DAY 1

Intelligent Audio Systems:

A review of the foundations and applications of semantic audio analysis and music information retrieval

Jay LeBoeuf Imagine Research jay{at}imagine-research.com

Kyogu Lee Gracenote Kglee{at}ccrma.stanford.edu

June 2009

These lecture notes contain hyperlinks to the CCRMA Wiki.

On these pages, you can find supplemental material for lectures - providing extra tutorials, support, references for further reading, or demonstration code snippets for those interested in a given topic .

Click on the symbol on the lower-left corner of a slide to access additional resources.

WIKI REFERENCES...

Administration

- https://cm-wiki.stanford.edu/wiki/MIR_workshop_2009
- Daily schedule
- Introductions
 - Our background
 - A little about yourself
 - List of your region of interest, and any specific items of interest that you'd like to see covered.

Example Seed...

Why MIR?

- Find specific item
- Find something vague
- Find something interesting or new

Commercial Applications

- Retrieval based on similarity (IR and creative applications)
- Live analysis of audio
- Music Discovery / Recommendation
- Query for music
- Assisted Music Transcription
- Audio fingerprint
- Creative applications

Queries

- Query by Humming
 - Lots of academic work
- Query by audio ID
 - Gracenote ID, Shazam, Audible Magic
 - Noisy audio snippet
- Query by example
 - Find more like this (where "this" has to be specified or inferred)

Current "Hot" research areas

- Analysis of commercial music tracks, such as:
- Genre ID (labels exist, but even humans disagree!)
- Artist classification
 - Tricks: use voice only to improve accuracy to 70% (out of 100 artists)
- Artist similarity
 - Really, what is the similarity?
 - But: what is similarity between artists?
 - pattern recognition systems give a number...

```
eiffel braxton lara_fabierasure jessica_simpson lara_fabierasure new janet_jackson eiffel_65 whitney celine_dion et_shop_boys lauryfhriatina_aguileaqua s backstælesajats sade sof spice_girlsbelinda_carniste pi ain miroquai nelly_faratædqennox
```

Augment recommenders with new data

Motivations / Demos

- Transcriptionist vs. Descriptionist approach
 - Music Transcription (restoration) piano from MIDI

Motivations / Demos

- Transcriptionist vs. Descriptionist approach
 - Music Transcription (restoration) piano from MIDI
 - http://zenph.com/listen.html
 - More info:
 - http://www.pragprog.com/articles/a-pragmatic-project-livein-concert/the-methodology

Motivations / Demos

- Transcriptionist vs. Descriptionist approach
 - Music Transcription (restoration) piano company from MIDI
 - http://zenph.com/listen.html
 - More <u>transcription</u> (drum transcription demo)

BASIC SYSTEM OVERVIEW

Basic system overview

Segmentation

(Frames, Onsets, Beats, Bars, Chord Changes, etc)

Basic system overview

Segmentation

(Frames, Onsets, Beats, Bars, Chord Changes, etc)

Feature Extraction

(Time-based, spectral energy, MFCC, etc)

Basic system overview

Segmentation

(Frames, Onsets, Beats, Bars, Chord Changes, etc)

Feature Extraction

(Time-based, spectral energy, MFCC, etc)

Analysis / Decision Making

(Classification, Clustering, etc)

TIMING AND SEGMENTATION

Timing and Segmentation

- Slicing up by fixed time slices...
 - 1 second, 80 ms, 100 ms, 20-40ms, etc.
- "Frames"
 - Different problems call for different frame lengths

Frames

Timing and Segmentation

- Slicing up by fixed time slices...
 - 1 second, 80 ms, 100 ms, 20-40ms, etc.
- "Frames"
 - Different problems call for different frame lengths
- Onset detection
- Beat detection
 - Beat
 - Measure / Bar / Harmonic changes
- Segments
 - Musically relevant boundaries
 - Separate by some perceptual cue

Onset detection

- What is an Onset?
- How to detect?
 - Envelope is not enough
 - Need to examine frequency bands

FEATURE EXTRACTION

FRAME 1

ZERO CROSSING RATE

Frame 2

Zero crossing rate = 423

Features: SimpleLoop.wav

Frame	ZCR
1	9
2	423
3	22
4	28
5	390

Warning: example results only - not actual results from audio analysis...

FEATURE EXTRACTION

FFT?

Spectral Features

- Spectral Centroid
- Spectral Bandwidth/Spread
- Spectral Skewness
- Spectral Kurtosis
- Spectral Tilt
- Spectral Roll-Off
- Spectral Flatness Measure
- Spectral Crest Factor

Spectral moments

http://www.jyu.fi/hum/laitokset/musiikki/en/research/coe/materials/mirtoolbox/userguide1.1

ANALYSIS AND DECISION MAKING

Heuristic Analysis

- Example: "Cowbell" on just the snare drum of a drum loop. "Simple" instrument recognition!
- Use basic thresholds or simple decision tree to form rudimentary transcription of kicks and snares.
- Time for more sophistication!

> End of Lecture 1