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WIKI REFERENCES…

These lecture notes contain hyperlinks to the CCRMA Wiki.  

On these pages, you can find additional supplement the lecture material found in the class 
- providing extra tutorials, support, references for further reading, or demonstration code 
snippets for those interested in a given topic .  

Click on the         symbol on the lower-left corner of a slide to access additional resources.

http://cm-wiki.stanford.edu/wiki/MIR_workshop_2008_notes
http://cm-wiki.stanford.edu/wiki/MIR_workshop_2008


• What are the two parameters that define a RBF 
SVM? 

• What do they (roughly) approximate? 

• How did the lab go?   Questions on SVM?

Review from Day 5



• Binary classifiers rely on positive and negative 
examples of training data.

• One-class classifiers, however, only rely on positive 
examples.  Great for models where the negative 
examples are not easily definable.  (e.g., a classifier 
that detects “funky” sounds)

• Parameter:  ν (“nu”)

One-class SVM



feature 1

fe
a
tu

re
 2



• ν equals the % of training examples that you are 
willing to get wrong.  (e.g., 10% error rate on 
training set is ν of 0.1)

One-class SVM



EVALUATION



Our classifier accuracy is 83.4% 



Cross-validation

• Say, 10-fold cross validation
• Divide test set into 10 random subsets.
• 1 test set is tested using the classifier trained on the 

remaining 9.
• We then do test/train on all of the other sets and 

average the percentages.  Helps prevent over fitting.
• Do not optimize too much on cross validation – you 

can severely overfit.  Sanity check with a test set.
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Cross-validation



Cross-validation

TEST TRAINING SET

Fold 1: 76%



Cross-validation

TEST TRAINING SET

Fold 1: 76%

Fold 2: 80%



Cross-validation

Fold 1: 76%
Fold 2: 80%
Fold 3: 77%
Fold 4: 83%
Fold 5: 72%
Fold 6: 82%
Fold 7: 81%
Fold 8: 71%
Fold 9: 90%
Fold 10: 82%
Mean = 79.4%



Stratified Cross-Validation

• Same as cross-validation, except that the folds are 
chosen so that they contain equal proportions of 
labels.



True+ correct Classifier correctly predicted something in it's list of known 
positives

False- absent Classifier did not hit, for a known positive result.    

False+ incorrect Classifier said that something was positive when it's actually 
negative

Evaluation Measures



“Accuracy” 
↑ is good

Precision - “Positive Predictive Value”
↓ = high F+ rate, the classifier is hitting all the time
↑ = low F+ rate, no extraneous hits

Recall – “Missed Hits”
↓ = high F- rate, the classifier is missing good hits
↑ = low F- rate, great at negative discrimination –

always returns a negative when it should

F-Measure – a blend of precision and recall (harmonic-weighted 
mean)

↑

Evaluation Measures
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Evaluate Measures

P = T+ / (T+  +  F+  ) [0…1]

R = T+ / (T+   +  F -) [0…1]

F = 2*P*R/(P+R) [0…1]



Training and test data

• An overfit model matches every training example 
(Now it’s “overtrained.”)

• Training Error AKA “Class Loss” 
• Generalization 

– The goal is to classify new, unseen data.
– The goal is NOT to fit the training data perfectly.

• An overfit model will not be well-generalized, and 
will make errors.  

• Rule of thumb: favor simple solutions and more 
“general” solutions.



Training and test data

• Cross-validation
• Training, Validation, and Test set

– Partition randomly to ensure that relative proportion of 
files in each category was preserved for each set

• Weka or Netlab has sampling code

• Warnings: 
– Don’t test (or optimize, at least) with training data
– Don’t train on test data (no!)



ANALYSIS AND DECISION MAKING



• Toontrack EZ Drummer
– DrumTracker (Audio -> MIDI transcriber tool)

Real-world break

http://www.toontrack.com/drumtracker.asp
http://www.toontrack.com/drumtracker.asp


ANALYSIS AND DECISION MAKING: 
GMMS



Mixture Models (GMM)

• K-means = hard clusters.
• GMM = soft clusters.  



Mixture Models (GMM)

• GMM is good because: 
1. Can approximate any pdf with enough components
2. EM makes it easy to find components parameters

– EM - the means and variances adapt to fit the data as well as 
possible

3.     Compresses data considerably

• Can make softer decisions (decide further 
downstream given additional information)
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Input
• Number of components (Gaussians)

– e.g., 3
• Mixture coefficients (sum = 1) 

– e.g., [0.5 0.2 0.3]
– “Priors” or “Prior probabilities”
– Priors are “the original probability that each point came from a given mixture.”
– “A prior is often the purely subjective assessment of an experienced expert.”

• Initialized centers, means, variances. (optional)

Output
• Component centers/means, variances, and mixture coeff.
• Posterior probabilities

– “Posterior probabilities are the responsibilities which the Gaussian components 
have for each of the data points.”

Query

• Similarity via Likelihood or Distance Measure

GMM Parameters



• “Pooled covariance" - using a single covariance to 
describe all clusters (saves on parameter 
computation)

GMM





• From Netlab (p82-83)









Distance measures between clusters

• The distances between these clusters are computed 
using the 
– “Centroid distance”
– Mahalanobis distance
– Kullback-Leibler Divergence
– Earth Movers Distance



• Mahalanobis
– Normalize the distance between the test point(s) and the 

existing cluster set



GMM: EM

• EM is gradient-based – it does not find the global 
maximum in the general case, unless properly 
initialized in the general region of interest.

• Log-function is “order-preserving” – maximizing a 
function vs. maximizing its log gives same results

• Why log?  (One idea is to transform an equation’s 
multiplies into additions, a wonderful property of 
logs)
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Minimization Problems

• Error wants to be –inf, which occurs when Gaussian 
is fit for each data point. (mean = data point and 
variance = 0)  

• “There are often a large number of local minima 
which correspond to poor models.  Solution is to 
build models from many different initialization 
points and take the best model.”  

>demgmm1



• Sampling

GMM



GMM

• Application: 
– State-of-the-art speech recognition systems
– estimate up to 30,000 separate GMMs, each with about 32 

components. This means that these systems can have up 
to a million Gaussian components!! All the parameters are 
estimated from (a lot of) data by the EM algorithm.



PERCEPTUAL INFORMATION: 
GENRE



Genre
“Because feature vectors are computed from short 

segments of audio, an entire song induces a cloud of 
points in feature space.”

“The cloud can be thought of as samples from a 
distribution that characterizes the song, and we can 
model that distribution using statistical techniques. 
Extending this idea, we can conceive of a distribution in 
feature space that characterizes the entire repertoire of 
each artist.”

A. Berenzweig, B. Logan, D. Ellis, and B. Whitman. A large-scale evalutation
of acoustic and subjective music similarity measures. In Proceedings
of 4th International Symposium on Music Information Retrieval,
Baltimore, Maryland, 2003.
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From ISMIR 2007 Music Recommender 

Tutorial (Lamere & Celma) 
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From ISMIR 2007 Music 

Recommender Tutorial 

(Lamere & Celma) 
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How?
• One vector

– High-level features extracted from data
– Statistics of features extracted from a piece (includes means, 

weights, etc)
• Histograms of MFCC features

– Concatenate features into a single row (encodes time 
information)

– MFCC spectral shape
– “Anchor space” where classifiers are training to represent 

musically meaningful classifiers.  (5 frames of MFCC vectors + 
deltas)

• Cloud of points
– Extract audio every N frames
– K-Means or GMM representing a “cloud of points” for song

• Clusters: mean, covariance and weight of each cluster = 
signature



>end Day 6


