc/Clustering/tutorial_html/AppletKM.html

K-Means

The key points relating to k-means clustering are:

e k-means is an automatic procedure for clustering
unlabelled data;

e it requires a pre-specified number of clusters;

e Clustering algorithm chooses a set of clusters with
the minimum within-cluster variance

e Guaranteed to converge (eventually)

e Clustering solution is dependent on the initialization

(You get different results with each running)


http://cm-wiki.stanford.edu/wiki/MIR_workshop_2008_notes

K-Means

The initialization method needs to be further specified.
There are several possible ways to initialize the
cluster centers:

e Choose random data points as cluster centers

e Randomly assign data points to K clusters and
compute means as initial centers

e Choose data points with extreme values

e Find the mean for the whole data set then perturb into
k means

e Find ground-truth for data
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EVALUATION



Our classifier accuracy is 83.4%



Cross-validation

e Say, 10-fold cross validation

e Divide test set into 10 random subsets.

e 1testsetistested using the classifier trained on the
remaining 9.

e We then do test/train on all of the other sets and
average the percentages. Helps prevent over fitting.

e Do not optimize too much on cross validation —you
can severely overfit. Sanity check with a test set.


http://cm-wiki.stanford.edu/wiki/MIR_workshop_2008_notes

Cross-validation
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Cross-validation

o % %% % %
TRAINING SET
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Fold 1: 70%
Fold 2: 80%



Cross-validation

Fold 1: 76%
Fold 2: 80%
Fold 3: 77%
Fold 4: 83%
Fold 5: 72%
Fold 6: 82%
Fold 7: 81%
Fold 8: 71%
Fold 9: go%
Fold 10: 82%
Mean =79.4%



Stratified Cross-Validation

e Same as cross-validation, except that the folds are
chosen so that they contain equal proportions of
labels.



Spectral Bands
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Features — Frame 1
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Features: SimpIeLoop.wav
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Log Spectrogram

i
OOOOOOOO
~ — i o @ ¥

apnyubew

z)

ncy (H






" Chroma Bins
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EXAMPLE

chroma class
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The resulting graph indicate the cross-correlation score for each different tonality candidate.
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video/HotelCalifornia-Descriptors.avi

File View Help

E@@||Tﬁnspuse: 0

[Z Sample - Chord Pickout ===

00:21
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Registered to John Doe

e http://www.chordpickout.com/index.htm|




spectral centroid

6000

2000

4000

3000

2000

1000

0
0

Kick samples vs snare samples

T

|
200

|
1000

| | | |
1500 2000 2500 3000
Zero crossing rate

3800



near {1

Colour: Chust

Flat: phonondips_t

3071.64502

L1576, LE2777

T T T T T T T T T T T
cluste cluste cluste cluste cluste cluste cluste cluste cluste cluste
cluste cluste cluste cluste cluste cluste cluste cluste cluste cluste




Day 3 Lab

e GetyourLab 2 working
— Make sure that training data = 100% accurate
— Try the test snares and test kicks
e Write down your accuracy and parameters
e Change the number of features

e Add or replace current features with different values
— (e.g., mirbrightness, mirrolloff)

e Demo - tonality
e Demo—-tempo



