DAY 2

Intelligent Audio Systems:

A review of the foundations and applications of semantic audio analysis and music information retrieval

Jay LeBoeuf Imagine Research jay{at}imagine-research.com These lecture notes contain hyperlinks to the CCRMA Wiki.

On these pages, you can find supplemental material for lectures - providing extra tutorials, support, references for further reading, or demonstration code snippets for those interested in a given topic .

Click on the symbol on the lower-left corner of a slide to access additional resources.

WIKI REFERENCES...

Review from Day 1

- What are the 3 major components of a MIR system?
- Name 3 ways of segmenting audio into frames
- Name 1 feature
- In Matlab, what does frame{1} mean?
- How did the lab go?
- Did you try other audio files?
- Did you do the simple instrument recognition?

Beat and Tempo Detection

- Beat detection
 - Tempo (e.g., 125 bpm)
 - Detecting periodicities from the onset detection curve
 - Beat
 - AKA "Tactus" the "foot tapping rate"
 - Time-frequency analysis -> Resonators -> Probablistic model
 - Measure
 - Musical change rate
 - Harmonic change rate

Beat and Tempo Detection

Many, many, many approaches.

Some simple ones:

- 1. Autocorrelation function of the onset detection curve
- 2. Spectral decomposition of the onset detection curve
- Combine both strategies: the autocorrelation function is translated into the frequency domain in order to be compared to the spectrum curve - two curves are then multiplied.

Peak picking is applied to the autocorrelation function or to the spectrum representation.

FEATURE EXTRACTION

Spectral Features

- Spectral Flatness Measure
- Spectral Crest Factor
- Spectral Flux

ANALYSIS AND DECISION MAKING

Scaling!

	ZCR	Centroid	Bandwidth	Skew
	1	2	3	4
1	205	982.0780	0.1452	1.3512e+03
2	150	621.0359	0.1042	296.0815
3	120.0000	361.6111	0.0607	263.7817
4	135	809.3978	0.1315	834.4116
5	220	634.7242	0.0906	274.5483
6	175	536.3318	0.0837	188.4155
7	190	567.0412	0.0953	253.0151
8	135	720.2892	0.1153	333.7646
9	195.0000	778.5310	0.1407	1.2328e+03
10	185	514.4315	0.0717	183.0322

CLASSIFICATION

Training...

TRAINING SET

"1" "0"

k-NN

• Explanation...

Advantages:

training is trivial: just store the training samples very simple to implement and use

<u>Disadvantages</u>

Classification gets very complex with a lot of training data. Must measure distance to all training samples. Can easily be "overfit"

We can improve computation efficiency by storing just the class prototypes.

k-NN

• Steps:

- Measure distance to all points.
- Take the k closest
- Majority rules. (e.g., if k=5, then take 3 out of 5)

Fig. 2.15. k-nearest neighbours classification of two-dimensional data in the two-class case, with k=5. The new datum \mathbf{x} is represented by a non-filled circle. Elements of the training set (X,Y) are represented with dots (those with label -1) and squares (those with label +1). The arrow lengths represent the Euclidean distance between \mathbf{x} and its 5 nearest neighbours. Three of them are squares, which makes \mathbf{x} have the label $\mathbf{y}=+1$.

k-NN

- Instance-based learning training examples are stored directly, rather than estimate model parameters
- Generally choose k being odd to guarantee a majority vote for a class.

Distance Classification

- Find nearest neighbor
- Find representative match via class prototype (e.g., center of group or mean of training data class)

Distance metric

Most common: Euclidean distance

FEATURE DEMOS

- Simple re-ordering or slices:
 - Slice up loop into segments and sort via features
 - Play audio
 - Play whole song snippet

> End Day 2

Real-world

- YouTube uses AudibleMagic's audio fingerprinting technology, to help identify the audio content of music partners like Warner Music, Sony BMG, and Universal.
- Shazam & Gracenote "Tagging" music listening to your phone

Real-world

• MeapSoft - <u>link</u>